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Abstract—We give exponentially small upper bounds on
the success probability for computing the direct product
of any function over any distribution using a commu-
nication protocol. Let suc(μ, f, C) denote the maximum
success probability of a 2-party communication protocol
for computing the boolean function f(x, y) with C bits
of communication, when the inputs (x, y) are drawn from
the distribution μ. Let μn be the product distribution on n
inputs and fn denote the function that computes n copies
of f on these inputs.

We prove that if T log3/2 T � (C − 1)
√
n and

suc(μ, f, C) < 2
3

, then suc(μn, fn, T ) ≤ exp(−Ω(n)).
When μ is a product distribution, we prove a nearly
optimal result: as long as T log2 T � Cn, we must have
suc(μn, fn, T ) ≤ exp(−Ω(n)).

I. INTRODUCTION

The direct sum question is about quantifying the

resources needed to compute n independent copies of

a function in terms of the resources needed to compute

one copy of it. If one copy can be computed with C
resources, then n copies can be computed using nC
resources, but is this optimal?

When the inputs are drawn from a distribution (or the

computational model is randomized), one can also mea-

sure the probability of success of computing the function.

The direct product question is about understanding what

the maximum probability of success of computing n
copies of the function is. If there is a way to compute

one copy with C resources and success probability ρ,

then n copies can be computed using nC resources with

success probability ρn, but is this optimal?

In this work, we study the direct product question

in the model of distributional communication complex-

ity [Yao79]. Direct sum theorems for this model were

proved in [BBCR10], and we strengthen their results to

give direct product theorems. For a longer introduction

to direct sums and direct products in communication

complexity and their significance, we refer the reader

to the introductions of [BBCR10], [JPY12].

We say that a communication protocol with inputs

x, y computes a function f if the messages and pub-

lic randomness of the protocol determine the value

of f correctly. Let suc(μ, f, C) denote the maximum

success probability of a 2-party communication pro-

tocol of communication complexity C for comput-

ing function f(x, y) when the inputs are drawn from

the distribution μ. Let fn(x1, . . . , xn, y1, . . . , yn) de-

note the function that maps its inputs to the n bits

(f(x1, y1), f(x2, y2), . . . , f(xn, yn)) and μn denote the

product distribution on n pairs of inputs, where each pair

is sampled independently according to μ. Our goal in this

work is to prove new upper bounds on suc(μn, fn, T )
in terms of suc(μ, f, C), for T � C.

It is easy to prove that suc(μn, fn, nC) ≥
suc(μn, fn, C)n (which is the success probability

of the trivial solution which applies the per-copy

optimal solution to each coordinate independently),

and suc(μn, fn, C) ≤ suc(μ, f, C) (since a proto-

col for fn must in particular solve the first co-

ordinate). Shaltiel [Sha03] showed that there exist

μ, f, C such that suc(μn, fn, 3
4nC) ≥ 3

4 , even though

suc(μ, f, C) ≤ 2
3 . Roughly, his ideas show that if

T ≥ 2(1 − suc(μ, f, C))Cn, there are examples where

suc(μn, fn, T ) > suc(μ, f, C). A counterexample due to

Feige [Fei00], originally designed to show the limitations

of parallel repetition, can be easily extended to show

that under a slightly different (yet meaningful) definition

of success of the protocol, there are problems whose

communication complexity does not increase at all with
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n. We elaborate on this issue in the full version of this

paper [BRWY12] (see Appendix A).

Much past work has found success in proving upper

bounds on suc(μn, fn, T ) in special cases: for example,

when f is the disjointness function [Kla10], or f is

known to have small discrepancy [Sha03], [LSS08],

[She11], or have a smooth rectangle bound [JY12],

or the protocols computing fn and f are restricted

to using a bounded number of rounds of interaction

[JPY12], [MWY13], or restricted to behaving somewhat

independently on each coordinate of the input [PRW97].

The work of [PRW97] does imply a bound that behaves

roughly like suc(μn, f, C) < exp(−Ω(n − C)). Note

that the bound is meaningful only when n > C and

the protocol for n copies is not allowed to communicate

more bits than the protocol for 1 copy. We refer the

reader to [BBCR10], [JPY12] for more references.

Prior to our work, the only known general upper

bounds on suc(μn, fn, T ), for T > C, are a consequence

of the direct sum theorem proved in [BBCR10]: If

suc(μ, f, C) ≤ 2
3 , then suc(μn, fn, T ) ≤ 2

3 , as long as1

T log T � (C−1)
√
n. They also proved the same upper

bound when Tpolylog(T ) � Cn and μ is a product

distribution.

In this work, we give new upper bounds that are

exponentially small in n. When suc(μ, f, C) ≤ 2
3 , we

prove that suc(μn, fn, T ) ≤ exp(−Ω(n)), as long as

T log3/2 T � (C − 1)
√
n. By Yao’s minimax principle

[Yao79], we get an analogous statement for randomized

worst case computation. If suc(f, C) denotes the maxi-

mum success probability for the best C-bit public coin

randomized protocol computing f in the worst case, and

if suc(f, C) ≤ 2
3 , then suc(fn, T ) ≤ exp(−Ω(n)) as

long as T log3/2 T � (C − 1)
√
n. Formally, we prove:

Theorem 1 (Main Theorem). There is a universal
constant α > 0 such that if f is boolean, γ = 1 −
suc(μ, f, C), T ≥ 2, and T log3/2 T < αγ5/2(C−1)√n,
then suc(μn, fn, T ) ≤ exp

(−αγ2n
)
.

We remark that when f is a function that has a k-

bit output, the above theorem is true with (C − 1)

1The statement in [BBCR10] is seemingly stronger than is written
here (the assumption there was T log T � C

√
n). This difference

arises from a different definition of success for protocols. Roughly
speaking, here we require f to be determined by the messages and the
public randomness, whereas [BBCR10] allowed each player separately
to also use her input in determining f . If one uses the definition from
[BBCR10] then direct product fails (for non-boolean relations), as
Feige’s counterexample (discussed in Appendix ??) shows. However,
the proof of [BBCR10] with the definition we use here yields a
quantitatively weaker direct sum theorem, as stated above. We note that
for Boolean functions, the two definitions of success are equivalent up
to 1 additive bit of communication, as one party can always write the
output π(x, y) using one bit at the end of the protocol.

replaced by (C − k). For simplicity, we focus on the

case k = 1 throughout this paper. When μ is a product

distribution, we prove an almost optimal result. We show

that if suc(μ, f, C) ≤ 2
3 and T log2 T � Cn, then

suc(μn, fn, T ) ≤ exp(−Ω(n)).
Theorem 2 (Main Theorem for Product Distributions).
There is a universal constant α > 0 such that for
every product distribution μ, if γ = 1 − suc(μ, f, C),
T ≥ 2, and T log2 T ≤ αγ6Cn , then suc(μn, fn, T ) ≤
exp

(−αγ2n
)
.

Our proofs heavily rely on methods from information

theory [Sha48] which have been applied to a vari-

ety of problems in communication complexity [Raz92],

[NW93], [Abl96], [CSWY01], [BYJKS04], [BBCR10],

and ideas developed to prove the parallel repetition

theorem [Raz98], [Hol07]. We give an overview of our

proofs next.

A. Overview of the Proofs

The notation used below is formally defined in Section

III. Before we describe our proof in detail, we give

a high level overview of the proof of the direct sum

theorem proved in [BBCR10]. The theorem is proved by

reduction. For T,C roughly as in the theorems above,

they show that any protocol π for computing n copies

of f with communication complexity ‖π‖ = T can be

used to obtain a protocol for computing one copy, with

communication complexity less than C. This proves that

computing n copies requires communication complexity

more than T . The reduction itself has two steps. In the

first step, they show that π can be used to obtain a

protocol for computing f with small information cost
(which we discuss below). In the second step, they show

that any protocol with small information cost can be

compressed to obtain a protocol that actually has small

communication.

[CSWY01] were the first to define the (external)

information cost of protocols. Let the inputs to a protocol

be X,Y , the messages be M and the public random-

ness be R. The external information cost [CSWY01]

of the protocol is the mutual information between the

inputs and the messages, conditioned on the public

randomness: I(XY ;M |R). It is the information that

an observer learns about the inputs by watching the

execution of the protocol. The internal information cost
[BYJKS04], [BBCR10] of the protocol is defined to

be I(X;M |Y R) + I(Y ;M |XR). It is the information

learnt by the parties about each others inputs during the

execution of the protocol. The external information is

always at least as large as the internal information.
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The first step of the reduction in [BBCR10] gives

a protocol with internal information cost bounded by

∼ T/n and communication bounded by T . In the

second step, they show that any protocol with internal

information I and communication N can be compressed

to get a protocol with communication ∼ √I ·N . Thus

one obtains a protocol with communication ∼ T/
√
n

for computing f . When μ is a product distribution,

the first step of the reduction gives a protocol with

external information cost bounded by ∼ T/n. They

show how to compress any protocol with small external

information almost optimally, and so obtain a protocol

with communication ∼ T/n for computing f . In both

cases, the intuition for the first step of the reduction is

that the T bits of the messages can reveal at most ∼ T/n
bits of information about an average input coordinate.

To prove our direct product theorems, we modify the

approach above using ideas inspired by the proof of

the parallel repetition theorem [Raz98]. Let E be the

event that π correctly computes fn. For i ∈ [n], let Wi

denote the event that the protocol π correctly computes

f(xi, yi). Let π(E) denote the probability of E, and

let π(Wi|E) denote the conditional probability of the

event Wi given E. We shall prove that if π(E) is not

very small, then (1/n)
∑

i π(Wi|E) < 1, which is a

contradiction (since π(Wi|E) = 1 ∀ i). In fact, we shall

prove that this holds for an arbitrary event W , not just

E.

Lemma 3 (Main Lemma). There is a universal con-
stant α > 0 so that the following holds. For every
γ > 0, and event W such that π(W ) ≥ 2−γ2n, if
‖π‖ ≥ 2, and ‖π‖ log3/2 ‖π‖ < αγ5/2(C − 1)

√
n, then

(1/n)
∑

i∈[n] π(Wi|W ) ≤ suc(μ, f, C) + γ/α.

Lemma 4 (Main Lemma for Product Distributions).
There is a universal constant α > 0 such that if
μ is a product distribution, the following holds. For
every γ > 0, and event W such that π(W ) ≥
2−γ2n, if ‖π‖ ≥ 2, and ‖π‖ log2 ‖π‖ ≤ αγ6Cn, then
(1/n)

∑
i∈[n] π(Wi|W ) ≤ suc(μ, f, C) + γ/α.

The proofs of the lemmas proceed by reduction, and

can be broken up into two steps as in [BBCR10].

However there are substantial differences in our proof,

which are discussed in detail below. First let us see how

Lemma 3 implies Theorem 1. Theorem 2 follows from

Lemma 4 in the same way.

Proof of Theorem 1: Let E denote the event

that π computes f correctly in all n coordinates.

So, (1/n)
∑

i∈[n] π(Wi|E) = 1. Set γ = α(1 −
suc(μ, f, C))/2 so that suc(μ, f, C) + γ/α < 1. Then

by Lemma 3, either ‖π‖ < 2, ‖π‖ log3/2 ‖π‖ ≥

α7/22−5/2(1−suc(μ, f, C))5/2C
√
n, or π(E) < 2−γ2n.

Due to space constraints, we leave out the formal

proofs of the main lemmas (these can be found in

Section 3 in the full version of this paper [BRWY12]).

At a high level, the proofs of the lemmas are quite

similar to each other, though there are some technical

differences. We discuss Lemma 4 first, which avoids

some complications that come from the fact that the

inputs are correlated under μ. We give a protocol with

communication complexity C that computes f correctly

with probability at least (1/n)
∑

i π(Wi|W ) − O(γ).
Let m denote the messages of π, and π(xiyim) denote

the joint distribution of xi, yi,m. For fixed xi, yi, let

π(m|xiyiW ) denote the conditional distribution of m.

Using standard subadditivity based arguments, one

can show that for average i, π(xiyi|W )
γ≈ π(xiyi) =

μ(xiyi), where here the approximation is in terms of the

�1 distance of the distributions. Intuitively, since W has

probability 2−γ2n, it cannot significantly alter all n of the

inputs. We can hope to obtain a protocol that computes

f(x, y) by picking a random i, setting xi = x, yi = y
and simulating the execution of π conditioned on the

event W . There are two challenges that need to be

overcome:

1) The protocol must simulate π(m|xiyiW ). In the

probability space of π conditioned on W , the mes-

sages sent by the first party can become correlated

with the input of the second party, even though

they were initially independent. Thus (unlike in

[BBCR10]), π(m|xiyiW ) is no longer distributed

like the messages of a communication protocol,

and it is non-trivial for the parties to sample a

message from this distribution.

2) The protocol must communicate at most C �
|m| bits. To prove the lemma, the parties need

to sample m using communication that is much

smaller than the length of m.

To solve the first challenge, we use a protocol θ.

The parties publicly sample a uniformly random co-

ordinate i in [n] and set xi = x, yi = y. They also

publicly sample a variable ri that contains a subset of

the variables x1, . . . , xn, y1, . . . , yn. Each message mj

sent by the first party in π is sampled according to the

distribution π(mj |m<jxiriW ), and each message sent

by the second party is sampled according to the dis-

tribution π(mj |m<jyiriW ). We prove that for average

i, θ(xiyirim)
γ≈ π(xiyirim|W ). [JPY12] analyzed a

different protocol θ, which used a different definition

of ri, and showed that for average i, θ(xiyirim)
γt≈

π(xiyirim|W ), where here t is the number of rounds
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of communication in π. Our bound is independent of

t, a feature that is essential to our results. A crucial

technical feature of our protocol is the definition of ri,
which allows us to split the dependencies between inputs

to π in a new way. This allows us to control the effect of

the dependencies introduced by W using a bound that

is independent of the number of rounds in π.

To solve the second challenge, we need to come

up with a way to compress the protocol θ. To use

the compression methods of [BBCR10], we need to

bound the external information cost of θ. We did not

succeed in bounding this quantity, and so cannot apply

the compression methods of [BBCR10] directly. Instead,

we are able to bound Iπ(XiYi;M |W ) for average i, the

corresponding quantity for the variables in the probabil-

ity space of π.

This does not show that the information cost of θ
is small, even though the distribution of the variables

in θ is close in �1 distance to the distribution of the

corresponding variables of π conditioned on W . For

example, suppose θ is such that with small probability

the first party sends her own input, and otherwise she

sends a random string. Then θ is close to a protocol that

reveals 0 information, but its information cost may be

arbitrarily large.

Nevertheless, we show that any protocol that is close

to having small external information cost can be sim-

ulated by a protocol that actually has small external

information cost. In our example from above, the first

party can simulate the protocol θ bit by bit and decide to

abort it if she sees that her transmissions are significantly

correlated with her input. This does not change the

protocol most of the time, but does significantly reduce

the amount of information that is revealed. Our general

solution is very similar to this. The parties simulate θ and

abort the simulation if they find that they are revealing

too much information. We prove that any protocol that

is close to having low information can be simulated

with small communication (the term “δ-simulates” in the

theorem statement is formally defined and discussed in

Section 2 of the full version of this paper):

Theorem 5 (Simulation for External Information). Sup-
pose θ is a protocol with inputs x, y, public randomness
r, and messages m, and q is another distribution on
these variables such that θ(xyrm)

ε≈ q(xyrm). Then,
there exists a protocol τ that strongly O(ε)-simulates θ

with ‖τ‖ ≤ 2‖θ‖ and

Iτ (XY ;M |R) ≤
2

(
Iq(XY ;M |R) + 1/(e ln 2) + 2 log(‖θ‖+ 1)

ε

)
+

+ log(‖θ‖+ 1) + 2 log(1/ε) + 4.

Again, due to space constraints, we defer the formal

proof of Theorem 5 to the full version of this paper (see

section 4 in [BRWY12]). The final protocol computing

f is obtained by compressing τ using the methods of

[BBCR10].

The high level outline of the proof of Lemma 3 is simi-

lar to the proof of Lemma 4. When μ is not a product dis-

tribution, we obtain a bound on the internal information

cost associated with π conditioned on W , namely we

bound Iπ(Xi;M |YiRiW )+Iπ(Yi;M |XiRiW ). Proving

an analogue of Theorem 5 for the internal information

cost is beyond the reach of this paper (and it remains

an interesting open question whether such a theorem is

true or not). Instead, to prove Lemma 3, we reanalyze

the compression method of [BBCR10] for internal in-

formation cost, and show that it can be used here. We

prove:

Theorem 6 (Compression for Internal Information).
Suppose θ is a protocol so that ‖θ‖ ≥ 2 with inputs
x, y and messages m, and q is another distribution
on these variables such that θ(xym)

ε≈ q(xym). Let
Iq := Iq(X;M |Y ) + Iq(Y ;M |X). Then, there exists a
protocol τ that O(ε)-simulates θ such that

‖τ‖ ≤ log ‖θ‖√(Iq + 1 + log ‖θ‖) · ‖θ‖
ε3/2

.

Remark 7. Theorem 6 can also be used to compress
protocols θ that have public randomness. Indeed if the
inputs are x′, y′, the public randomness is r and the
messages are m, one can set x = x′r, y = y′r.
Then Iq(X;M |Y ) + Iq(Y ;M |X) = Iq(X

′;M |Y ′R) +
Iq(Y

′;M |X ′R), so one can apply the theorem.

The intuition for the proof is quite similar to the

intuition for the proof of Theorem 5. We show that the

compression goes well most of the time, and there is

a small probability that the messages of the protocol

will lead to a failure in the simulation, but this does

not affect the outcome of the simulation by much. A

formal proof of Theorem 6 can be found in Section 4 of

the full version of this paper [BRWY12].

II. ORGANIZATION

In Section III we introduce notations, definitions and

technical claims which are used throughout the paper.
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In Section IV we prove Lemma 3 (and outline the proof

of Lemma 4). Due to space constraints, the proof of our

simulation/compression results (Lemma 5 and Lemma 6)

are deferred to the full version of the paper. We conclude

the paper with discussion and an interesting related open

problem in Section V.

III. PRELIMINARIES

A. Notation

Unless otherwise stated, logarithms in this text are

computed base two. Random variables are denoted by

capital letters and values they attain are denoted by

lower-case letters. For example, A may be a random vari-

able and then a denotes a value A may attain and we may

consider the event A = a. Given a = a1, a2, . . . , an, we

write a≤i to denote a1, . . . , ai. We define a>i and a≤i

similarly.

We use the notation p(a) to denote both the distribu-

tion on the variable a, and the number Prp[A = a]. The

meaning will usually be clear from context, but in cases

where there may be confusion we shall be more explicit

about which meaning is being used. We write p(a|b) to

denote either the distribution of A conditioned on the

event B = b, or the number Pr[A = a|B = b]. Again,

the meaning will usually be clear from context. Given

a distribution p(a, b, c, d), we write p(a, b, c) to denote

the marginal distribution on the variables a, b, c (or the

corresponding probability). We often write p(ab) instead

of p(a, b) for conciseness of notation. If W is an event,

we write p(W ) to denote its probability according to p.

We denote by Ep(a) [g(a)] the expected value of g(a)
with respect to a distributed according to p.

For two distributions p, q, we write |p(a) − q(a)| to

denote the �1 distance between the distributions p and

q. We write p
ε≈ q if |p − q| ≤ ε. Given distributions

p1, . . . , pn and q1, . . . , qn, we sometimes say “in expec-

tation over i sampled according to η(i), pi
γ≈ qi” when

we mean that Eη(i) [|pi − qi|] ≤ γ.

The divergence between p, q is defined to be

D

(
p(a)

q(a)

)
=
∑
a

p(a) log
p(a)

q(a)
.

For three random variables A,B,C with underlying

probability distribution p(a, b, c), the mutual information
between A,B conditioned on C is defined as

Ip(A;B|C) = E
p(cb)

[
D

(
p(a|bc)
p(a|c)

)]
=

= E
p(ca)

[
D

(
p(b|ac)
p(b|c)

)]
=
∑
a,b,c

p(abc) log
p(a|bc)
p(a|c) .

We shall often work with multiple distributions over the

same space. To avoid confusion, we shall always explic-

itly specify the distribution being used when computing

the mutual information. We shall sometimes work with

an event W . In this case, we denote Ip(A;B|CW ) =
Iq(A;B|C) where q(abc) = p(abc|W ).

B. Communication Complexity

Given a protocol π that operates on inputs x, y drawn

from a distribution μ using public randomness2 r and

messages m, we write π(xymr) to denote the joint dis-

tribution of these variables. We write ‖π‖ to denote the

communication complexity of π, namely the maximum

number of bits that may be exchanged by the protocol.

Our work relies heavily on ways to measure the infor-

mation complexity of a protocol (see [BBCR10], [Bra12]

and references within for a more detailed overview).

The internal information cost of π is defined to be

Iπ(X;M |Y R) + Iπ(Y ;M |XR). The external informa-
tion cost is Iπ(XY ;M |R). The internal information cost

is always at most the external information cost, and the

two measures are equal when π(xy) = π(x)π(y) is

a product distribution. Both measures are at most the

communication complexity of the protocol.

Let q(x, y, a) be an arbitrary distribution. We say that

π δ-simulates q, if there is a function g and a function

h such that

π(x, y, g(x, r,m), h(y, r,m))
δ≈ q(x, y, a, a),

where q(x, y, a, a) is the distribution on 4-tuples

(x, y, a, a) where (x, y, a) are distributed according to q.

Thus if π δ-simulates q, the protocol allows the parties to

sample a according to q(a|xy). If in addition g(x, r,m)
does not depend on x, we say that π strongly δ-simulates

q. Thus if π strongly simulates q, then the outcome of

the simulation is apparent even to an observer that does

not know x or y.

If λ is a protocol with inputs x, y, public random-

ness r′ and messages m′, we say that π δ-simulates

λ if π δ-simulates λ(x, y, (r′,m′)). Similarly, we say

that π strongly δ-simulates λ if π strongly δ-simulates

λ(x, y, (r′,m′)). We say that π computes f with

success probability 1 − δ, if π strongly δ-simulates

π(x, y, f(x, y)).
The following lemma will be useful in our simulation

protocols. It shows that messages sent by each party

2In our paper we define protocols where the public randomness is
sampled from a continuous (i.e. non-discrete) set. Nevertheless, we
often treat the randomness as if it were supported on a discrete set,
for example by taking the sum over the set rather than the integral.
This simplifies notation throughout our proofs, and does not affect
correctness in any way, since all of our public randomness can be
approximated to arbitrary accuracy by sufficiently dense finite sets.
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remain independent of the other party’s input even after

some part of the input is fixed. A formal proof can be

found in the full version of this paper.

Lemma 8. Let x, y be inputs to a protocol π with
public randomness r and let r′ be a variable such
that π(xy|rr′) = π(x|rr′)π(y|rr′). Let m1, . . . ,mj be
messages in π such that mj is transmitted by Alice. Then
π(mj |m<jrr

′) = π(mj |m<jrr
′y).

C. Useful Protocols

The following lemma was proved by Holenstein

[Hol07].

Lemma 9 (Correlated Sampling). Suppose Alice is given
a distribution p and Bob a distribution q over a common
universe. Then there is a randomized sampling procedure
that allows Alice and Bob to use shared randomness to
jointly sample elements A,B such that A is distributed
according to p, B is distributed according to q, and
Pr[A �= B] = |p− q|.

The following compression theorem from [BBCR10]

will be useful:

Theorem 10. For every protocol π, and every ε > 0,
there exists a protocol λ that strongly ε-simulates π with

‖λ‖ ≤ O

(
Iπ(XY ;M |R) · log(‖π‖/ε)

ε2

)
.

D. Basic Lemmas

The proofs of the following two lemmas can be found

in [CT91]:

Lemma 11 (Divergence is Non-negative).

D

(
p(a)

q(a)

)
≥ 0.

Lemma 12 (Chain Rule). If a = a1, . . . , as, then

D

(
p(a)

q(a)

)
=

s∑
i=1

E
p(a<i)

[
D

(
p(ai|a<i)

q(ai|a<i)

)]
.

In this section we give some basic lemmas which will

be used repeatedly throughout the rest of the paper. Due

to lack of space, we omit proofs. For the formal proofs

see the full version of this paper [BRWY12].

Pinsker’s inequality bounds statistical distance in

terms of the divergence:

Lemma 13 (Pinsker). If p(b) = q(b), then

|p(a, b)− q(a, b)|2 ≤ E
p(b)

[
D

(
p(a|b)
q(a|b)

)]
.

The following lemma bounds the probability of getting

a large term in the divergence:

Lemma 14 (Reverse Pinsker). Let S ={
(a, b) : log p(a|b)

q(a|b) > 1
}

. Then, p(S) < 2|p(a, b) −
q(a, b)|.

The following bounds the contribution of the negative

terms to the divergence:

Lemma 15. Let S = {a : p(a) < q(a)}. Then,∑
a∈S p(a) log p(a)

q(a) ≥ −1/(e ln 2).
E. Inequalities that Involve Conditioning

The following lemmas bound the change in divergence

when extra conditioning is involved. Due to lack of space

we omit all proofs. We note that these claims are central

to our results and are used in a subtle way, and we

encourage the reader to consult the full version of this

paper for the complete proofs.

Lemma 16. Let W be an event and A,B,M be random
variables in the probability space p. Then,

E
p(bm|W )

[
D

(
p(a|bmW )

p(a|b)
)]
≤

log
1

p(W )
+ Ip(A;M |BW ).

Lemma 17 (Conditioning does not decrease divergence).

E
p(b)

[
D

(
p(a|b)
q(a)

)]
≥ D

(
p(a)

q(a)

)
.

The following lemma gives a key estimate that is

used crucially in our proof. It allows us to remove the

effect of conditioning on an event W on the second

argument of a divergence expression. The lemma states

that, on average, D

(
p(a|brW )

p(a|rW )

)
cannot be larger than

D

(
p(a|brW )

p(a|r)
)

. Intuitively this is true because in

both cases the first distribution is conditioned on W ,

but in the second case the second distribution is not

conditioned on W . The second part of the lemma shows

that conditioning on an event W of probability 2−s can

create a mutual information of up to s between two

formerly independent random variables.

Lemma 18. Let W be an event and A,B,R be random
variables. Then,

Ip(A;B|RW ) ≤ E
p(br|W )

[
D

(
p(a|brW )

p(a|r)
)]

.

If in addition p(abr) = p(r)p(a|r)p(b|r), then

Ip(A;B|RW ) ≤

≤ E
p(br|W )

[
D

(
p(a|brW )

p(a|br)
)]
≤ log

1

p(W )
.

751



F. Variable Truncation

We shall need to analyze protocols that are statistically

close to having low information. The following lemmas

show that if a variable A is statistically close to having

low information, then some prefix A≤K of A usually has

low information. By truncating the variable to A≤K , we

obtain a new variable that is statistically close to the old

one, yet has low information. We defer the proof to the

full version of this paper.

Lemma 19 (Truncation Lemma). Let p(a, b, c)
ε≈

q(a, b, c) where a = a1, . . . , as. For every a, b, c, define
k to be the minimum number j in [s] such that

log
p(a≤j |bc)
p(a≤j |c) > β.

If no such index exists, set k = s+ 1. Then,

p(k < s+ 1)

<
Iq(A;B|C) + log(s+ 1) + 1/(e ln 2)

β − 2
+ 9ε/2.

Remark 20. One can also prove that Ip(A<K , B|C) ≤
β + log(s + 1), in Lemma 19. We do not need this
conclusion, so we omit its proof.

IV. PROOF OUTLINE OF THE MAIN LEMMA

In this section we give a more detailed outline of the

proof of Lemma 3, though still leaving out most of the

technical proofs. Lemma 4 is proved in a similar fashion.

The formal proofs for all the claims written below can

be found in the full version of this paper [BRWY12].

We write M = M1,M2, . . . ,M2t to denote the mes-

sages in π. Let (X1, Y1), . . . , (Xn, Yn) be the inputs. We

write X = X1, . . . , Xn and Y = Y1, . . . , Yn. Without

loss of generality, we assume that n is even.

Consider the protocol η in Figure 1. We show that η
computes f with good probability, although with a lot of

communication. The protocol η has public randomness

i,g,h and runs protocol θi,g,h given in Figure 2 as a sub-

routine with inputs (xi, r
′
i,g,h), (yi, r

′′
i,g,h). Eventually,

we shall argue that in expectation over i,g,h sampled

according to η(igh),

η
(
(xi, r

′
i,g,h), (yi, r

′′
i,g,h)

) O(γ)≈
θi,g,h((xi, r

′
i,g,h), (yi, r

′′
i,g,h)),

and that, on average, θi,g,h is statistically close to

having small internal information, and statistically close

to having small external information in the case that

μ is product. We shall apply Theorem 6 to compress

the communication so as to obtain our final protocol

for computing f and conclude the proof of Lemma 3

(Similarly, Theorem 5 and Theorem 10 are used to obtain

the protocol that proves Lemma 4).

Our first goal is to show that conditioning on the

event W does not change the distribution in a typical

coordinate. The following lemma is rather standard and

follows from subadditivity of divergence and its relation

to the �1 norm (Pinsker’s inequality):

Lemma 21. In expectation over i sampled according to
η(i), π(xiyi)

γ≈ π(xiyi|W ).

Next we eliminate a corner case:

Lemma 22. If ‖π‖ ≤ γ2n, then in expectation over i

sampled according to η(i), π(mxiyi|W )

√
2γ≈ π(m|W ) ·

π(xiyi).

The proof of Lemma 22 is also a straightforward

application of subadditivity. Lemma 22 implies that if

‖π‖ ≤ γ2n, then a protocol with 0 communication can

approximate the messages of π conditioned on W , and

so compute f with 1 additional bit of communication.

So

(1/n)
n∑

i=1

π(Wi|W )− γ/
√
2

≤ suc(μ, f, 1) ≤ suc(μ, f, C),

which completes the proof. The more interesting case is

when ‖π‖ ≥ γ2n, and so we assume that this holds in

the rest of this section.

Given subsets g,h ⊂ [n], let Xh and Y g denote X
and Y projected on to the relevant coordinates. Define

Ri,g,h = Xh\{i}, Y g\{i}.

The random variable Ri,g,h helps to break the depen-

dencies between Alice and Bob.

It turns out that choosing the right distribution for

i,g,h in η is crucial to our proofs. We need the

distribution to be symmetric in g,h. It is important that

g ∪ h = [n] so that xi, yi, ri,g,h split the dependences

between x, y. In the analysis we shall repeatedly use

the fact that for every fixing of h, η(ig|h) has the

property that i is distributed uniformly over a large set,

and i ∈ g ∩ h. This allows us to apply the chain rule.

For more intuition on the choice of the variables ri,g,h,

see Section 3.3 in [BRWY12].

Now we argue that η(igh) has the properties we need.

Observe that we can sample η(igh) by the following

different yet equivalent process. Let h be distributed as

in η. For fixed h, let κh : [n] → [n] be a permuta-

tion sampled uniformly from the set of permutations

that map [|h|] to h. Let � be a uniformly random
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Protocol η for computing f(x, y) when inputs are sampled according to μ.

1) Let sh, sg be uniformly random numbers from the set {n/2+1, . . . , n}. Let κ : [n]→ [n] be a uniformly

random permutation. Set h = κ([sh]) and g = κ({n − sg + 1, . . . , n}). Let i be a uniformly random

element of g ∩ h (which must be non-empty by the choice of sg, sh).

2) Alice sets xi = x and Bob sets yi = y.

3) Alice and Bob use Lemma 9 to sample ri,g,h: Alice uses the distribution π(ri,g,h|xiW ) and Bob uses

the distribution π(ri,g,h|yiW ). Write r′i,g,h to denote Alice’s sample and r′′i,g,h to denote Bob’s sample.

4) Alice and Bob run protocol θi,g,h from Figure 2 with inputs (xi, r
′
i,g,h) and (yi, r

′′
i,g,h).

Fig. 1. Protocol for computing f .

Protocol θi,g,h for computing f(xi, yi) when inputs (xi, r
′
i,g,h), (yi, r

′′
i,g,h) are sampled according to

π((xi, ri,g,h), (yi, ri,g,h)|W ).

Alice sends each message Mj , j odd, according to the distribution π(mj |xir
′
i,g,hm<jW ). Bob sends each

message Mj , j even, according to the distribution π(mj |yir′′i,g,hm<jW ).

Fig. 2. Simulation in the i’th coordinate.

element of [n/2]. Given h, κh, �, set i = κh(�) and

g = κh({�, � + 1, . . . , n}). Then note that g,h, i are

distributed as defined in the protocol η. Further, note that

(i, xi, ri,g,h) and (κh(�), xh, yκh({	+1,...,n})) determine

each other.
The following lemma asserts that the distribution of

the public randomness Ri,g,h of π doesn’t change much

when conditioning on W :

Lemma 23. In expectation over i,g,h sampled
according to η(igh),

π(xiyi)π(ri,g,h|xiW )
3γ≈ π(xiyiri,g,h|W )

3γ≈
π(xiyi)π(ri,g,h|yiW ).

The following claim is the heart of the proof. It

asserts that indeed the distribution (π|W ), on an average

coordinate i, is well approximated by the protocol θ.

Claim 24. In expectation over i,g,h sampled according
to η(igh),

θi,g,h(xiyiri,g,hm)
2γ≈ π(xiyiri,g,hm|W ).

Proof: Consider

E
η(igh)

[
E

π(xiyiri,g,h|W )

[
D

(
π(m|xiyiri,g,hW )

θi,g,h(m|xiyiri,g,h)

)]]

=
2t∑
j=1

Eη(igh)

[

E
π(m<jxiyiri,g,h|W )

[
D

(
π(mj |xiyiri,g,hm<jW )

θi,g,h(mj |xiyiri,g,hm<j)

)]]

(1)

The odd j’s correspond to the cases when Alice speaks.

These terms contribute:∑
odd j

E
η(igh)

[Iπ(Mj ;Yi|XiRi,g,hM<jW )] .

As in the proof of Lemma 23, we can express this as

2

n

∑
odd j

Eη(hκh)

[

Iπ(Mj ;Y κh([n/2])|XhY κh({n/2+1,...,n})M<jW )

]

by the chain rule. By Lemma 18, we can upper bound

this by

≤ 2

n

∑
odd j

Eη(hκh)

[

E
π(m<jxhy|W )

[
D

(
π(mj |m<jxhyW )

π(mj |m<jxhyκh({n/2+1,...,n}))

)]]
.

Conditioned on xhyκh({n/2+1,...,n}), the inputs x, y are

independent. Thus Lemma 8 gives

π(mj |m<jxhyκh({n/2+1,...,n})) = π(mj |m<jxhy),

and we can continue to bound

=
2

n

∑
odd j

Eη(hκh)

[

E
π(m<jxhy|W )

[
D

(
π(mj |m<jxhyW )

π(mj |m<jxhy)

)]]
.
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Since the divergence is always non-negative, we can

add in the even terms in the sum over j to bound

≤ 2

n

2t∑
j=1

Eη(hκh)

[

E
π(m<jxhy|W )

[
D

(
π(mj |m<jxhyW )

π(mj |m<jxhy)

)]]

=
2

n
E

η(hκh)

[
E

π(xhy|W )

[
D

(
π(m|xhyW )

π(m|xhy)

)]]
(by the chain rule)

≤ 2

n
E

η(hκh)

[
γ2n

]
= 2γ2,

by Lemma 16. Repeating the same argument for even j
gives (1) ≤ 4γ2. We apply Lemma 13 to conclude the

proof.

A. Completing the Proof of Lemma 3

Claim 25. The expected value of the expression for the
internal information cost according to π conditioned on
W can be bounded:

Eη(igh)[(Iπ(Xi;M |YiRi,g,hW )+

Iπ(Yi;M |XiRi,g,hW ))] ≤ 4‖π‖/n.

In the probability space of π, let i,g,h be independent

of all other variables, and distributed as in η. Let

x′ = (i,g,h, xi, ri,g,h) and y′ = (i,g,h, yi, ri,g,h).
Define the protocol θ that gets inputs (i,g,h, xi, r

′
i,g,h)

and (i,g,h, yi, r
′′
i,g,h), where the inputs are distributed

according to

π((i,g,h, xi, ri,g,h), (i,g,h, yi, ri,g,h)|W ),

and executes θi,g,h((xi, r
′
i,g,h), (yi, r

′′
i,g,h)).

By Lemma 9 and Lemma 23, Prη[R
′
i,g,h �= R′′i,g,h] ≤

O(γ). Thus in expectation over i,g,h sampled according

to η(igh),

η((xi, r
′
i,g,h), (yi, r

′′
i,g,h))

O(γ)≈ η((xi, r
′
i,g,h), (yi, r

′
i,g,h)),

where here η((xi, r
′
i,g,h), (yi, r

′
i,g,h)) denotes the distri-

bution where Bob’s sample for r′′i,g,h is set to be the

same as Alice’s sample. By Lemma 23 and Lemma 21,

η(ighxyr′i,g,h)
O(γ)≈ π(ighxiyiri,g,h|W ).

Therefore the protocol η can be viewed as executing θ as

a subroutine with inputs that are O(γ)-close to θ(x′, y′).

Claim 24 implies that θ(x′y′m)
O(γ)≈ π(x′y′m|W ).

Claim 25 implies that

Iπ(X
′;M |Y ′W ) + Iπ(Y

′;M |X ′W )

= E
η(igh)

[Iπ(Xi;M |YiRi,g,hW ) + Iπ(Yi;M |XiRi,g,hW )]

≤ 4‖π‖/n (since ‖π‖ ≥ γ2n).

To prove Lemma 3, we apply Theorem 6 to conclude

that there exists a protocol that O(γ)-simulates θ with

communication at most

log ‖π‖√(4‖π‖/n+ 1 + log ‖π‖)‖π‖
γ3/2

< O

(
‖π‖ · log3/2 ‖π‖√

nγ5/2

)
< C − 1,

where the first inequality appealed to the fact that

‖π‖/n > γ2 and the second is by our choice of α in the

statement of Lemma 3. The proof of Lemma 3 is com-

plete, since with one additional bit of communication to

send the value of f , the protocol η computes f with

probability of success at least (1/n)
∑n

i=1 π(Wi|W ) −
O(γ).

V. OPEN PROBLEM: DIRECT PRODUCTS FOR

INFORMATION COMPLEXITY

Both the direct sum result of [BBCR10] and our direct

product result rely on methods to compress protocols.

So it is natural to ask whether our ability to prove direct

product results is limited only by our ability to compress

protocols with low information cost. In fact, informa-

tion cost can be made into a meaningful complexity

measure. The information complexity of a function f
with respect to a distribution μ is the lowest internal

information cost attainable by a protocol computing f
with respect to μ and error 1/3 [BR11], [Bra12]. It turns

out that the amortized communication complexity of f
is exactly equal to its information complexity [BR11].

[BW11], [KLL+12] showed that many communication

lower bound techniques actually give lower bounds on

the information complexity.

Given this new complexity measure, we might have

hoped that direct sum and direct product theorems

holds with respect to it. Indeed [BBCR10] show that

an optimal direct sum theorem holds for information

complexity. However, a direct product theorem (with

small success probability) cannot hold, because of the

following counterexample. Let f be a function with

information complexity I . Consider the protocol that

computes fn as follows. Let ε > 0 be an arbitrary

parameter. With probability ε, the protocol executes n
copies of the optimal protocol for computing f . With

probability 1−ε the protocol transmits nothing and fails.
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This protocol computes fn with probability ε, yet its

information complexity is at most εIn. For example,

setting ε = 1/n shows that even without increasing

the information complexity, one can compute fn with

success probability 1/n.

The following question is still interesting, and may

be easier than proving new direct product results for

communication complexity:

Open Problem 26. Let γ = 1 − suc(μ, f, C). Is there
a universal constant α such that if the information com-
plexity of f with respect to the distribution μ is I , T ≥ 2,
and T < αIn, then suc(μn, fn, T ) ≤ exp

(−αγ2n
)
?
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