
Nondeterministic Direct Product Reductions and the Success Probability of SAT
Solvers

Andrew Drucker

School of Mathematics
Institute for Advanced Study

Princeton, NJ 08540
Email: andy.drucker@gmail.com

Abstract—We give two nondeterministic reductions which
yield new direct product theorems (DPTs) for Boolean circuits.
In these theorems one assumes that a target function f is mildly
hard against nondeterministic circuits, and concludes that the
direct product f⊗t is extremely hard against (only polynomially
smaller) probabilistic circuits. The main advantage of these
results compared with previous DPTs is the strength of the
size bound in our conclusion.

As an application, we show that if NP is not in coNP/poly
then, for every PPT algorithm attempting to produce satisfying
assigments to Boolean formulas, there are infinitely many
instances where the algorithm’s success probability is nearly-
exponentially small. This furthers a project of Paturi and
Pudlák [STOC’10].

Keywords-hardness amplification; direct product theorems;
Satisfiability

I. INTRODUCTION

This work contributes to two central areas of study in

complexity theory: hardness amplification on the one hand,

and the complexity of NP search problems on the other.

A. Hardness amplification and direct product theorems

In the general hardness amplification project, we assume

that we have identified a function f that is “mildly hard” to

compute, for some class C of resource-bounded algorithms.

Our goal is to derive a second function f ′ that is “extremely

hard” to compute, for some possibly-different class C′. In

our initial discussion we will focus on the case where

f : {0, 1}n → {0, 1}d, f ′ : {0, 1}n′ → {0, 1}d′ are finite

functions, and C, C′ are two sets of probabilistic Boolean

circuits, but we note that the project can be studied in other

models as well.

The notion of difficulty suggested above can be formal-

ized in two ways (both relevant to our work). Let p ∈ [0, 1].
In the average-case setting, let us say that f is p-hard for
C with respect to an input distribution D if every algorithm

in C computes f(x) correctly with probability at most p on

an input x ∼ D. In the worst-case setting, we say that f is

worst-case p-hard for a class C of randomized algorithms

if, for every algorithm C ∈ C, there is an input x such that

PrC [C(x) = f(x)] ≤ p. In either setting, from a “mild”

hardness guarantee p = 1−ε for C in computing f , we want

to obtain a much stronger bound p′ � 1 for the second class

C′ in computing f ′.
There are several motivations to pursue hardness ampli-

fication. First, the security of most modern cryptographic

primitives, such as one-way functions and public-key cryp-

tosystems, inherently requires the existence of computational

problems, solvable in NP, which possess a strong average-

case hardness guarantee. While the mere existence of hard-

on-average problems in NP is not known to be sufficient for

doing cryptography, a better understanding of the sources of

average-case hardness seems necessary for making progress

in the foundations of cryptography. Moreover, hardness-

amplification techniques in complexity theory have also

helped to inspire tools for the security-amplification of cryp-

tographic primitives. (See, e.g., [1] for background on the

complexity-theoretic underpinnings of modern cryptography

and on ideas of security amplification.)

Second, average-case hardness is also inherent in the

fundamental concept of pseudorandomness: a pseudorandom

source is information-theoretically distinguishable from ran-

dom bits, yet the distinguishing task must be computation-

ally hard-on-average. Techniques of hardness amplification

have played a key role in important constructions of pseu-

dorandom generators [2], [3].

Third, hardness amplification, and in particular the direct
product approach to amplifying hardness, is interesting in its

own right, and helps us to critically examine some of our

most basic intuitions about computation, as we will describe.

Given a function f as above and t ∈ N
+, let f⊗t :

{0, 1}n×t → {0, 1}d×t, the t-fold direct product of f ,

be the function which takes t length-n inputs (x1, . . . , xt)
and outputs (f(x1), . . . , f(xt)). A direct product theorem
(DPT) is any result upper-bounding the success bound p′

for computing f⊗t in terms of an assumed success bound p
for f (and, possibly, other parameters).

When f is Boolean, the direct product construction

can be considered along with the related “t-fold XOR”

f⊕t(x1, . . . , xt) :=
⊕

f(xj) (i.e., the sum mod 2). An

“XOR lemma” is any result upper-bounding the success

bound p′ for computing f⊕t in terms of an assumed success

bound p for f . The original XOR lemma was stated by

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.84

736

Yao in unpublished work, with the first published proof due

to Levin [4]; see [5] for more information on the lemma’s

history and several proofs. Unlike the direct product, the

t-fold XOR f⊕t is itself a Boolean function, which can

be advantageous in applications of hardness amplification,

but which can also be a disadvantage since this limits its

average-case hardness (an algorithm may compute f⊕t with

success probability 1/2 by guessing a random bit). Several

works show how in some settings XOR lemmas may be

obtained from DPTs [6], [5] or vice versa [7], [8]. We will

not prove or use XOR lemmas in this work; we merely point

out that their study is often intimately linked with the study

of direct product theorems.

The motivation for the direct product construction is

as follows. Let C≤s be the class of probabilistic Boolean

circuits of size at most s. It would appear that, if any circuit

C ∈ C≤s has success probability at most p < 1 in computing

f , then any circuit C ′ ∈ C≤s should have success probability

not much more than pt in computing f⊗t. The intuition here

is that combining the t “unrelated” computations should

not help much, and simply trying to solve each instance

separately would be a nearly-optimal strategy.

This hypothesis can be considered in both the worst-case

and the average-case setting; in the latter, if f is p-hard

with respect to inputs drawn from D, then it is natural to

study the difficulty of computing f⊗t with t inputs drawn

independently from D.1

One might even be tempted to make the bolder conjec-

ture that f⊗t is pt-hard against circuits in C≤t·s, but this

was shown by Shaltiel to fail badly in the average-case

setting [10]. So what kind of DPT is known to hold in

the circuit model? A version of the following theorem, with

slightly weaker parameters, was proved in [5, first version in

’95] ; a tighter argument leading to the bounds given below

is described in [11]. In the form of the DPT stated below, the

focus is on getting a success probability bound of at most

some ε for f⊗t, where t is chosen accordingly.

Theorem I.1 (see [5], Lemma 7, and [11], Theorems 2.9,

2.10). Suppose the Boolean function f : {0, 1}n → {0, 1} is
p-hard for circuits of size s with respect to input distribution
D, for some p ∈ [.5, 1). For ε ∈ (0, .25) and an appropriate
t = Θ

(
ln(1/ε)
1−p

)
, the function f⊗t is ε-hard with respect

to D⊗t for circuits with size bounded by s′, where s′ =
Θ(ε·s

ln(1/ε)).

This is a powerful and elegant result, but one whose

parameters can be disappointing in many situations. The size

bound s′ degrades quickly as ε→ 0; if s ≤ poly(n), i.e., if

our initial hardness assumption is against circuits of some

1“Derandomized” variants of the scenario, in which the t inputs are not
fully independent, have also been studied, and powerful “derandomized”
DPTs were obtained, notably in [3], [9]. A new derandomized DPT will
appear in the full version of our paper.

fixed-polynomial size (and p = 2/3, say), then Theorem I.1

cannot give a success bound of n−ω(1) against any nontrivial

class of circuits. In unpublished work, Steven Rudich has

observed that this barrier is inescapable for a certain class

of “black-box,” relativizing, deterministic (or probabilistic)

reductions (see [5] for more discussion). The limitations of

more general black-box hardness-amplification reductions

have been extensively studied, particularly for the case of

XOR lemmas and other reductions that produce a Boolean

function (for an overview, see [12]).

B. Our new direct product theorems

In this work we show that, if we are willing to assume

that our starting function f is somewhat hard to compute by

nondeterministic circuits, then we obtain very strong hard-

ness results for f⊗t against the class of probabilistic circuits.

The direct product theorems we prove have quantitative

parameters that are far superior to those in Theorem I.1.

Our first direct product theorem holds for the worst-case

setting. We show:

Theorem I.2. Let f = {fn} be a family of Boolean
functions on n input bits, and suppose that f /∈ NP/poly ∩
coNP/poly.

Now let 1 < t(n) ≤ poly(n) be a parameter, and let
{Cn}n>0 be any family of polynomial-size, probabilistic
circuits outputting t(n) bits. Then for infinitely many choices
of n and x ∈ {0, 1}n×t(n), Pr[Cn(x) = f

⊗t(n)
n (x)] <

exp (−Ω(t(n))).

Like all known DPTs in the circuit setting, this result is

proved in its contrapositive form, using a nondeterminis-
tic direct product reduction—a method for transforming a

probabilistic circuit that weakly approximates f
⊗t(n)
n into a

nondeterministic circuit that computes fn with much greater

confidence. In the reduction used to prove Theorem I.2,

we get a nondeterministic circuit that computes fn exactly.

This transformation incurs only a polynomial blowup in

circuit size. The reduction is black-box but, due to its use of

nondeterminism, is not subject to the limitations identified

by Rudich.

We also prove a DPT for the average-case setting, for

input distributions that are efficiently sampleable.

Theorem I.3. Let {fn} be a family of Boolean functions
on n input bits. Let D = {Dn} be a family of input distri-
butions, sampleable by a polynomial-size family of circuits.
Suppose that, for all families {Gn} of polynomial-size non-
deterministic circuits, for suff. large n, Prx∼Dn [Gn(x) =

737

fn(x)] < 2/3.2 Now let 1 < t(n) ≤ poly(n) be a
parameter, and let {Cn}n>0 be any family of polynomial-
size, probabilistic circuits outputting t(n) bits. Then for
suff. large n and x ∼ D⊗t(n)

n , we have Pr[Cn(x) =

f
⊗t(n)
n (x)] < exp(−Ω(√t(n))). 3

Our nondeterministic direct product reductions are not

the first use of nondeterministic reductions in the study of

average-case complexity. In particular, previous authors have

exploited nondeterminism to give worst-case to average-case

reductions for computational problems. In [13, first version

in ’92], Feige and Lund gave a nondeterministic worst-case

to average-case reduction for computing the Permanent over

large fields, showing that this problem is exponentially hard.

Earlier Amir, Beigel, and Gasarch [14] had shown related

results for #SAT. We also mention an extractor construction

of Trevisan and Vadhan which used a nondeterministic

worst-case to average-case reduction for computing low-

degree polynomials over finite fields [16, Lem. 4.1]. None

of these works give a direct product reduction in our sense.

However, [14] considers t-fold direct products f⊗t and gives

complexity upper bounds for functions f such that f⊗t can

be computed using few queries to an oracle; some of these

reductions use nondeterminism.4

C. Application to the success probability of PPT SAT solvers

In a recent work, Paturi and Pudlák [17] asked about the

achievable worst-case success probability of PPT heuristics

for producing satisfying assignments to Boolean circuits.

They argue for the importance of this question by observing

that many of the known exact algorithms for NP search prob-

lems, which achieve exponential runtimes with an improved

exponent over naive search, can be converted to polynomial-
time search heuristics with a success probability attaining

nontrivial advantage over random guessing. Thus, exploring

the limitations of PPT search heuristics also illuminates the

limitations of a very natural paradigm for exponential-time

computation.

Paturi and Pudlák show the following powerful result (a

special case of a more general theorem): Suppose there is

a γ < 1 and a PPT algorithm Psolver that, when given as

input a description of any satisfiable Circuit-SAT instance

Ψ with r variables, outputs a satisfying assignment to Ψ

2In the most common definition, a nondeterministic circuit Gn(x) is
said to compute a function g(x) if the following condition holds: g(x) = 1
iff there exists some setting of the nondeterministic gates of Gn causing
it to accept input x. Our Theorem I.3 is valid if our initial hardness
assumption on fn is with respect to this definition. However, for our results
we actually only require hardness with respect to a more restrictive model
of nondeterministic computation in which, to compute g(x) correctly, Gn

must (a) output the correct value on some nondeterministic branch on input
x, and (b) on every branch on x, always output either g(x) or “fail.”

3In the full version we anticipate a better dependence on t in the
conclusion.

4As we will discuss in the full version, results from [14] can be used to
derive DPTs, but much weaker ones than we give.

with probability at least q(r) := 2−γr. Then, there is a

deterministic circuit family {Cr}r that succeeds at the same

task on r-variable instances of size n ≤ poly(r) with

probability 1, and Cr is of size at most 2r
μ

for some μ < 1.

In this work, we exploit a simple connection between

direct product computations for the satisfiability decision

problem for Boolean formulas, and the task of producing

satisfying assignments to such formulas:

(�) If ψ1, . . . , ψt are formulas, and s ∈ [0, t] is a correct

guess for the number of satisfiable ψjs, then the 0/1

values [ψ1 ∈ SAT], . . . , [ψt ∈ SAT] can all be

inferred given any satisfying assignment to the formula

Ψ(s) which asks for satisfying assignments to at least

s of the ψjs.

(This observation has been used earlier in [18] to prove the

result PNP
|| = PNP[log].) Using this connection together with

our worst-case DPT, we prove the following result, bound-

ing the achievable success probability of polynomial-time

heuristics for SAT solvers under the standard complexity-

theoretic assumption that NP is not contained in coNP/poly.

Theorem I.4. Let γ ∈ (0, 1). Suppose there is a PPT
algorithm Psolver that, when given as input a description
of a satisfiable 3-CNF formula Φ, of description length
|〈Φ〉| = N , outputs a satisfying assignment to Φ with
probability at least q(N) := 2−Nγ

.
Then, NP ⊆ coNP/poly (and the Polynomial Hierarchy

collapses to Σp
3).

This theorem is incomparable to the result of Paturi and

Pudlák. Their result implies a stronger upper bound for the

success probability of Circuit-SAT solvers, at the cost of

assuming that NP has nearly-exponential circuit complexity.

(Also, their work does not give strong limitations on solvers

for the special case of 3-CNF inputs.)

We are not aware of past work on hardness amplification

using (�); but many works have used connections between

direct product theorems and the difficulty of NP search

problems. Hardness amplification has also been previously

applied to NP decision problems to obtain hard-on-average

NP search problems, e.g., in our previous work [22, Thm. 5].

Also, a great deal of work aims at amplifying average-case

hardness within the class of NP decision problems (see [24]).

D. Our techniques

While there are major technical differences between the

reductions used to prove Theorems I.2 and I.3, both begin

with the same high-level intuition, which we’ll describe here.

Let f be a Boolean function on n input bits, and D a

distribution over inputs to f . Suppose C is a probabilistic

circuit that computes f⊗t with some success probability

q > 2−ct on inputs x = (x1, . . . ,xt) ∼ D⊗t, for some

small constant 0 < c � 1. We would like to obtain from

C a nondeterministic circuit computing f with high success

probability with respect to D. (To prove Theorem I.2, it will

738

suffice to show how to do this for every D. We can then use

the minimax theorem and majority-voting in a standard way,

to build a nondeterministic circuit that is correct on every
input.)

Say that an execution of C is j-valid, for 0 ≤ j ≤ t, if

it correctly computes f on its first j inputs. We obviously

have

Pr
[
C(x) = f⊗t(x)

]
=

∏
j∈[t]

Pr[j-valid|(j−1)-valid] > 2−ct .

Thus, for a typical choice of index j, Pr[j-valid|(j −
1)-valid] ≈ 2−c ≈ 1. This motivates us to choose such

an index j = j∗, and to fix some settings y1, . . . , yj
∗−1

to the first (j∗ − 1) inputs. Then, by storing the values

f(y1), . . . , f(yj
∗−1), we can easily recognize a (j∗ − 1)-

valid execution (as specified by a setting to the remaining

inputs and to the random bits used by C). Now, given a

single input x ∼ D on which we wish to compute f , we

will try to obtain a (j∗ − 1)-valid execution of C on an

input-tuple whose first j∗ elements are y1, . . . , yj
∗−1,x. The

idea is that, by our choice of j∗, a “typical” such execution

(in which the remaining inputs are drawn from D⊗(t−j∗))

should also be j∗-valid, and give us the value f(x). This

basic strategy can be seen in [5] and other previous direct

product reductions. In our reduction, however, nondetermin-

ism will allow us to obtain a (j∗ − 1)-valid execution of C
very efficiently, even when such executions are extremely

rare; we simply need to “guess and check.”

This approach requires care, however, because an exe-

cution obtained by nondeterministic guessing need not be

a representative sample of the population from which it

was drawn. Thus, even if we successfully fix values of

y1, . . . , yj
∗−1 and receive an input x ∼ D such that most

(j∗ − 1)-valid executions are also j∗-valid, we need a way

to “kill off” the “atypical” (j∗ − 1)-valid executions which

fail to be j∗-valid.

For this task, a natural idea is to try to apply random
hashing, a well-established tool for reducing the size of a set

and culling atypical elements. The use of randomly selected

hash functions for such purposes, in conjunction with non-

deterministic guessing, was pioneered by Goldwasser and

Sipser [25] (with related techniques found in [26]).5 This

technique has an important requirement, however: to kill all

the “atypical” (j∗−1)-valid executions while simultaneously

leaving at least one j∗-valid execution alive, we need to

know a good approximation to the probability of a (j∗−1)-
valid execution, conditioned on y1, . . . , yj

∗−1,x. We want

5We are aiming to build a nondeterministic circuit, not a probabilistic
one; but the eventual plan will be to fix a polynomial number of represen-
tative hash functions as non-uniform advice. Let us also mention that hash
families were used in Paturi and Pudlák’s work [17] as well, but in a very
different way. Those authors used hash functions to reduce the amount of
randomness used by a SAT solver having a worst-case success probability
guarantee, as a step toward transforming a Circuit-SAT instance into an
equivalent instance with fewer variables.

this probability to be predictable with high accuracy based

on y1, . . . , yj
∗−1 alone, without any foreknowledge of the

input x, so that a good approximation can be encoded into

as helpful advice. To summarize, we hope to find and fix

inputs y1, . . . , yj
∗−1, such that with high probability over

x ∼ D, we have the “stability” conditions:

(i) Pr[j∗-valid|y1, . . . , yj∗−1,x] ≈
Pr[(j∗ − 1)-valid|y1, . . . , yj∗−1,x];

(ii) Pr[(j∗ − 1)-valid|y1, . . . , yj∗−1,x] ≈
Pr[(j∗ − 1)-valid|y1, . . . , yj∗−1].

(We will tolerate a (1± .02) multiplicative error above.)

So how do we choose the values y1, . . . , yj
∗−1? The

obvious idea is to choose them as independent samples from

D, after selecting j∗ uniformly at random. However, this

approach may fail to guarantee condition (i) above, if the

successful direct-product computations of C are “concen-

trated” in a pathological way. For example, it may be that

C(x1, . . . , xt) always outputs f⊗t(x1, . . . , xt) iff the first

input x1 lies in some “good” set G ⊂ {0, 1}n of probability

mass ≈ 2−ct, while if x1 /∈ G, then C simply outputs

random (or false) guesses. In this case, conditions (i) and

(ii) can fail for a typical setting x1 := y1.

We address these difficulties in two distinct ways in our

two direct product reductions. In our worst-case reduction

(Theorem I.2), we assume from the start that our C has a

probability ≥ q of computing f⊗t under every input. This

assumption turns out to be very useful in analyzing the effect

of conditioning on on y1, . . . , yj
∗−1 ∼ D and showing that,

for randomly chosen j∗, we obtain conditions (i) and (ii)

above.

In our average-case reduction, we use two additional

ideas. First, we re-index the t inputs according to a ran-
domly chosen permutation, which helps to “smooth out” the

effects of conditioning. Second, we choose y1, . . . , yj
∗−1,

not independently from D as before, but according to the

distribution induced by conditioning on (j∗ − 1)-validity.

These choices help ensure conditions (i) and (ii), at the cost

of a more complicated (information-theoretic) analysis.

After fixing y1, . . . , yj
∗−1, in our direct product reduction

for sampleable distributions, we can perform hashing over

all possible outcomes to xj
∗+1, . . . , xt, weighted by their

likelihood under D. In our worst-case direct product reduc-

tion, D may not be efficiently sampleable, which poses an

additional challenge. In this setting we show that in fact, it

is adequate to draw xj
∗+1, . . . , xt independently at random

from multisets Sj∗+1, . . . , St, each obtained by sampling

poly(n) times from D. These “sparsified” versions of D
can be coded into our circuit. The idea of this sparsification

and its analysis are somewhat similar to (and inspired by) a

step from our previous paper [28, Lem. 6.3].

Due to space limitations, in this extended abstract we omit

full proofs, and focus only on describing how the stability

conditions (i)-(ii) are obtained in the proof of Theorem I.2.

739

II. STAGE-BASED ANALYSIS OF DIRECT-PRODUCT

COMPUTATIONS

Throughout the rest of the paper, fix a function f :
{0, 1}n → {0, 1}d (no longer assumed Boolean, as in the

Introduction—our techniques apply to the non-Boolean case

as well) and a value t > 1. We say that a probabilistic circuit

C on n× t input bits is a q-worst-case direct product solver
for f⊗t if, for all input tuples x, Pr[C(x) = f⊗t(x)] ≥ q.

In this section we analyze the behavior of worst-case direct-

product solvers on inputs (x1, . . . , xt) drawn from a known

probability distribution D over {0, 1}n×t. The case where D
is a t-fold product distribution will be of primary interest to

us, although some of our lemmas will apply to non-product

input distributions. Some notation: we use a ∈r A to denote

that a is uniformly sampled from multiset A.

Next we make some definitions that will be of central

importance.

Definition II.1 (j-valid outputs). Let (x1, . . . , xt) ∈
{0, 1}n×t, and let z = (z1, . . . , zt) ∈ {0, 1}d×t. For j ∈ [t],
say that z is j-valid for (x1, . . . , xt), with respect to f⊗t, if
z� = f(x�) , for all � ≤ j . When the reference strings
x1, . . . , xt are clear from the context, we will simply say that
z is j-valid. Note that if z is j-valid for (x1, . . . , xt) then it is
also j′-valid for j′ < j. By convention, every z ∈ {0, 1}d×t

is said to be 0-valid.
If C is a probabilistic circuit taking a tuple of strings

(x1, . . . , xt) as input (with each xj of equal, predetermined
length) and outputting a t-bit string, we say that a particular
execution of C on input (x1, . . . , xt) is j-valid if it outputs
some bitstring that is j-valid with respect to the inputs. We
denote this event simply as [C(x1, . . . , xt) is j-valid].

Definition II.2 (α,β sequences). Let C : {0, 1}n×t →
{0, 1}d×t be a probabilistic circuit. Let D be a distribution
over {0, 1}n×t, and let (x1, . . . ,xt) ∼ D.

Define two sequences of random variables
α0, α1, . . . , αt , β0, β1, . . . , βt−1, as follows. For
j ∈ [0, t], we let

αj := Pr[C(x1, . . . ,xt) is j-valid
∣∣x1, . . . ,xj] ,

with validity defined with respect to f and where the
probability is taken over the randomness in x1, . . . ,xt and
in C’s randomness. Similarly, for j ∈ [0, t− 1], define

βj := Pr[C(x1, . . . ,xt) is j-valid
∣∣x1, . . . ,xj+1] .

We have α0 = β0 = 1, all αj , βj ∈ [0, 1], and αj+1 ≤ βj .

The following claim is proved in the full version.

Claim II.3. 1) The function ln(1+x), defined on (−1,∞),
satisfies

ln(1 + x) ≤
{
x− x2

6 if x ∈ (−1, 1) ,
(ln 2)x if x ≥ 1 .

Consequently, ln(1 + x) ≤ x−min{x2/6, .3}.

Lemma II.4. Let Y1, Y2, . . . , YT be (possibly dependent)
nonnegative random variables satisfying E[Yi] ≤ 1 for i ∈
[T]. Suppose that there is some q ∈ (0, 1] such that Yprod ≥
q with probability 1. Let Yprod :=

∏
i∈[T] Yi. Let i ∈r [T]

be chosen independently of Y1, . . . , Yt. Then,

Pr[Yi ∈ [.99, 1.01]] ≥ 1− 216 ln(1/q)/T .

Proof: Let Z1, . . . , ZT be defined by Zi := ln(Yi).
Note that Zi is well-defined since Yi > 0, under our

assumption Yprod ≥ q. Letting Zsum :=
∑

i∈[T] Zi, note

that Zsum = ln(Yprod). Then Zsum ≥ ln q. Thus,∑
i∈[T]

E[Zi] = E[Zsum] ≥ ln q . (1)

On the other hand, by applying Claim II.3, we find

Zi ≤ (Yi − 1)−min
{
(Yi − 1)2/6, .3

}
.

Taking expectations and using that E[Yi] ≤ 1,

E[Zi] ≤ −E [min
{
(Yi − 1)2/6, .3

}]
.

Let pi := Pr[Yi /∈ [.99, 1.01]]. Then

E
[
min

{
(Yi − 1)2/6, .3

}] ≥ pi · (.01)2/6 ,
so that E[Zi] ≤ −pi/216. Combining this with Eq. (1) gives∑

i∈[T]

pi ≤ −216 ln q = 216 ln(1/q) ,

which implies that

Pr
i∈r[T]

[Yi /∈ [.99, 1.01]] = (1/T)
∑
i∈[T]

pi ≤ 216 ln(1/q)/T .

Lemma II.5. Let C : {0, 1}n×t → {0, 1}d×t be a prob-
abilistic circuit. Suppose that C is a q-worst-case direct-
product solver for f⊗t, for some q ∈ (0, 1].

1) Let D be a distribution over {0, 1}n×t. Let x =
(x1, . . . ,xt) ∼ D. Let α0, . . . , αt, β0, . . . , βt−1 be as in
Definition II.2, defined with respect to C and D. Let j ∈r [t]
be sampled independently of x. Then with probability at
least 1− 216 ln(1/q)

t , we have

αj−1, βj−1 > 0 ,
βj−1

αj−1
∈ [.99, 1.01] ,

αj

βj−1
∈ [.99, 1] .

(2)

2) Let V be a finite set and let {Dv}v∈V be a set
of distributions indexed by V , with each distribution over
{0, 1}n×t.

Let D,D′ be two distributions over V × [t], with the
following properties:
(a) If (v, j) ∼ D, then v, j are independent and j is uniform

over [t];
(b) ||D−D′||≤ γ, for some γ ∈ [0, 1).

Consider the following experiment Expt(D′):

740

(i) Sample (v′, j′) ∼ D′;
(ii) Sample x = (x1, . . . ,xt) ∼ Dv′ ;

(iii) Let the sequence α0, . . . , αt, β0, . . . , βt−1 as in Defini-
tion II.2 be defined with respect to Dv′ and x.

Then with probability at least 1 − 216 ln(1/q)
t − γ over

Expt(D′), we have

βj−1

αj−1
∈ [.99, 1.01] and

αj

βj−1
∈ [.99, 1] . (3)

Proof: (1) Let T := 2t, and define random variables

Y1, . . . , YT as follows: for each � ∈ [T], if � = 2k + 1 then

let

Y� := βk/αk ,

and if � = 2k, let

Y� := αk/βk−1 .

By our worst-case guarantee on C, the random variables

α0, . . . , αt−1, β0, . . . , βt−1 are all positive, so the Y� are

well-defined. To illustrate the pattern, we have

Y1 =

(
β0
α0

)
= 1 , Y2 =

(
α1

β0

)
, . . . , YT =

(
αt

βt−1

)
.

Now the product Yprod :=
∏

�∈[T] Y� equals αt/α0 = αt.

By the definition of αt and the guarantee on C, it follows

that Yprod ≥ q.

For the even indices, we have Y2k ≤ 1 always. Also, we

claim that E[Y2k+1] = 1; to see this, just observe that for

k ∈ [t(n)] we have the identity E [βk|αk] = αk, so that

Y2k+1 has expected value 1 conditioned on any possible

value of αk.

We have verified that the assumptions of Lemma II.4 are

satisfied by (Y1, . . . , YT); we infer that if i ∈r [T],

Pr [Yi /∈ [.99, 1.01]] ≤ 216 ln (1/q) /T = 215 ln (1/q) /t .

Recall that T = 2t is even. If we instead choose î ∈r

{1, 3, 5, . . . , T − 1}, and then select î′ ∈r {̂i, î + 1}, then

î′ is uniform over [T] and we get the same bound for

Pr
[
Yî′ /∈ [.99, 1.01]

]
. It follows that

Pr
[
Yî /∈ [.99, 1.01] ∨ Yî+1 /∈ [.99, 1.01]

] ≤ 216 ln (1/q) /t .

Now, note that j := î/2 is distributed as a uniform element

in [t], and we have the relations

Yî =
βj−1

αj−1
, Yî+1 =

αj

βj−1
≤ 1 .

So Eq. (2) holds with probability at least 1− 216 ln(1/q)
t .

(2) First, suppose we run the alternative experiment

Expt(D), which samples (v′, j′) according to D rather than

D′. Now, after conditioning upon any outcome [v′ = v] of

the first component, the index j remains uniform over [t] (by

property (a) of D). Thus we may set D := Dv and apply

Lemma II.5, part 1 to find that the probability that Eq. (3)

holds is at least 1 − 216 ln(1/q)
t . Thus in Expt(D), Eq. (3)

holds with probability at least 1− 216 ln(1/q)
t .

Now let I, I′ be the indicator variables for the events that

Eq. (3) holds in Expt(D),Expt(D′) respectively. Note that

the two experiments are identically defined, except that the

first draws a single sample from D while the second draws

a sample from D′. Thus, ||I− I′||stat ≤ ||D−D′||stat ≤ γ,

using property (b). This proves part 2 of the Lemma.

Lemma II.6. Fix M ∈ N
+ with M ≥ 2, and q ∈ (0, 1].

Suppose the probabilistic circuit C is a worst-case q-direct-
product solver for f⊗t. Let D be a distribution over {0, 1}n,
and consider the following experiment Expt∗(D):

1) Let u ∈ {0, 1}n be sampled according to D, and let
j ∈r [t];

2) For each j ∈ [t]:
(i) let sj ∈r {M,M + 1,M + 2, . . . , 2M − 1};

(ii) Define a multiset Sj over {0, 1}n, obtained by
drawing sj independent samples from D;

(iii) Let Ŝj := Sj ∪ {u} if j = j; otherwise let
Ŝj := Sj;

(iv) Let yj ∈r Sj;
(v) Let ŷj := u if j = j; otherwise let ŷj := yj .

3) Define the random variables α0, α1, . . . , αt,
β0, β1, . . . , βt−1, α̂0, α̂1, . . . , α̂t, β̂0, β̂1, . . . , β̂t−1, by

αj := Pr
[
C(y1, . . . ,yt) is j-valid

∣∣ S1, S2, . . . , St,y
1, . . . ,yj

]
,

α̂j := Pr
[
C(ŷ1, . . . , ŷt) is j-valid

∣∣ Ŝ1, Ŝ2, . . . , Ŝt, ŷ
1, . . . , ŷj

]
,

βj := Pr
[
C(y1, . . . ,yt) is j-valid

∣∣ S1, S2, . . . , St,y
1, . . . ,yj+1

]
,

β̂j := Pr
[
C(ŷ1, . . . , ŷt) is j-valid

∣∣ Ŝ1, Ŝ2, . . . , Ŝt, ŷ
1, . . . , ŷj+1

]
.

Then with probability at least 1− 216 ln(1/q)
t − 1

M , we have

β̂j−1

αj−1
∈ [.98, 1.02] and

α̂j

β̂j−1

∈ [.99, 1] . (4)

Proof: We aim to apply part 2 of Lemma II.5 to the se-

quences α̂0, . . . , α̂t, β̂0, . . . , β̂t. Let S, Ŝ denote the random

tuples (S1, . . . , St) and (Ŝ1, . . . , Ŝt) respectively. Let D
denote the distribution governing the tuple (S, j), and let D′

denote the distribution governing (Ŝ, j). Each t-tuple B =
(B1, . . . , Bt) of multisets over {0, 1}n naturally defines a

distribution DB over elements (z1, . . . , zt) ∈ {0, 1}n×t,

namely, the product distribution that independently chooses

zj ∈r Bj for each j.

The random variable j is uniform over [t] and independent

of S, so condition (a) of Lemma II.5, part 2 is satisfied by

D. For condition (b), note that Ŝ is not fully independent

of j. However, we will show that (Ŝ, j) is quite close in

distribution to (S, j):

Claim II.7.
∣∣∣∣∣∣(Ŝ1, . . . , Ŝt, j)− (S1, . . . , St, j)

∣∣∣∣∣∣
stat

≤ 1
M .

741

Proof: We use a coupling argument. First, we generate

a random multiset S0 consisting of M independent samples

from D. Now define a random multiset S̃ by letting

S̃ :=

{
Ŝj if sj < 2M − 1 ,

S0 if sj = 2M − 1 .

Note that |S̃| is uniform over {M,M+1, . . . , 2M−1}, and

its elements are distributed as independent samples from D.

Thus, if we form the random tuple

(S1, . . . , Sj−1, S̃, Sj+1, . . . , St, j) ,

we see that it is identically distributed to

(S1, . . . , Sj, . . . , St, j). Also, we have S̃ = Ŝj unless

sj = 2M − 1, which happens only with probability 1
M ; and

we always have Ŝj = Sj for all j �= j. This proves our

Claim.

Thus condition (b) is satisfied by D,D′ with γ := 1
M .

Observe that, after conditioning on S, the sequence

(y1, . . . ,yt) sampled in Expt∗(D) is distributed precisely

according to DS. Similarly, after conditioning on Ŝ, the

sequence (ŷ1, . . . , ŷt) is distributed according to D
Ŝ
. We

can therefore combine part 2 of Lemma II.5 with Claim II.7

to find that, with probability at least 1− 216 ln(1/q)
t − 1

M over

Expt∗(D), we have

β̂j−1

α̂j−1
∈ [.99, 1.01] and

α̂j

β̂j−1

∈ [.99, 1] .

Next we will need the following simple but important

claim:

Claim II.8. With probability 1 we have

α̂j−1 =
1

sj + 1
· β̂j−1 +

(
sj

sj + 1

)
· αj−1 .

Proof: Consider any outcome of Expt∗(D), which is

fully determined by the values of the random variables

(S1, . . . , St,y
1, . . . ,yt, j,u) = (S∗1 , . . . , S

∗
t , y

1, . . . , yt, j, u) .

Under these conditionings, observe that α̂j−1 equals

the probability that the output of the computation

C(y1, . . . , yj−1, zj , zj+1, . . . , zt) is (j − 1)-valid, where

(zj , zj+1, . . . , zt) ∈r ((S∗j ∪ {u})× S∗j+1 × . . .× S∗t) .

This distribution on (zj , zj+1, . . . , zt) can be equivalently

realized as follows:

1) First, let a ∈r [sj + 1] (noting here that sj = |S∗j |);
2) If a = sj + 1, let zj := u and sample

(zj+1, . . . , zt) ∈r (S∗j+1×. . .×S∗t); otherwise choose

(zj , zj+1, . . . , zt) ∈r (S∗j × S∗j+1 × . . .× S∗t).

On the other hand, β̂j−1 equals the probability that

C(y1, . . . , yj−1, u, zj+1, zj+2, . . . , zt) is (j − 1)-valid,

where (zj+1, . . . , zt) ∈r (S∗j+1 × . . . × S∗t); and αj−1

equals the probability that C(y1, . . . , yj−1, zj , zj+1, . . . , zt)

is (j − 1)-valid, where (zj , . . . , zt) ∈r (S∗j × . . . × S∗t).
Combining these facts with our observations about α̂j−1

yields the Claim.

Now, suppose that β̂j−1 ≥ .99 · α̂j−1, which, as we have

seen, occurs with high probability. Using Claim II.8, this

implies that

β̂j−1

.99
≥ 1

sj + 1
· β̂j−1 +

(
sj

sj + 1

)
· αj−1 ,

which simplifies to

β̂j−1

αj−1
≥ 99sj

100sj + 1
.

This is greater than .98. By a similar calculation, if β̂j−1 ≤
1.01 · α̂j−1 then

β̂j−1

αj−1
≤

(
101 · sj

100sj − 1

)
,

which is less than 1.02 since sj ≥ 2. Combining our work,

we conclude that with probability at least 1− 216 ln(1/q)
t − 1

M ,

Eq. (4) is satisfied. This completes the proof of Lemma II.6.

Now let C be a circuit of size s that is a worst-case q-

direct product solver for f⊗t, for q > exp(−t/107). Fix any

distribution D over {0, 1}n. Below, we will describe part of

the construction (using C) of a polynomially larger non-

deterministic circuit C ′ = C ′D, computing f 6 with success

probability > .6 on inputs from D. This step forms the bulk

of the proof of (the contrapositive form of) Theorem I.2.

First, refer to the experiment Expt∗(D) of Lemma II.6,

defined with respect to D, C, and with M := �t/ ln(1/q)�.
With the random variables αj , α̂j , βj , β̂j as defined in that

experiment, let us fix outcomes to the random variables

s1, . . . , st, S1, . . . , St, j, y1, . . . ,yt

that maximize the probability that Eq. (4) holds, where the

probability is now taken over u ∼ D. Let Λ denote the

collection of random variables whose values we are fixing,

and let [Λ= λ] denote the particular setting we are making.

Let j∗ ∈ [t] denote the fixed outcome to j. (In our circuit

construction, we will ignore the values yj for j > j∗.)
When in Expt∗(D) we condition on [Λ= λ], Eq. (4)

holds with probability at least 1 − 216 ln(1/q)
t − 1

M ≥
(216+1) ln(1/q)

t , which is > .75 by our guarantee on C
under the assumptions of Theorem I.2. Also, under our

conditioning, u remains undetermined and is distributed

according to D. Our input to C ′ will play the role of u
in our construction.

6A nondeterministic C′ computes f on input x if C′(x) has some branch
outputting a correct guess for f(x), and C′(x) never outputs an incorrect
guess—although C′ may output “fail” on any number of branches for input
x, and may output multiple distinct values on other “bad” inputs x′ �= x.
Note that this definition makes sense for d > 1.

742

Note that our settings determine outcomes to

α0, . . . , αt, β0, . . . , βt−1. The value αj∗−1 > 0
in particular will be useful to us in defining our

circuit. Abusing notation somewhat, we now let

s1, . . . , st, S1, . . . , St, α0, . . . , αt, β0, . . . , βt−1 denote

the fixed outcomes to these variables. For each j ∈ [t], let

Sj = { yj,� }�∈[sj]
be an indexing of Sj (with some elements possibly appearing

multiple times, according to their multiplicity in Sj). We

define a mapping �∗ : [t]→ N
+ by the relation that, for our

outcomes to y1, . . . ,yt, we have

yj = yj,�
∗(j) .

As another important piece of non-uniform data in our

construction, we will need to know the values taken by f
on y1,�

∗(1), . . . , yj
∗−1,�∗(j∗−1). For j ∈ [j∗ − 1], we let

ẑj := f(yj,�
∗(j)) .

Suppose C uses R > 0 bits of randomness. Let

Cdet(x1, . . . , xt; r) : {0, 1}n×t+R → {0, 1} denote C
considered as a deterministic circuit with random string r
as part of its input. For any string u ∈ {0, 1}n, we define a

viable certificate for u as a tuple

w = (mj∗+1,mj∗+2, . . . ,mt, r) ∈ [sj∗+1]×. . .×[st]×{0, 1}R

for which the first (j∗ − 1) length-d output blocks of the

computation

Cdet
(
y1,�

∗(1), . . . , yj
∗−1,�∗(j∗−1), u, yj

∗+1,mj∗+1 , . . . , yt,mt ; r
)

(5)

equal (ẑ1, . . . , ẑj
∗−1). For such a w and z ∈ {0, 1}d, we

say that w is a viable z-certificate for u if the (j∗)th output

block of the computation in Eq. (5) equals z, i.e., if in this

computation C makes the “guess” that f(u) equals z.

We fix some natural encoding of [sj∗+1] × . . . × [st] ×
{0, 1}R in which each element w has a unique representation

as a binary string in {0, 1}N ; here, we may take N ≤ R+
O(t log2M) ≤ poly(size(C)). Let Vu ⊆ {0, 1}N denote

the set of viable certificates for u, and for z ∈ {0, 1}d, let

V z
u ⊆ Vu denote the viable z-certificates for u. The sets V z

u

form a partition of Vu.

Claim II.9. Let us condition on [Λ= λ] as above in
Expt∗(D). Then,

1) For the random variable u over {0, 1}n, the equality

|Vu| = β̂j∗−1 · 2R
t∏

j=j∗+1

sj (6)

holds with probability 1.
2) Also, we have the equality∣∣∣V f(u)

u

∣∣∣ = α̂j∗ · 2R
t∏

j=j∗+1

sj , (7)

and therefore ∣∣∣V f(u)
u

∣∣∣
|Vu| =

α̂j∗

β̂j∗−1

. (8)

Proof: (1) Condition further on any possible out-

come [u = u] in Expt∗(D). Together with our prior

conditioning [Λ= λ], this determines the values of

Ŝ1, . . . , Ŝt, α̂1, . . . , α̂t, β̂1, . . . , β̂t. Under this conditioning,

we see from the definition that

β̂j∗−1 = Pr
[
C(ŷ1, . . . , ŷt) is (j∗ − 1)-valid

∣∣Ŝ1, Ŝ2, . . . , Ŝt, ŷ
1, . . . , ŷj∗

]
(9)

= Pr
[
C(y1,�

∗(1), . . . , yj
∗−1,�∗(j∗−1), u,vj∗+1, . . . ,vt) is (j∗ − 1)-valid

]
(10)

where we sample (vj∗+1, . . . ,vt) ∈r Sj∗+1× . . .×St (and

where validity is with respect to f). Here, Sj∗+1, . . . , St

are our fixed values under [Λ= λ], and the probability in

Eq. (10) is taken over vj∗+1, . . . ,vt and over the random

bits r used by C.

Let us calculate the probability in Eq. (10). The se-

lection of (vj∗+1, . . . ,vt) may be equivalently performed

by choosing (mj∗+1, . . . ,mt) ∈r [sj∗+1] × . . . × [st],
and setting vj := yj,mj for j ∈ {j∗ + 1, . . . , t}.
There are

(∏t
j=j∗+1 sj

)
· 2R possible outcomes to

(mj∗+1, . . . ,mt, r), each one equally likely. The outcomes

that cause the computation indicated in Eq. (10) to be

(j∗ − 1)-valid are, under our definition, precisely those for

which

(mj∗+1, . . . ,mt, r) ∈ Vu .

Thus, under our conditioning [u = u] we have

|Vu| = β̂j∗−1 · 2R
t∏

j=j∗+1

sj .

As u was an arbitrary outcome to u, we have proved part 1

of the Claim.

(2) Condition again on any possible outcome [u = u] in

Expt∗(D). Then we have

α̂j∗ = Pr
[
C(ŷ1, . . . , ŷt) is j∗-valid

∣∣ Ŝ1, Ŝ2, . . . , Ŝt, ŷ
1, . . . , ŷj∗

]
(11)

= Pr
[
C(y1,�

∗(1), . . . , yj
∗−1,�∗(j∗−1), u,vj∗+1, . . . ,vt) is (j∗ − 1)-valid

]
,

(12)

where again (vj∗+1, . . . ,vt) ∈r Sj∗+1 × . . . × St. Let

these vj be generated by (mj∗+1, . . . ,mt) just as in part

1. The outcomes that cause the computation in Eq. (12) to

be j∗-valid are exactly those for which the following two

conditions hold:

1) (mj∗+1, . . . ,mt, r) ∈ Vu;

2) The (j∗)th output block of

Cdet(y1,�
∗(1), . . . , yj

∗−1,�∗(j∗−1), u, vj∗+1, . . . ,vt; r)
equals f(u).

743

These outcomes are exactly those for which

(mj∗+1, . . . ,mt, r) ∈ V
f(u)
u . Then by a calculation

following that in part 1, we can verify that Eq. (7) holds

under [u = u]. As u was arbitrary, Eq. (7) holds identically.

Combining this with part 1 gives Eq. (8).

We have chosen the settings [Λ= λ] so that Eq. (4) holds

with high probability over u ∼ D. Using Claim II.9, this

implies that |V f(u)
u | ≈ |Vu| with high probability, i.e., almost

all viable certificates for u correctly guess f(u). Further-

more, by both parts of Claim II.9 and the first condition

of Eq. (4), both of |V f(u)
u |, |Vu| are (with high probability)

approximately equal to ρ := 2R
(∏t

j=j∗+1 sj

)
αj∗−1; this

latter quantity is determined by the setting [Λ= λ], and

does not depend on u.

This motivates our strategy for building a nondeterministic

mapping circuit to compute f on an input u sampled from D.

First, we choose a random hash function h from a strongly

universal hash family with domain U := {0, 1}N , and with a

range space of size determined by ρ. We consider an element

of U “dead” unless it maps to the all-0 vector under h;

our aim is to “kill off” all of the viable certificates making

incorrect guesses for f(u), while leaving alive some viable

certificate that makes a correct guess. Our control on the

sizes of |Vu|, |V f(u)
u | makes it possible to ensure this out-

come with good success probability. Nondeterminism will

then allow us to guess and verify a live, viable certificate.

To make this strategy succeed with the required probabil-

ity, we perform poly(n) repeated trials, selecting multiple

hash functions and taking a majority vote over the trials. In

the end we fix the randomness in these trials to obtain our

final nondeterministic circuit C ′D. As mentioned earlier, from

the fact that we can do this for any input distribution D, we

are able to use a standard boosting/majority vote technique to

obtain a single (polynomially larger) nondeterministic circuit

computing f on all length-n inputs.

ACKNOWLEDGMENT

I thank Avi Wigderson for helpful comments, and Robin

Moser for a discussion of related questions.

This material is based upon work supported by the

National Science Foundation under agreements Princeton

University Prime Award No. CCF-0832797 and Sub-contract

No. 00001583.

REFERENCES

[1] O. Goldreich, Foundations of Cryptography: Volume 1, Basic
Tools, 1st ed. Cambridge University Press, 2007.

[2] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A
pseudorandom generator from any one-way function,” SIAM
J. Comput., vol. 28, no. 4, pp. 1364–1396, 1999.

[3] R. Impagliazzo and A. Wigderson, “P = BPP if E requires
exponential circuits: Derandomizing the XOR lemma,” in
29th ACM STOC, 1997, pp. 220–229.

[4] L. A. Levin, “One-way functions and pseudorandom genera-
tors,” Combinatorica, vol. 7, no. 4, pp. 357–363, 1987.

[5] O. Goldreich, N. Nisan, and A. Wigderson, “On Yao’s XOR-
lemma,” in Studies in Complexity and Cryptography, ser.
Lecture Notes in Computer Science. Springer, 2011, vol.
6650, pp. 273–301, earlier version on ECCC (TR95-050,
1995).

[6] O. Goldreich and L. A. Levin, “A hard-core predicate for all
one-way functions,” in 21st ACM STOC, 1989, pp. 25–32.

[7] N. Nisan, S. Rudich, and M. E. Saks, “Products and help
bits in decision trees,” SIAM J. Comput., vol. 28, no. 3, pp.
1035–1050, 1999, earlier version in FOCS ’94.

[8] E. Viola and A. Wigderson, “Norms, XOR lemmas, and lower
bounds for polynomials and protocols,” Theory of Computing,
vol. 4, no. 1, pp. 137–168, 2008, earlier version in CCC ’07.

[9] R. Impagliazzo, R. Jaiswal, V. Kabanets, and A. Wigderson,
“Uniform direct product theorems: Simplified, optimized, and
derandomized,” SIAM J. Comput., vol. 39, no. 4, pp. 1637–
1665, 2010, earlier version in STOC ’08.

[10] R. Shaltiel, “Towards proving strong direct product theorems,”
Computational Complexity, vol. 12, no. 1-2, pp. 1–22, 2003,
earlier version in CCC ’01.

[11] A. Wigderson, “Derandomizing BPP,” 1997,
lecture notes prepared by Ronen Shaltiel.
http://www.math.ias.edu/∼avi/BOOKS/rand.pdf.

[12] R. Shaltiel and E. Viola, “Hardness amplification proofs
require majority,” SIAM J. Comput., vol. 39, no. 7, pp. 3122–
3154, 2010.

[13] U. Feige and C. Lund, “On the hardness of computing the
permanent of random matrices,” Computational Complexity,
vol. 6, no. 2, pp. 101–132, 1997.

[14] A. Amir, R. Beigel, and W. I. Gasarch, “Some connections
between bounded query classes and non-uniform complexity,”
Inf. Comput., vol. 186, no. 1, pp. 104–139, 2003, orig. 1990.

[15] S. Toda, “PP is as hard as the polynomial-time hierarchy,”
SIAM J. Comput., vol. 20, no. 5, pp. 865–877, 1991.

[16] L. Trevisan and S. P. Vadhan, “Extracting randomness from
samplable distributions,” in 41st IEEE FOCS, 2000, pp. 32–
42.

[17] R. Paturi and P. Pudlák, “On the complexity of circuit
satisfiability,” in STOC, L. J. Schulman, Ed. ACM, 2010,
pp. 241–250.

[18] S. R. Buss and L. Hay, “On truth-table reducibility to SAT
and the difference hierarchy over NP,” in 3rd Structure in
Complexity Theory Conference, 1988, pp. 224–233.

[19] C. H. Papadimitriou, Computational Complexity. Addison-
Wesley, 1994.

[20] A. C.-C. Yao, “Theory and applications of trapdoor functions
(extended abstract),” in FOCS. IEEE Computer Society,
1982, pp. 80–91.

744

[21] N. Nisan and A. Wigderson, “Hardness vs randomness,” J.
Comput. Syst. Sci., vol. 49, no. 2, pp. 149–167, 1994, earlier
version in FOCS ’88.

[22] A. Drucker, “A PCP characterization of AM,” in ICALP,
2011, pp. 581–592, full version at http://eccc.hpi-
web.de/report/2010/019/.

[23] R. O’Donnell, “Hardness amplification within NP,” in 34th
ACM STOC, 2002, pp. 751–760.

[24] A. Bogdanov and L. Trevisan, “Average-case complexity,”
Foundations and Trends in Theoretical Computer Science,
vol. 2, no. 1, 2006.

[25] S. Goldwasser and M. Sipser, “Private coins versus public
coins in interactive proof systems,” in 18th ACM STOC, 1986,
pp. 59–68.

[26] L. G. Valiant and V. V. Vazirani, “NP is as easy as detecting
unique solutions,” Theor. Comput. Sci., vol. 47, no. 3, pp.
85–93, 1986, earlier version in STOC ’85.

[27] R. Raz, “A parallel repetition theorem,” SIAM J. Comput.,
vol. 27, no. 3, pp. 763–803, 1998, earlier version in STOC
’95.

[28] A. Drucker, “New limits to classical and quantum instance
compression,” in 53rd IEEE FOCS, 2012, pp. 609–618, full
version at http://eccc.hpi-web.de/report/2012/112/.

[29] S. Arora and B. Barak, Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[30] C.-K. Yap, “Some consequences of non-uniform conditions
on uniform classes,” Theor. Comput. Sci., vol. 26, pp. 287–
300, 1983.

[31] R. V. Book, T. J. Long, and A. L. Selman, “Quantitative rela-
tivizations of complexity classes,” SIAM J. Comput., vol. 13,
no. 3, pp. 461–487, 1984.

[32] ——, “Qualitative relativizations of complexity classes,” J.
Comput. Syst. Sci., vol. 30, no. 3, pp. 395–413, 1985.

[33] L. A. Hemaspaandra and M. Ogihara, The Complexity Theory
Companion, ser. Texts in Theoretical Computer Science.
Springer, 2002.

745

