
The Parity of Directed Hamiltonian Cycles

Andreas Björklund

Department of Computer Science
Lund University
Lund, Sweden

andreas.bjorklund@yahoo.se

Thore Husfeldt

Department of Computer Science, Lund University, Sweden
IT University of Copenhagen, Denmark

thore.husfeldt@cs.lth.se

Abstract—We present a deterministic algorithm that given
any directed graph on n vertices computes the parity of
its number of Hamiltonian cycles in O(1.619n) time and
polynomial space. For bipartite graphs, we give a 1.5npoly(n)
expected time algorithm.

Our algorithms are based on a new combinatorial formula
for the number of Hamiltonian cycles modulo a positive integer.

I. Introduction

It is known since the 1960s that Hamiltonian cycles in

an n-vertex graph can be detected and counted in O(2nn2)

time [1], [9]. In an influential survey, Woeginger [12] asked

if this could be significantly improved. Recently, two results

using different techniques have met this challenge:

1) a randomized O(1.657n) time algorithm for the deci-

sion problem in undirected graphs [3],

2) a randomized O(1.888n) time algorithm for the deci-

sion problem in directed bipartite graphs [6].

For the general directed graph case, no such algorithm has

yet appeared.

Intriguingly, the foundation for the construction from [6]

is an algorithm for the related ⊕P-complete problem of

computing the parity of the number of Hamiltonian cycles

(in a bipartite graph). Our contribution in the present paper is

to compute this value (for any directed graph) in time within

a polynomial factor of O(φn), where φ = 1
2

(1+
√

5) < 1.619

is the golden ratio.

While this does not seem to shed any direct light on the

decision problem in directed graphs, it does however ask

a related interesting question: Could it really be easier to

solve a ⊕P-complete problem than its decision counterpart?

There is still no known (2 − Ω(1))n time algorithm for the

decision problem and even the recent decision algorithm for

undirected graphs [3] is slower than our present algorithm.

In contrast, current evidence for the well-studied CNF

Satisfiability problem points in the opposite direction: It is

known that a fast algorithm for computing the parity of the

number of satisfiable assignments to a CNF formula on n
Boolean variables would disprove the Strong Exponential

Time Hypothesis [5], i.e. a (2 − Ω(1))n time algorithm

computing the parity of the satisfying assignments implies

a (2 − Ω(1))n time algorithm for deciding if a formula has

a satisfying assignment at all.

A. Results

Let H denote the set of (directed) Hamiltonian cycles of

a directed input graph G = (V,E) on n = |V | vertices.

Our main result is that the parity ⊕H of the number of

directed Hamiltonian cycles can be computed much faster

than in 2n time.

Theorem 1. We can compute ⊕H for a general n-vertex
digraph in time within a polynomial factor of the nth
Fibonacci number Fn ∈ O(1.619n) and polynomial space.

For the restricted family of bipartite graphs, we can show a

stronger bound. This result is also somewhat easier to prove.

Theorem 2. We can compute ⊕H for a bipartite n-vertex
digraph in expected time within a polynomial factor of
O(1.5n) and polynomial space.

Both results rely on a new characterization of the number

of Hamiltonian cycles in terms of a local property. We use

the notation a ≡K b to mean a ≡ b (mod K)

Theorem 3. For a vertex subset X, let dv (X) denote the
number of directed edges from vertex v to a vertex in X.
For integer K ≥ 2,

|H | ≡K

1

K

∑
Z,Y1, ...,YK

(−1) |V \Z |
(∏
z∈Z

dz (V \ Z)
) K∏
k=1

(∏
y∈Yk

dy (Yk)
)
,

where the sum is over all (K + 1)-partitions of V .

Our algorithms use this result for K = 2, but we state (and

prove) it for general K .

B. Related results

There are nontrivial examples of hard counting problems

where computing the parity is easy. In fact an important

example is given by a closely related problem: computing

the number #C of disjoint cycle covers in a directed graph.

This is a hard counting problem, equivalent to computing

the permanent of the adjacency matrix. On the other hand,

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.83

727

the parity ⊕C equals the parity of the determinant and

is therefore computable in polynomial time by Gaussian

elimination. However, the problem studied in the present

paper, ⊕H , is in fact complete for the complexity class

⊕P, even for very restricted classes of graphs [11].

Counting the number of Hamiltonian cycles in an n-vertex

directed graph can be done in o(2n) time [4]. However, the

improvement over the classic algorithms [1], [9] is relatively

small (within a factor of exp(O(
√

n/ log n))). The parity

problem appears to be easier. First, for undirected graphs it is

known that when all vertex degrees are odd, there is an even

number of Hamiltonian cycles passing through each (di-

rected) edge [10]. Second, a recent paper of Cygan, Kratsch,

and Nederlof [6] includes a deterministic O(1.888n) time,

exponential space algorithm computing the parity of the

number of Hamiltonian cycles for undirected and directed

bipartite graphs. Our present algorithm is faster, uses only

polynomial space, and works for unrestricted directed graphs

as well. On the other hand, the algorithm from [6] works for

weighted graphs. This is a crucial property because it allows

the use of the Isolation lemma to construct a (randomized)

decision algorithm. Our constructions do not seem to allow

this extension.

C. Open questions

Our paper accentuates the fact that the exponential time

complexity of counting or deciding the Hamiltonian cy-

cles in a directed graph is not very well understood.

While there are several examples of ⊕P-complete problems

whose decision analogue is computationally easier (e.g., ⊕2-

Satisfiability), examples of the converse are not known to the

authors.

Under the Exponential Time Hypothesis, the decision

problem does not allow exp(o(n))-time algorithms, but there

are no arguments for or against an O(1.999n)-time algorithm

for the decision problem.

For comparison, it is now known that the parity of the

number of set covers of a given set system on n elements

cannot be solved in time (2 − Ω(1))n under the Strong

Exponential Time Hypothesis. [5].

D. Overview and techniques

Our algorithm is based on evaluating theorem 3 with K =
2, which is a summation of all 3-partitions of G.

There are two parts to our algorithm.

First, the vast majority of the terms in the summation can

be made to vanish modulo 2. Our main algorithmic insight

is the fact that any set of self-loops, and hence in particular

a random set, can be added to the vertices of a Hamiltonicity

instance without changing the result. This idea of randomly

modifying the input instance in order to produce a large

number of zero-valued terms is inspired by an algorithm for

computing the permanent by Bax and Franklin [2]. After this

modification, we can avoid explicitly listing the vanishing

terms. The running time of the algorithm is based on a

careful orchestration of a total search among linear equation

systems, which happens in sections III and IV for the

bipartite and the general input case, respectively.

Second, the contribution of the nonvanishing terms can

be computed in polynomial time via linear algebra, see

section II.

Finally, in section V we give the proof of theorem 3,

the combinatorial core of our contribution. This argument

at least follows a well-trodden path, if only in the begin-

ning; the cut-and-count method [7] provides a connection

between Hamiltonicity and cycle covers, and the principle

of inclusion–exclusion is used to move from sums over

permutations to sums of functions.

II. Algorithm

We begin by rewriting the expression from theorem 3.

First, for K = 2, we get

⊕H ≡2
1
2

∑
X,Y,Z

(∏
x∈X

dx (X)
) (∏

y∈Y
dy (Y)

) (∏
z∈Z

dz (Z)
)
, (1)

where we have introduced X = Y1, Y = Y2 and let Z denote

the vertex complement Z = V \ Z . Note in particular that

we removed the factor (−1) |Z | , because −1 ≡ +1 (mod 2),

and even though the mod 2 operation is applied after the

division by 2, every contributing Z will be counted an even

number of times as seen by changing the roles of X and Y .

It will be convenient to remove the factor 1
2

altogether.

To this end, consider a binary relation ≺ on the subsets of

V such that for disjoint X,Y ⊆ V , not both empty, either

X ≺ Y or Y ≺ X . Then (1) is equivalent to

⊕H ≡2

∑
X,Y,Z
X≺Y

(∏
x∈X

dx (X)
) (∏

y∈Y
dy (Y)

) (∏
z∈Z

dz (Z)
)
. (2)

To see this, first observe that (1) is symmetric with respect

to X and Y . Furthermore, in a contributing term, the sets X
and Y cannot both be empty, because for Z = V the term∏

z∈Z dz (Z) vanishes. Thus for every partition (X,Y, Z) with

X ≺ Y that contributes to (2), there is a twin contribution to

(1): the distinct partition (Y,X, Z), which has Y ≺ X and in

particular Y � X .

Finally, we separate the expression into the contributions

of X and Y ∪ Z , respectively:

⊕H ≡2

∑
X

f (X)
∏
x∈X

dx (X) , (3)

where

f (X) =
∑
Y,Z
X≺Y

(∏
y∈Y

dy (Y)
) ∏
z∈Z

dz (Z) . (4)

It is understood that the sum in (3) is over all X ⊆ V and

the sum in (4) is over all partitions Y, Z of V \ X . Still,

the whole expression is over almost all 3–partitions X,Y, Z

728

of the vertices and thus has Ω(3n) terms, so it does not in

itself serve as a fast algorithm.

There are two parts to our algorithm. First, for many X ,

already the factor
∏

x∈X dx (X) in (3) will be zero modulo 2.

Hence, these subsets contribute nothing and we will avoid

explicitly listing them. Second, for any X for which it is

not zero, the value of f (X) modulo 2 can be computed in

polynomial time in |V | via linear algebra.

On the top level our algorithm is simply an evaluation of

(3) and (4).

Algorithm P (Parity.) Given a directed graph G = (V,E),

computes ⊕H .

P1 [Initialise.] Set s = 0.

P2 [Locate.] List every X ⊆ V such that
∏

x∈X dx (X) is

odd.

P3 [Contribute.] Compute f (X) (mod 2) for every such X
and add it to s.

P4 [Report.] Return s (mod 2).

Note that steps P2 and P3 can be interleaved in order to

avoid storing all X .

We proceed by explaining how to execute steps P2 and

P3 efficiently.

A. Step P2: Locating Subsets that Contribute

We call a subset X ⊆ V contributing if
∏

x∈X dx (X)

is odd. Our aim is to generate the contributing subsets.

We identify V with {1, . . . ,n} and introduce the indicator

variables x1, . . . , xn ∈ {0,1} for X ⊆ V with xi = 1 if and

only if i ∈ X . Then the constraint that di (X) is odd can be

expressed in terms of the adjacency matrix A of G as

n∑
j=1

ai j x j ≡2 1 for all i ∈ X ,

equivalently,

xi
(n∑
j=1

ai j x j

)
≡2 xi for all i = 1, . . . ,n .

We will view these constraints as a system of n quadratic

equations over GF(2) in the variables x1, . . . , xn :

x1(a11x1 + a12x2 + · · · + a1n xn) = x1

x2(a21x1 + a22x2 + · · · + a2n xn) = x2

...

xn (an1x1 + an2x2+ · · · + ann xn) = xn .

This system can be succinctly expressed as a matrix equation

over GF(2):

x ◦ Ax = x (5)

where x = (x1, . . . , xn) and the operator ◦ denotes the

coordinate-wise (or Schur, or Hadamard) product.

B. Random self-loops
A priori, listing the solutions to (5) requires 2n steps. In

fact, already the size of the solution set is easily seen to be

of order 2n for some graphs. For instance, every vector x
with an odd number of 1s solves (5) if A is the all-1s matrix

corresponding to a directed clique with self-loops.
This motivates the main algorithmic insight in our con-

struction. Because no Hamiltonian cycle can use a self-loop,

we can add self-loops to the vertices in G (or remove them)

without changing H . Algebraically, manipulation of self-

loops corresponds to flipping the diagonal entries of A.
We show that adding these loops at random reduces the

expected solution size for all graphs.

Lemma 1. Let A be an n × n matrix with 0,1-entries.
Choose the diagonal entries a11, . . . ,ann ∈ {0,1} uniformly
and independently at random. Then the expected number of
solutions to (5) is 1.5n .

Proof: Consider the ith entry of x. If xi = 0 then the

ith equation in (5) is 0 = 0 and trivially satisfied. If xi = 1

then the ith equation in (5) is satisfied if

1 =

n∑
j=1

ai j x j = aii · 1 +

n∑
j=1
j�i

ai j x j ,

which happens with probability 1
2

because aii is uniformly

distributed. By independence of the choices of aii , a vector x
with k 1s satisfies all the equations with probability 2−k . By

linearity of expectation, the expected number of solutions is
n∑

k=0

(
n
k

)
2−k = (1 + 1

2
)n ,

using the binomial theorem.
In section III we show that these 1.5n solutions can be

efficiently listed if G is bipartite. In section IV we show that

the solutions can be listed in time O(1.619n) for general

graphs.

C. Gaussian elimination
We assume that the following algorithm for solving non-

homogeneous systems of linear equations is well known.

We repeat it here only to recall that the solution set can be

described in terms of the basis of a translated vector space

(the system’s null space). In particular, if a linear equation

system has a solution at all, the number of solutions equals

2d , where d is the dimension of the null space.

Algorithm G (Gaussian elimination.) Given a nonhomoge-

neous system Ax = c of linear equations. If the system has

no solution, outputs “no”. Otherwise, outputs a vector v and

d linearly independent vectors b1, . . . ,bd such that the set

of vectors x with Ax = c equals {v + span(b1, . . . ,bd)}.
Gaussian elimination runs in polynomial time and works

over finite fields.

729

D. Step P3: Computing the Contributions

We return to the value f (X) in (4) and show how to

compute it modulo 2 in polynomial time. The salient feature

of (4) is that modulo 2, we can now view f (X) as the

number of solutions to an equation system over GF(2).

We define the binary relation ≺ on the subsets of V
as follows. Identify V with {1, . . . ,n} and set X ≺ Y if

min X < minY , with the usual convention min ∅ = ∞. (By

the discussion following (2), the case X = Y = ∅ never

arises.)

We will set up a system of linear equations in y1, . . . , yn ,

so that f (X) equals the number of solutions (mod 2). We

use the obvious correspondence

yi =

⎧⎪⎨⎪⎩
1 , if i ∈ Y ;

0 , if i � Y .

First, since Y belongs to the complement of X we introduce

the equations

yi = 0 for i ∈ X . (6)

Second, to ensure X ≺ Y we introduce the equations

yi = 0, for i = 1, . . . ,min X . (7)

Finally, a subset Y with X ≺ Y contributes to f (X) if all

product terms in (4) are 1, so we need

di (Y) ≡2 1 , if i ∈ Y ;

di (X ∪ Y) ≡2 1 , if i � Y

for each i � X . Since di (X ∪ Y) = di (X) + di (Y) we can

rewrite the second constraint to

di (Y) ≡2 1 + di (X), if i � Y .

In terms of the variables y1, . . . , yn and the adjacency matrix

A of G we have the equations

n∑
j=1

ai j y j =

⎧⎪⎨⎪⎩
1 , if yi = 1 ;

1 + di (X) , if yi = 0 ;

for each i � X . (Note that di (X) is a fixed value depending

only on X .) The right hand side simplifies to 1 + di (X) +

di (X)yi , so the resulting equations are

di (X)yi +

n∑
j=1

ai j y j = 1 + di (X), for i � X . (8)

In summary, the solutions to the linear equations in (6),

(7), and (8) describe exactly the subsets Y ⊆ V \X with X ≺
Y that contribute 1 to f (X). The number of such solutions

is 2d with d the dimension of the system’s null space. It

is odd if and only if the system of equations has a unique

solution (and consequently d = 0). This is determined by

Gaussian elimination in time polynomial in n.

III. Bipartite Input Graphs

We first describe an algorithm for the step P2 for the

case that the input graph is bipartite. We can safely assume

that the input bipartite graph is balanced on two equal

sized vertex sets V1 ∪ V2 = V . (Otherwise, there can be no

Hamiltonian cycles.)

Let

B =
[

0 B12

B21 0

]

denote the adjacency matrix of the input graph. Choose ran-

dom values r1, . . . ,rn ∈ {0,1} uniformly and independently

and construct the diagonal matrix R = diag(r1, . . . ,rn). Set

A = B + R. The equation system (5) becomes

x ◦ (B + R)x = x ◦
[

0 B12

B21 0

]
x + x ◦ Rx = x ,

equivalently,

x1 ◦ B12x2 = x1 − x1 ◦ R1x1

x2 ◦ B21x1 = x2 − x2 ◦ R2x2 ,

where x = (x1,x2) and R = diag(R1,R2). In this formulation

it is apparent that for fixed x1, the equation system (in the

variables x2) is linear; note in particular that x2 ◦ R2x2 =

R2x2 because R2 is diagonal and multiplication in GF(2) is

idempotent. Thus, the system can be solved by Gaussian

elimination in polynomial time.

Algorithm B (Bipartite graphs.) Given a bipartite directed

graph G = (V,E) with n = |V |, lists the vertex subsets X ⊆ V
for which dx (X) is odd for all x ∈ X .

B1 [Add random self loops.] Choose r1, . . . ,rn ∈ {0,1}
uniformly at random and add a self-loop at vertex vi
if ri = 1.

B2 [Initialise.] Set x1 = · · · = xn/2 = 0.

B3 [Solve.] Solve the system x◦ Ax = x in the free variables

xn/2+1, . . . , xn using algorithm G. If it returns “none”

proceed to B5.

B4 [Report.] (Algorithm G returned the solution set as

v,b1, . . . ,bd .) Output the vectors v + α1b1 + · · · + αdbd
for all 2d choices of α1, · · · ,αd ∈ {0,1}.

B5 [Next.] If all choices of (x1, . . . , xn/2) have been in-

spected, terminate. Otherwise generate the next choice

and return to B3.

The number of choices of x1 is 2n/2, so step B3 takes

total time 2n/2poly(n). This is dominated by the overall

running time of step B4, which is linear in the number of

of contributing subsets X . These are 1.5n in expectation

according to lemma 1. Hence the runtime is 1.5npoly(n) in

expectation. This finishes the proof of theorem 2.

730

IV. General Input Graphs

For general graphs, we do not know how to list the

solutions S to (5) in step P2 in time proportional to the

solution set. Instead, we will efficiently list a superset S′ of

the solution set of size O(1.619n). We can then examine

every x ∈ S′ to see that it solves (5).

The superset S′ of candidate solutions to (5) is defined

as follows. Let x′ denote a prefix vector of fixed values

x′ = (x1, . . . , xn−k) ∈ {0,1}n−k and introduce the variables

xn−k+1, . . . , xn . Set x = (x1, . . . , xn). Consider the equation

system

(x′,0k) ◦ Ax = (x′,0k) . (9)

For fixed x′, this is nonhomogeneous set of linear equations

in the variables xn−k+1, . . . , xn . Every prefix of a solution

to (5) is a solution to (9):

Lemma 2. Let x = (x1, . . . , xn) ∈ {0,1}n and x′ =
(x1, . . . , xn−k) for some k ∈ {0,1, . . . ,n}. If x satisfies
x ◦ Ax = x then (x′,0k) ◦ Ax = (x′,0k).

Proof: For 1 ≤ i ≤ n − k, the ith equation of both

x ◦ Ax = x and (x′,0k) ◦ Ax = (x′,0k) is

xi
n∑
j=1

ai j x j = xi .

For i > n − k, the ith equation of (x′,0k) ◦ Ax = (x′,0k)

simplifies to 0 = 0, which is trivially satisfied.

We will show that we can avoid generating all prefixes.

Let
(

[n−k]
k

)
denote the family of vectors (x1, . . . , xn−k) ∈

{0,1}n−k for which x1 + · · · + xn−k = k. Let
(

[n−k−1]
k

)
1

denote the family of vectors (x1, . . . , xn−k) ∈ {0,1}n−k for

which x1 + · · · + xn−k−1 = k and xn−k = 1. The notation is

motivated by the cardinalities,

����
(
[n − k]

k

) ���� =
(
n − k

k

)

and

����
(
[n − k − 1]

k

)
1

���� =
(
n − k − 1

k

)
.

Lemma 3. Let x ∈ {0,1}n . Then there is exactly one
k ∈ {0, . . . , �n/2�} such that the (n − k)th prefix x′ =
(x1, . . . , xn−k) belongs to

(
[n−k]

k

)
or

(
[n−k−1]

k

)
1
.

Proof: Let wk = x1 + · · · + xn−k . Choose the smallest

k ≥ 0 with the property

(i) wk = k, or

(ii) wk = k + 1, xn−k = 1.

To see that such k exists consider the pairs of values (wk , k)

for k = 0,1, The first pair is (x1 + · · · + xn ,0). The left

value decreases monotonically by 0 or 1 down to 0. The

right value increases 0,1,2, The only possibility that (i)

lacks a solutions is that wk and k pass each other, i.e., there

exists k such that

wk = k + 1,wk+1 = k .

But in that case xn−k = 1 so that (ii) is satisfied. Note also

that if (ii) holds for k, then (i) does not for that k, and vice
versa. Also note that k is at most �n/2�, since wk is at most

n − k.

We have that either (i) is satisfied and x′ belongs to(
[n−k]

k

)
, or (ii) is satisfied and x′ belongs to

(
[n−k−1]

k

)
1
.

We claim that there cannot be another solution k′ > k to

either (i) or (ii). Consider first the case that k′ satisfies (i)
and k satisfies (ii). In particular, k+1 = wk = wk−1+xn−k =
wk−1 + 1, so k = wk−1. Then,

k′ = wk ′ ≤ wk−1 = k ,

a contradiction. The remaining three cases follow from the

monotonicity of the left and right hand sides.

We note in passing that the previous lemma gives a

combinatorial proof of the identity

∑
k

((n − k
k

)
+

(
n − k − 1

k

))
2k = 2n ,

see figure 1. For another way to verify this expression,

compute

∑
k

(
N − k

k

)
2k = 1

3
(2N+1 + (−1)N+1) ,

which comes from evaluating a known, closed form for

the generating function
∑

k

(
N−k
k

)
zk at z = 2 [8, exercise

1.2.9.15]. Then add these values for N = n and N = n−1 to

arrive at 1
3

(
2n+1+ (−1)n+1+2n + (−1)n

)
= 1

3
(2+1)2n = 2n .

Finally, we need to bound the number of solutions to (9).

A priori, this is a system in k variables each ranging over

{0,1}, so the number of solutions can be 2k . However, we

will show that in expectation, the number of solutions is

exactly 1:

Lemma 4. Let x′ denote a vector of fixed values x′ =
(x1, . . . , xn−k) from

(
[n−k]

k

)
or

(
[n−k−1]

k

)
1

and introduce the
variables xn−k+1, . . . , xn ∈ {0,1}. Set x = (x1 . . . , xn). Let A
be a matrix whose diagonal entries are chosen uniformly at
random from {0,1}. Then the expected number of solutions
to

(x′,0k) ◦ Ax = (x′,0k)

is 1.

Proof: Set ri = aii . For 0 ≤ i ≤ n − k, the ith equation

has the form

xi
n∑
j=1

ai j x j = xi .

731

(
[7]
0

) (
[6]
1

) (
[5]
2

) (
[4]
3

) (
[6]
0

)
1

(
[5]
1

)
1

(
[4]
2

)
1

(
[3]
3

)
1

Figure 1. The sets
(
[n−k]

k

)
and

(
[n−k−1]

k

)
1

for n = 7 and k ∈ {0, . . . , �n/2� }. The bottom row shows all 128 bit patterns on 7 bits.

Since there are exactly k entries xi = 1, there are exactly

k of such equations that do not trivialise to 0 = 0. We can

rewrite each of these equations to

n∑
j=1

ai j x j = 1

or, isolating the variables on the left hand side,

n∑
j=n−k+1

ai j x j = 1 + ri +
n−k∑
j=1
j�i

ai j x j .

Now it is clear that the system consists of k equations in the

k variables xn−k+1, . . . , xn . The right hand side is uniformly

distributed from {0,1}, so an assignment to the variables

satisfies an equation with probability 1
2
. By independence

of the choices of ri , all k equations are satisfied with

probability 2−k . There are 2k assignments, so the expected

number of solutions is 2k2−k = 1.

Algorithm C (Contributing subsets for general graphs.)
Given a graph G = (V,E) with n = |V |, lists the vertex

subsets X ⊆ V for which dx (X) is odd for all x ∈ X .

C1 [Add random self loops.] Choose r1, . . . ,rn ∈ {0,1}
uniformly at random and add a self-loop at vertex vi if

ri = 1. Let A denote the adjacency matrix of the resulting

graph.

C2 [Initialize.] Set k = 0, x′ = 0n .

C3 [Solve.] Solve the nonhomogeneous linear equation (9)

in the free variables xn−k+1, . . . , xn using algorithm G.

If there is no solution, proceed to C5.

C4 [Filter solution.] Generate every vector x = v + α1b1 +

· · ·+ αdbd for all 2d choices of α1, · · · ,αd ∈ {0,1}. If x
solves the equation x ◦ Ax = x, then output x.

C5 [Next prefix.] Update x′ and possibly k so that x′ is the

next element of
(

[n−k]
k

)
or

(
[n−k−1]

k

)
1

for k = 0, . . . , 1
2

n,

and return to C3. (When all these elements have been

generated, the algorithm terminates.)

Lemma 5. The running time of algorithm C is within a
polynomial factor of

(
1 +

√
5

2

)n
(10)

in expectation.

Proof: For the running time, first observe that the mem-

bers of
(

[n−k]
k

)
and

(
[n−k−1]

k

)
1

can be listed with polynomial

(in fact, constant) delay [8, sec. 7.2.1.3].

The number of iterations is given by the sizes of
(

[n−k]
k

)
and

(
[n−k−1]

k

)
1
, summed over all k = 0, . . . , �n/2�. These

are well-studied quantities, and it is known [8, ex. 1.2.8.16]

that ∑
k

(
n − k

k

)
+

∑
k

(
n − k − 1

k

)
= Fn+1 + Fn = Fn+2 ,

where Fn is the nth Fibonacci number, bounded by (10).

The running time is dominated by the time spent in steps

C3 and C4. Step C3 takes polynomial time every time

it is executed thanks to the polynomial running time of

algorithm G. Step C4 looks more difficult to bound, because

it may exhaust the entire solution space to an equation

system in k unknowns. Naively, this would lead to a total

running time of

∑
k

(
n − k

k

)
2k > 2n−1 .

However, by lemma 4, the expected size of this solution

space is 1. Thus, we expect to generate and verify only one

vector x, so the time spent in C4 is polynomial in expectation

in each iteration. By linearity of expectation, the total time

spent in C4 is within a polynomial factor of (10).

A. Derandomization

We use the method of conditional expectations to deran-

domize algorithm C. Our randomness is over the choices of

r1, . . . ,rn , the self-loop indicators. The expected number of

candidate solutions S given a specific choice of values for

the first k choices satisfies

E[S | (r1, . . . ,rk)] =
1
2
E[S | (r1, . . . ,rk ,0)] + 1

2
E[S | (r1, . . . ,rk ,1)]

for all k ≥ 0. In particular, there is a specific assignment

to r1, . . . ,rn such that E[S | (r1, . . . ,rn)] ≤ E[S]. Thus, by

mimicking the behaviour of algorithm C, but computing the

expected solution sizes of the systems (9) instead of solving

732

them, we can choose the assignment greedily one variable

at the time, until we get rid of all the randomness. The final

assignment has no more candidate solutions than the original

expected number.

The next lemma shows that we can efficiently compute the

expectations E[S | (r1, . . . ,rk ,0)] and E[S | (r1, . . . ,rk ,1)].

Lemma 6. Let x′ and x be an in lemma 4. Let l ∈ {0, . . . ,n}.
Let A be a matrix whose diagonal entries aii = ri for l <
i ≤ n are chosen uniformly at random from {0,1}. Then the
expected number of solutions to

(x′,0k) ◦ Ax = (x′,0k)

is given by a polynomial size linear equation system in the
variables xn−k+1, . . . , xn and rl+1, . . . ,rn .

Proof: The only contributing equations are those for

which xi = 1, of the form

1 ·
n∑
j=1

ai j x j = 1 .

We can rewrite these equations as

n∑
j=n−k+1

ai j x j = 1 +

n−k∑
j=1

ai j x j

for i ≤ l, and

ri +
n∑

j=n−k+1

ai j x j = 1 +

n−k∑
j=1
j�i

ai j x j

for i > l. Now it is clear that the system consists of k
equations in the k + (n − l) variables xn−k+1, . . . , xn and

rl+1, . . . ,rn .

If this system has S solutions then the expected number

of solutions to (9) is S/2n−l+1.

Algorithm D (Derandomization of C.) Given a graph G =
(V,E) with n = |V |, determines values r1, . . . ,rn ∈ {0,1} for

algorithm C. Let A denote the adjacency matrix of G.

D1 [Initialize.] Set l = 1.

D2 [Initialize.] Set k = 0, x′ = 0n , N0 = N1 = 0.

D3 [Solve for each choice of rl .] For b = 0, tentatively set

all = b and solve the nonhomogeneous linear equation

(9) in the free variables xn−k+1, . . . , xn and rl+1, . . . ,rn
using algorithm G. Let Sb denote the size of the solution

space. Repeat step D3 for b = 1.

D4 [Tally solutions.] Increase Nb by Sb/2n−l+1 for b = 0,1.

D5 [Next prefix.] Update x′ and possibly k so that x′ is the

next element of
(

[n−k]
k

)
or

(
[n−k−1]

k

)
1

for k = 0, . . . , 1
2

n,

and return to D3. (When all these elements have been

generated, proceed to D6.)

D6 If N0 > N1 then fix all = 1, otherwise all = 0. Increase

l. If l ≤ n return to D2. Otherwise output a11, . . . ,ann .

V. Proof of Theorem 3

Let C ⊆ 2E denote the set of (directed) cycle covers of

the directed graph G. We use Iverson’s bracket notation: for

a proposition P, we write

[P] =

⎧⎪⎨⎪⎩
1, if P ;

0, otherwise .

G[Y] is the graph induced by Y ⊆ V . We sometimes write

e ∈ G[Y] to refer to a directed edge e in the induced graph

G[Y]. We will operate on sums of partitions of vertex sets,

and manipulate these sums. For this purpose, we introduce

the notation
V∑

Y1, ...,YK

for the sum over all ordered K-partitions Y1, . . . ,YK of V .

That is, Y1 ∪ · · · ∪ YK = V and Yi ∩ Yj = ∅ (1 ≤ i < j ≤ k).

Parts may be empty.

For a subset T ⊆ E of directed edges define

h(T) =
1

K

V∑
Y1, ...,YK

∏
e∈T

[e ∈ G[Y1] ∪ · · · ∪ G[YK]] .

We will show that the residue modulo K of the function

h serves as an indicator variable for Hamiltonicity on C .

Lemma 7. For C ∈ C ,

[C ∈ H] ≡K h(C) . (11)

Proof: First, we show that for C ∈ H we have

h(C) ≡K 1. Consider a Hamiltonian cycle C and a partition

Y1, . . . ,YK of V . First, every partition that sets Yk = V
for some k ∈ {1, . . . ,K } (and all other parts empty) has

e ∈ G[Yk] for all e ∈ C, so its contribution is 1. On the other

hand, consider a partition where some Yk (1 ≤ k ≤ K) is

neither ∅ nor V . Since C is Hamiltonian, there is a directed

edge uv ∈ C with u ∈ Yk and v � Yk . This directed edge

belongs to none of the G[Yk], so the product vanishes and

the partition does not contribute to the sum. Thus, the total

contribution of C to the sum in h(C) is K , and h(C) ≡K 1.

Second, we show for each C � H that h(C) is 0

(mod K). In particular, we show

V∑
Y1, ...,YK

∏
e∈C

[e ∈ G[Y1] ∪ · · · ∪ G[YK]] ≡K 2 0 .

Partition the non-Hamiltonian cycle cover C into cycles

C = C1 ∪ · · · ∪ Cr ,

such that each Ci is a simple cycle. Note that r > 1 because

C �H .

Construct the corresponding partition of vertices

V = V1 ∪ . . . ∪ Vr ,

733

such that Vi are the vertices visited by the cycle Ci .

Let Y1, . . . ,YK be a vertex partition such that

∏
e∈C

[e ∈ G[Y1] ∪ · · · ∪ G[YK]] = 1 . (12)

We first need to observe that the cycle-induced vertex

partition V1, . . . ,Vr refines Y1, . . . ,YK . Indeed, assume that

Vi ∩Yj is neither empty nor Vi . Then there is a directed edge

e = uv ∈ Ci with u ∈ Vi∩Yj but v � Vi∩Yj . In particular, the

directed edge e belongs to neither G[Yj] nor to any other of

the G[Yk], contradicting (12). Hence the partition Y1, . . . ,YK
consists of the r parts of V1, . . . ,Vr . There are Kr ways to

pick these parts, each amounting to one 1 in the summation.

Since r > 1 this shows that the total contribution of C �H
is a multiple of K2 and after division of K still vanishes

modulo K .

In particular, we can count the number of Hamiltonian

cycles modulo K as

|H | ≡K

∑
C∈C

h(C) . (13)

We next rewrite the right hand side by an application of

inclusion–exclusion.

For a vertex set Z ⊆ V let F (Z) be the family of

edge subsets in which every vertex has outdegree 1 and all

terminals are in Z . In other words, F (Z) is the family of

total functions f : V → Z where v f (v) is a directed edge in

the graph for all v ∈ V .

Lemma 8.
∑
C∈C

h(C) ≡K

∑
Z⊆V

(−1) |V \Z |
∑

F∈F (Z)

h(F) .

Proof: Consider a cycle cover C ∈ C . It belongs to

F (Z) exactly when Z = V , so its total contribution to the

right hand side is h(C).

Consider now an edge subset F ∈ F (V) \ C that is not

a cycle cover. Let X denote the set of vertices appearing

as terminals for the directed edges in F. Then F belongs

to F (Z) for every Z with X ⊆ Z ⊆ V . By the principle

of inclusion–exclusion, the number of Z with X ⊆ Z ⊆ V
is even (using that X � V because F is not a cover). In

particular there are as many odd Z as even ones. Thus, the

contributions of all F ∈ F (V) \ C cancel.

Recall that dv (X) denotes the number of directed edges

from v to a vertex in X . For pairwise disjoint sub-

sets Y1, . . . ,YK of V whose union includes all of Z , let

dv (Z;Y1, . . . ,YK) denote the number of directed edges from

v to a vertex in Z that stay in the same part as v, formally

dv (Z;Y1, . . . ,YK) = N (Z ∩ Yk) , where v ∈ Yk .

Lemma 9. For Z ⊆ V,∑
F∈F (Z)

h(F) ≡K

1

K

∏
v∈V \Z

dv (Z)

Z∑
Y1, ...,YK

∏
v∈Z

dv (Z;Y1, . . . ,YK) .

Proof: Expanding h(F) and rearranging, we have∑
F∈F (Z)

h(F) =

1

K

∑
F∈F (Z)

V∑
Y1, ...,YK

∏
e∈F

[e ∈ G[Y1] ∪ · · · ∪ G[YK]] =

1

K

V∑
Y1, ...,YK

∑
F∈F (Z)

∏
e∈F

[e ∈ G[Y1] ∪ · · · ∪ G[YK]] =

1

K

V∑
Y1, ...,YK

∏
v∈V

dv (Z;Y1, . . . ,YK) ,

where the last step is based on counting in two different

ways the number of ways that every vertex in V can choose

another vertex in Z in the same part of Y1, . . . ,YK .

The next step is to establish

V∑
Y1, ...,YK

∏
v∈V

dv (Z;Y1, . . . ,YK) =

(∏
v∈V \Z

dv (Z)
) Z∑
Y1, ...,YK

∏
v∈Z

dv (Z;Y1, . . . ,YK) (14)

by induction in |V \ Z |.
For V = Z the claim is vacuous. Otherwise, select a vertex

w ∈ V \ Z and split the sum on the left hand side into K
sums according to which part includes the vertex w.

V∑
Y1, ...,YK

∏
v∈V

dv (Z;Y1, . . . ,YK) = S1 + · · · + SK ,

where

Sk =
V \{w }∑

Y1, ...,YK

∏
v∈V

dv (Z;Y1, . . . ,Yk ∪ {w}, . . . ,YK) .

In the product, the factor contributed by the term correspond-

ing to v = w is

dw (Z;Y1, . . . ,Yk ∪ {w}, . . . ,YK) =

dw (Z ∩ (Yk ∪ {w})) = dw (Z ∩ Yk) ,

because w does not belong to Z . Thus,

Sk =
V \{w }∑

Y1, ...,YK

dw (Z ∩ Yk)
∏

v∈V \{w }
dv (Z;Y1, . . . ,YK) .

734

Summing all the Sk we arrive at

S1 + · · · + SK =
V \{w }∑

Y1, ...,YK

{(K∑
k=1

dw (Z ∩ Yk)
) ∏
v∈V \{w }

dv (Z;Y1, . . . ,YK)
}
=

V \{w }∑
Y1, ...,YK

dw (Z)
∏

v∈V \{w }
dv (Z;Y1, . . . ,YK) =

dw (Z)

V \{w }∑
Y1, ...,YK

∏
v∈V \{w }

dv (Z;Y1, . . . ,YK) =

(∏
w∈V \Z

dw (Z)
) Z∑
Y1, ...,YK

∏
v∈Z

dv (Z;Y1, · · · ,YK) ,

where the last identity follows by induction over w, estab-

lishing (14).

We are ready to establish theorem 3, namely,

|H | ≡K

1

K

V∑
Z,Y1, ...,YK

(−1) |V \Z |
(∏
z∈Z

dz (V \ Z)
) K∏
k=1

∏
y∈Yk

dy (Yk) .

Proof of theorem 3: Write Z = V \ Z . Combining (13)

and lemmas 8 and 9 we get:

|H | ≡K

1

K

∑
Z⊆V

Z∑
Y1, ...,YK

(−1) |Z |
∏
v∈Z

dv (Z)
∏
v∈Z

dv (Z;Y1, . . . ,YK) ≡K

1

K

V∑
Z,Y1, ...,YK

(−1) |Z |
∏
v∈Z

dv (Z)
∏
v∈Z

dv (Z;Y1, . . . ,YK) ,

where we just changed the original summand Z to its

complement Z .

Finally, every y ∈ Z belongs to exactly one Yk , and for

this value of k we have dy (Z;Y1, . . . ,YK) = dy (Yk). Thus,

∏
y∈Z

dy (Z;Y1, . . . ,YK) =

K∏
k=1

∏
y∈Yk

dy (Yk) .

Acknowledgements

This work is supported by the Swedish Research Council,

grant VR 2012-4730: Exact Exponential-time Algorithms.

References

[1] R. Bellman. Dynamic programming treatment of the travel-
ling salesman problem, J. Assoc. Comput. Mach. 9, pp. 61–
63, 1962.

[2] E. Bax and J. Franklin. A permanent algorithm with
exp[Ω(n1/3/2 ln n)] expected speedup for 0-1 matrices. Al-
gorithmica 32, pp. 157–172, 2002.

[3] A. Björklund. Determinant sums for undirected Hamiltonicity.
In proceedings of the 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23–
26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society
2010, 51st FOCS, pages 173–182.

[4] A. Björklund. Below all subsets for permutational counting
problems. arXiv:1211.0391, 2012.

[5] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y.
Okamoto, R. Paturi, S. Saurabh, M. Wahlström. On problems
as hard as CNF-SAT. In proceedings of the 27th Conference
on Computational Complexity, CCC 2012, Porto, Portugal,
June 26-29, 2012, pages 74–84.

[6] M. Cygan, S. Kratsch, and J. Nederlof. Fast Hamiltonicity
checking via bases of perfect matchings. arXiv:1211.1506,
2012. Accepted to 45th ACM Symposium on the Theory of
Computing, STOC 2013, June, 1–4, 2013, Palo Alto, USA.

[7] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M.
M. van Rooij, and J. O. Wojtaszczyk. Solving connectivity
problems parameterized by treewidth in single exponential
time. In proceedings of the 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs,
CA, USA, October 22-25, 2011. IEEE Computer Society
2011, 52nd FOCS, pages 150–159.

[8] D. E. Knuth, The Art of Computer Programming, 3rd edition,
Addison–Wesley, 1997.

[9] M. Held and R. M. Karp. A dynamic programming approach
to sequencing problems, J. Soc. Indust. Appl. Math. 10, pp.
196–210, 1962.

[10] A. G. Thomason. Hamiltonian cycles and uniquely edge
colourable graphs, Advances in Graph Theory (Cambridge
Combinatorial Conf., Trinity College, Cambridge, 1977), An-
nals of Discrete Mathematics, 3, pp. 259–268, 1978.

[11] L. G. Valiant. Completeness for parity problems. In pro-
ceedings of Computing and Combinatorics, 11th Annual
International Conference, COCOON 2005, Kunming, China,
August 16-29, 2005. Lecture Notes in Computer Science
3595, Springer 2005, pages 1–8.

[12] G. J. Woeginger. Exact algorithms for NP-hard problems: A
survey. In Combinatorial Optimization – Eureka! You shrink!,
M. Juenger, G. Reinelt and G. Rinaldi (eds.). Lecture Notes
in Computer Science 2570, Springer 2003, pages 185–207.

735

