
Approximating Minimization Diagrams and Generalized Proximity Search

Sariel Har-Peled∗
Dept. of Computer Science

University of Illinois,
Urbana, IL 61801, USA
Email: sariel@uiuc.edu

Nirman Kumar∗
Dept. of Computer Science

University of Illinois,
Urbana, IL 61801, USA

Email: nkumar5@illinois.edu

Abstract—We investigate the classes of functions whose
minimization diagrams can be approximated efficiently in
IRd. We present a general framework and a data-structure
that can be used to approximate the minimization diagram
of such functions. The resulting data-structure has near
linear size and can answer queries in logarithmic time.
Applications include approximating the Voronoi diagram
of (additively or multiplicatively) weighted points. Our
technique also works for more general distance functions,
such as metrics induced by convex bodies, and the nearest
furthest-neighbor distance to a set of point sets. Interest-
ingly, our framework works also for distance functions that
do not obey the triangle inequality. For many of these
functions no near-linear size approximation was known
before.

I. Introduction

Let F =
{
fi : IR

d → IR
∣∣∣ i = 1, . . . , n

}
, be a set of func-

tions. The minimization diagram of F is the function
fmin(q) = min

i=1,...,n
fi(q), for any q ∈ IRd. By viewing the

graphs of these functions as manifolds in IRd+1, the graph of
the minimization diagram, also known as the lower envelope
of F , is the manifold that can be viewed from an observer
at −∞ on the xd+1 axis. Given a set of functions F as
above, many problems in Computational Geometry can be
viewed as computing the minimization diagram; that is, one
preprocesses F , and given a query point q, one needs to
compute fmin(q) quickly. This typically requires nO(d) space if
one is interested in logarithmic query time. If one is restricted
to using linear space, then the query time deteriorates to

O
(
n1−O(1/d)

)
[2], [3]. There is substantial work on bounding

the complexity of the lower envelope in various cases, how to
compute it efficiently, and performing range search on them;
see the book by Sharir and Agarwal [4].

Nearest neighbor.

One natural problem that falls into this framework is the
nearest neighbor (NN) search problem. Here, given a set P of
n data points in a metric space X , we need to preprocess P,
such that given a query point q ∈ X , one can find (quickly)
the point nq ∈ P closest to q. Nearest neighbor search is
a fundamental task used in numerous domains including
machine learning, clustering, document retrieval, databases,
statistics, and many others.

∗Work on this paper was partially supported by NSF AF award
CCF-0915984, and NSF AF award CCF-1217462. The full version
of this paper is available at [1].

To see the connection to lower envelopes, consider a set
of data points P = {p1, . . . , pn} in IRd. Next, consider the
set of functions F = {f1, . . . , fn}, where fi(q) = ‖q− pi‖,
for i = 1, . . . , n. The graph of fi is the set of points{
(q, fi(q)) | q ∈ IRd

}
(which is a cone in IRd+1 with apex at

(pi, 0)). Clearly the NN problem is to evaluate the minimiza-
tion diagram of the functions at a query point q.

More generally, given a set of n functions, one can think of
the minimization diagram defining a “distance function”, by
analogy with the above. The distance of a query point here
is simply the “height” of the lower envelope at that point.

Exact nearest neighbor.

The exact nearest neighbor problem has a naive linear
time algorithm without any preprocessing. However, by doing
some nontrivial preprocessing, one can achieve a sub-linear
query time. In IRd, this is facilitated by answering point
location queries using a Voronoi diagram [5]. However, this
approach is only suitable for low dimensions, as the com-

plexity of the Voronoi diagram is Θ
(
n�d/2�

)
in the worst

case. Specifically, Clarkson [6] showed a data-structure with

query time O(log n) time, and O
(
n�d/2�+δ

)
space, where

δ > 0 is a prespecified constant (the O(·) notation here hides
constants that are exponential in the dimension). One can
trade-off the space used and the query time [7]. Meiser [8]
provided a data-structure with query time O

(
d5 log n

)
(which

has polynomial dependency on the dimension), where the
space used is O

(
nd+δ

)
. These solutions are impractical even

for data-sets of moderate size if the dimension is larger than
two.

Approximate nearest neighbor.

In typical applications however, it is usually sufficient to
return an approximate nearest neighbor (ANN). Given an
ε > 0, a (1 + ε)-ANN, to a query point q, is a point y ∈ P,
such that

‖q− y‖ ≤ (1 + ε) ‖q− nq‖ ,
where nq ∈ P is the nearest neighbor to q in P. Considerable
amount of work was done on this problem, see [9] and
references therein.

Indyk and Motwani showed that ANN queries can be
reduced to a small number of near neighbor queries [10], [11].
For high dimensional Euclidean spaces, they used locality
sensitive hashing to solve the near neighbor problem and
provided a data-structure that answers ANN queries in time

(roughly) Õ
(
n1/(1+ε)

)
with preprocessing time and space

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.82

717

Õ
(
n1+1/(1+ε)

)
; here the Õ(·) hides terms polynomial in log n

and 1/ε. This was improved to Õ
(
n1/(1+ε)2

)
query time,

and preprocessing time and space Õ
(
n1+1/(1+ε)2

)
[12]. These

bounds are near optimal [13].

In low dimensions (i.e., IRd for small d), one can use
linear space (independent of ε) and get ANN query time
O(log n + 1/εd−1) [14], [15]. The trade-off for this logarith-
mic query time is of course an exponential dependence on
d. Interestingly, for this data-structure, the approximation
parameter ε is not prespecified during the construction; one
needs to provide it only during the query. An alternative
approach is to use Approximate Voronoi Diagrams (AVD),
introduced by Har-Peled [16], which is a partition of space
into regions, of near-linear total complexity, typically with
a representative point for each region that is an ANN for
any point in the region. In particular, Har-Peled showed
that there is such a decomposition of size O

(
(n/εd) log2 n

)
,

such that ANN queries can be answered in O(log n) time.
Arya and Malamatos [17] showed how to build AVD’s of
linear complexity (i.e., O(n/εd)). Their construction uses
Well-Separated Pair Decomposition [18]. Further trade-offs
between query time and space for AVD’s were studied by Arya
et al. [19].

Generalized distance functions: motivation.

The algorithms for approximate nearest neighbor, extend
to various metrics in IRd, for example the well known �p
metrics. In particular, previous constructions of AVD’s extend
to �p metrics [16], [17] as well. However, these constructions
fail even for a relatively simple and natural extension; specif-
ically, multiplicative weighted Voronoi diagrams. Here, every
site p, in the given point set P, has a weight ωp, and the
“distance” of a query point q to p is fp(q) = ωp ‖q− p‖.
The function fp is the natural distance function induced by
p. As with ordinary Voronoi diagrams, one can define the
weighted Voronoi diagram as a partition of space into disjoint
regions, one for each site p, such that in the region for p
the function fp is the one realizing the minimum among all
the functions induced by the points of P. It is known that,
even in the plane, multiplicative Voronoi diagrams can have
quadratic complexity, and the minimizing distance function
usually does not obey the triangle inequality. Intuitively,
such multiplicative Voronoi diagrams can be used to model
facilities where the price of delivery to a client depends on the
facility and the distance. Of course, this is only one possible
distance function, and there are many other such functions
that are of interest (e.g., multiplicative, additive, etc.).

When fast proximity and small space is not possible.

Consider a set of segments in the plane, and we are
interested in the nearest segment to a query point. Given n
such segments and n such query points, this is an extension
of Hopcroft’s problem, which requires only to decide if there
is any of the given points on any of the segments. There
are lower bounds (in reasonable models) that show that

Hopcroft’s problem cannot be solved faster than Ω
(
n4/3

)
time [20]. This implies that no multiplicative-error approx-
imation for proximity search in this case is possible, if one

insists on near linear preprocessing, and logarithmic query
time.

When is fast ANN possible.
So, consider a set of geometric objects where each one of

them induces a natural distance function, measuring how far
a point in space is from this object. Given such a collection of
functions, the nearest neighbor for a query point is simply the
function that defines the lower envelope “above” the query
point (i.e., the object closest to the query point under its
distance function). Clearly, this approach allows a generaliza-
tion of the proximity search problem. In particular, the above
question becomes, for what classes of functions, can the lower
envelope be approximated up to (1 + ε)-multiplicative error,
in logarithmic time? Here the preprocessing space used by
the data structure should be near linear.

I-A. Our results

We characterize the conditions that are sufficient to effi-
ciently approximate the minimization diagram of functions.
Using this framework, one can quickly evaluate the lower
envelope approximately for large classes of functions that
arise naturally from proximity problems. Our data-structure
can be constructed in near linear time, uses near linear
space, and answers proximity queries in logarithmic time
(for constant dimension d). Our framework is quite general
and should be applicable to many distance functions, and in
particular we present the following specific cases where the
new data-structure can be used:

(A) Multiplicative Voronoi diagrams. Given a set of
points P, where the ith point pi has associated weight
wi > 0, for i = 1, . . . , n, consider the functions fi(q) =
wi ‖q− pi‖. The minimization diagram for this set of
functions, corresponds to the multiplicative weighted
Voronoi diagram of the points. The approach of Arya
and Malamatos [17] to construct AVD’s using WSPD’s
fails for this problem, as that construction relies on the
triangle inequality that the regular Euclidean distance
possesses, which does not hold in this case.
We provide a near linear space AVD construction for this
case. We are unaware of any previous results on AVD for
multiplicatively weighted Voronoi diagrams.

(B) Minkowski norms of fat convex bodies. Given a
bounded symmetric convex body C centered at the ori-
gin, it defines a natural metric; that is, for points u and
v their distance, as induced by C, denoted by ‖u− v‖C ,
is the minimum x such that xC+u contains v. So, given
a set of n data points P = {p1, . . . , pn} and n centrally
symmetric and bounded convex bodies C1, . . . , Cn, we
define fi(q) = ‖pi − q‖Ci

, for i = 1, . . . , n. Since each
point induces a distance by a different convex body, this
collection no longer defines a metric, and this makes
the problem significantly more challenging. In particular,
existing techniques for AVD and ANN cannot be readily
applied. Intuitively, the fatness of the associated convex
bodies turns out to be sufficient to approximate the
associated distance function, see Section IV-B.

(C) Nearest furthest-neighbor. Consider a situation
where the given input is uncertain; specifically, for the

718

ith point we are given a set of points Pi ⊆ IRd where
it might lie (the reader might consider the case where
the ith point randomly chooses its location out of the
points of Pi). There is a growing interest in how to
handle such inputs, as real world measurements are
fraught with uncertainty, see [21], [22], [23], [24] and
references therein. In particular, in the worst case, the
distance of the query point q to the ith point, is the
distance from q to the furthest-neighbor of q in Pi; that
is, Fi(q) = maxp∈Pi ‖q− p‖. Thus, in the worst case,
the nearest point to the query is F(q) = mini Fi(q).
Using our framework we can approximate this function
efficiently, using space Õ(n), and providing logarithmic
query time. Note that surprisingly, the space require-
ment is independent of the original input size, and only
depends on the number of uncertain points.

Paper organization.

In Section II we define our framework and prove some basic
properties. Since we are trying to make our framework as
inclusive as possible, its description is somewhat abstract. In
Section III, we describe the construction of the AVD and its
associated data-structure. We describe in Section IV some
specific cases where the new AVD construction can be used.
We conclude in Section V.

II. Preliminaries

For the sake of simplicity of exposition, throughout the
paper we assume that all the “action” takes place in the unit
cube [0, 1]d. Among other things, this implies that all the
queries are in this region. This can always be guaranteed by
an appropriate scaling and translation of space. The scaling
and translation, along with the conditions on functions in our
framework, implies that outside the unit cube the approxima-
tion to the lower envelope can be obtained in constant time.

II-A. Notations and basic definitions

Given q ∈ IRd and P ⊆ IRd a non-empty closed set, the
distance of q to P is d(q,P) = min

x∈P
‖q− x‖. For a number

� > 0, the grid of side-length �, denoted by G�, is the natural
tiling of IRd, with cubes of side-length � (i.e., with a vertex at
the origin). A cube � is canonical if it belongs to G�, � is a
power of 2, and � ⊆ [0, 1]d. Informally, a canonical cube (or
cell) is a region that might correspond to a cell in a quadtree
having the unit cube as the root region.

Definition II.1. To approximate a set X ⊆ [0, 1]d, up to
distance r, consider the set G≈r(X) of all the canonical grid
cells of G� that have a non-empty intersection with X, where

� = 2�log2(r/
√

d)	. Let ∪G≈r(X) =
⋃

�∈G≈r(X) �, denote the
union of cubes of G≈r(X).

Observe that X ⊆ ∪G≈r(X) ⊆ X ⊕ B(0, r), where ⊕
denotes the Minkowski sum, and B(0, r) is the ball of radius
r centered at the origin.

Definition II.2. For � ≥ 0 and a function f : IRd → IR, the

� sublevel set of f is the set f�� =
{
p ∈ IRd

∣∣∣ f(p) ≤ �
}
.

For a set of functions F , let F�� =
⋃

f∈F f��.

Definition II.3. Given a function f and q ∈ IRd their
distance is �(q, f) = f(q). Given two functions f and g,
their distance �(f, g) is the minimum l ≥ 0 such that
f�l ∩ g�l �= ∅. Similarly, for two sets of function, F and G,
their distance is

�(F ,G) = min
f∈F,g∈G

�(f, g) .

The distance function behaves to some extent like one would
expect an usual metric to behave: (i) �(f, g) always ex-
ists, and (ii) (symmetry) �(f, g) = �(g, f), Also, we have
f��(f,g) �= ∅. We extend the above definition to sets of
functions. Note that the triangle inequality does not hold for
�(·, ·).
Observation II.4. Suppose that f and g are two func-
tions such that �(f, g) > 0 and q ∈ IRd. Then,
max(�(q, f) ,�(q, g)) ≥ �(f, g).

Definition II.5. Let B1, B2, . . . , Bm be n connected,
nonempty sets in IRd. This collection of sets is connected if
∪iBi is connected.

II-A1. Sketches
A key idea underlying our approach is that is that any set

of functions of interest should look like a single (or a small
number of functions) from “far” enough. Indeed, given a set
of points P ⊆ IRd, they look like a single point (as far as
distance), if the distance from CH(P) is at least 2diam(P) /ε.

Definition II.6 (cl(F)). Given a set of functions G, if G
contains a single function then the connectivity level cl(G)
is 0; otherwise, it is the minimum � ≥ 0, such that the collec-
tion of sets f�� for f ∈ G is connected, see Definition II.5.

Remark II.7. It follows from Definition II.6 that at level
� = cl(G), each of the sets f�� for f ∈ G are nonempty
and connected and further their union G�� is also connected.
This can be relaxed to require that the intersection graph
of the sets f�� for f ∈ G is connected (this also implies
they are nonempty). Notice that, if at level �, the sublevel
sets are connected, then the relaxed definition is equivalent
to Definition II.6. However, the relaxed definition introduces
more technical baggage, and for all the interesting applications
we have, the sublevel sets f�y are connected at all levels y
at which they are nonempty. Therefore, in the interest of
brevity, and to keep the presentation simple, we mandate
that the sublevel sets be connected at �. In fact, it would not
harm to assume that the sublevel sets are connected whenever
nonempty.

Definition II.8. Given a set of functions G and δ ≥ 0, y0 ≥
0, a (δ, y0)-sketch for G is a (hopefully small) subset H ⊆ G,
such that G�y ⊆ H�(1+δ)y, for all y ≥ y0.

It is easy to see that for any G, δ ≥ 0, y0 ≥ 0, if H ⊆ G
is a (δ, y0)-sketch, then for any δ′ ≥ δ, y′0 ≥ y0,H′ ⊇ H it
is true that H′ is a (δ′, y′0)-sketch for G. Trivially, for any
δ ≥ 0, y0 ≥ 0, it is true that H = G is a (δ, y0)-sketch.

II-B. Conditions on the functions

We require that the set of functions under consideration
satisfy the following conditions.

719

(P1) Compactness. For any y ≥ 0 and i = 1, . . . , n, the
set (fi)�y is compact.

(P2) Bounded growth. For any f ∈ F , there is a func-
tion λf : IR+ → IR+, called the growth function ,
such that for any y ≥ 0 and ε > 0, if f�y �= ∅,
then λf (y) ≥ diam(f�y) /ζ, where ζ is an absolute
constant, the growth constant , depending only on
the family of functions and not on n and such that if
q ∈ IRd with d(q, f�y) ≤ ελf (y), then f(q) ≤ (1+ε)y.
This is equivalent to f�y ⊕ B(0, ελf (y)) ⊆ f�(1+ε)y,
where B(u, r) is the ball of radius r centered at u.

(P3) Existence of a sketch. Given δ > 0 and a subset

G ⊆ F , there is a H ⊆ G with |H| = O
(
1/δcsk

)
and y0 = O

(
cl(G)(|G|/δ)csk) such that, H is a (δ, y0)-

sketch, where csk is some positive integer constant
that depends on the given family of functions.

We also require some straightforward properties from the
computation model:

(C1) ∀q ∈ IRd and 1 ≤ i ≤ n, the value fi(q) = �(q, fi) is
computable in O(1) time.

(C2) For any y ≥ 0, r > 0 and i, the set of grid cells
approximating the sublevel set (fi)�r of fi, that

is (fi)�y,≈r = G≈r

(
(fi)�y

)
(see Definition II.1), is

computable in linear time in its size.
(C3) For any fi, fj ∈ F , 1 ≤ i, j ≤ n the distance �(fi, fj)

is computable in O(1) time.

We also assume that the growth function λ(fi)(y) from
Condition (P2) be in fact computable easily, i.e., inO(1) time.

Remark II.9. We will use Condition (C2) for a given y and
i only for r at least Ω

(
ελ(fi)(y)

)
, i.e., we will use a grid on

the sublevel set at a resolution typically ε times its growth
function value at that level, which by Condition (C2) is also

Ω
(
εdiam

(
(fi)�y

))
. As such the number of grid cells in the

grid used is O(1/εd).

Remark II.10. Condition (C2) when used with a resolution
r = ελ(fi)(y) requires that we precisely output the set of cells
(fi)�y,≈r. However, it is sufficient to output a set of cells
at that resolution which contains (fi)�y,≈r, is still contained

in f�(1+ε)y and is of size O(1/εd). We state the stricter
condition, because it is easier to digest. However it is easier
and still correct to work with the relaxed condition.

II-B1. Properties

The following are basic properties that the functions under
consideration have. Their proofs are in the full version [1].

Lemma II.11. Let F be a set of functions that satisfy the
compactness (P1) and bounded growth (P2) conditions. Then,
for any f ∈ F , either f�0 = ∅ or f�0 consists of a single point.

By the above lemma, we may assume that a symbolic
perturbation guarantees that �(f, g) > 0 for f �= g. With
this convention we have the following,

Observation II.12. If cl(G) = 0 for any non-empty subset
G then |G| = 1.

We also assume that the quantities �(f, g) are distinct for
all distinct pairs of functions.

Lemma II.13. Let f ∈ G and y ≥ 0. Suppose u, v ∈ f�y.
Then, uv ⊆ G�(1+ζ/2)y, where uv denotes the segment joining
u to v.

Lemma II.14. Let A1, . . . , Am ⊆ IRd be compact connected
sets. Let uv be any segment. Suppose that uv ∩ Ai �= ∅ for all
1 ≤ i ≤ k and uv ⊆ ⋃k

i=1 Ai. Then, the sets Ai, 1 ≤ i ≤ k,
are connected.

Lemma II.15. Suppose we are given H ⊆ G ⊆ F , δ ≥ 0
and y ≥ 0, and H is a (δ, y)-sketch for G. Then, cl(H) ≤
(1 + δ)(1 + ζ/2)max(y, cl(G)).
The following testifies that a sketch approximates the

distance to a set of functions.

Lemma II.16. Let H ⊆ G be sets of functions, where H is
a (δ, y0)-sketch for G for some δ ≥ 0 and y0 ≥ 0. Let q be a
point such that �(q,G) ≥ y0. Then we have that �(q,H) ≤
(1 + δ)�(q,G).
II-B2. Computing the connectivity level
We implicitly assume that the above relevant quantities

can be computed efficiently. For example given some δ > 0,
and y0 as per the bound in condition (P3), a (δ, y0)-sketch
can be computed in time O(|G| /δcsk) time. We also assume
that cl(G) can be computed efficiently without resorting to
the “brute force” method. The brute force method computes
the individual distance of the functions and then computes a
MST on the graph defined by vertices as the functions and
edge lengths as their distance. Then cl(G) is the longest edge
of this MST.

III. Constructing the AVD

The input is a set F of n functions satisfying the conditions
of Section II-B, and a number 0 < ε ≤ 1. We preprocess F ,
such that given a query point q one can compute a f ∈ F ,
where �(q,F) ≤ �(q, f) ≤ (1 + ε)�(q,F).

III-A. Building blocks

III-A1. Near neighbor
Given a set of functions G, a real number α ≥ 0,

and a parameter ε > 0, a near-neighbor data-structure
Dnear = Dnr(G, ε, α) can decide (approximately) if a point
has distance larger or smaller than α. Formally, for a query
point q a near-neighbor query answers yes if �(q,G) ≤ α,
and no if �(q,G) > (1 + ε)α. It can return either answer if

�(q,G) ∈
(
α, (1 + ε)α

]
. If it returns yes, then it also returns

a function f ∈ G such that �(q, f) ≤ (1+ε)α. The query time
of this data-structure is denoted by T≤(m), where m = |G|.
The proof of the following appears in the full version [1].

Lemma III.1. Given a set of m functions G ⊆ F , α > 0
and ε > 0. One can construct a data structure (which is a
compressed quadtree), of size O

(
m/εd

)
, in O

(
mε−d log(m/ε)

)
time, such that given any query point q ∈ IRd one can answer
a (1+ ε)-approximate near-neighbor query for the distance α,
in time T≤(m) = O(log(m/ε)).

720

III-A2. Interval data structure

Given a set of functions G, real numbers 0 < α ≤ β, and
ε > 0, the interval data structure returns for a query point
q, one of the following:

(A) If �(q,G) ∈
[
α, β

]
, then it returns a function

g ∈ G such that �(q, g) ≤ (1 + ε)�(q,G). It might
also return such a function for values outside this
interval.

(B) “�(q,G) < α”. In this case it returns a function g ∈
G such that �(q, g) < α.

(C) “�(q,G) > β”.

The time to perform an interval query is denoted by
Tr(m,α, β). The proof of the following appears in the full
version [1].

Lemma III.2. Given a set of m functions G, an
interval [α, β] and an approximation parameter
τ > 0, one can construct an interval data
structure of size O

(
mτ−d−1 log(4β/α)

)
, in time

O
(
mτ−d−1 log(4β/α) log(m/τ)

)
, such that given a query

point q one can answer (1 + τ)-approximate nearest neighbor
query for the distances in the interval [α, β], in time

Tr(m,α, β, f) = O

(
log

m log(4β/α)

τ

)
.

Lemma III.2 readily implies that if somehow a priori we
know that the nearest neighbor distance lies in an interval of
values of polynomial spread, then we would get the desired
data-structure by just using Lemma III.2. To overcome this
unbounded spread problem, we would first argue that, under
our assumptions, there are only linear number of intervals
where interesting things happen to the distance function.

III-A3. Connected components of the sublevel sets

Given a finite set X and a partition of it into disjoint
sets X = X1 ∪ · · · ∪ Xk, let this partition be denoted by
〈X1, . . . , Xk〉X . For 1 ≤ i ≤ k, each Xi is a part of the
partition.

Definition III.3. For two partitions PA = 〈A1, . . . , Ak〉X
and PB = 〈B1, . . . , Bl〉X of the same set X, PB is a refine-
ment of PA, denoted by PB � PA, if for any Bi there exists
a set Aji , such that Bi ⊆ Aji . In the other direction, PA is a
coarsening of PB.

Observation III.4. Given partitions Π,Ξ of a finite set X,
if Π � Ξ then |Ξ| ≤ |Π|.
Definition III.5. Given partitions Π = 〈X1, . . . , Xk〉X �
Ξ = 〈X ′

1, . . . , X
′
k′〉X , let φ(Π,Ξ, i) be the function that return

the set of indices of sets in Π whose union is X ′
i ∈ Ξ.

Observation III.6. Given partitions Π � Ξ of a set X with
n elements. The partition function φ(Π,Ξ, ·) can be computed
in O(n) time. For any 1 ≤ i ≤ |Ξ|, the set φ(Π,Ξ, i) can be
returned in O

(|φ(Π,Ξ, i)|) time, and its size can be returned
in O(1) time.

Definition III.7. For G ⊆ F and � > 0, consider the
intersection graph of the sets f��, for all f ∈ G. Each
connected component is a cluster of G at level �. And the
partition of G by these clusters, denoted by C(G, �), is the �-

clustering of G.
The values � at which the �-clustering of F changes are

intuitively the critical values when the sublevel set of F
changes and which influence the AVD. These values are
critical in trying to decompose the nearest neighbor search
on F into a search on smaller sets.

Observation III.8. If 0 ≤ a ≤ b then C(G, a) � C(G, b).
The following lemma testifies that we can approximate the

�-clustering quickly, for any number �. The proof is in the full
version [1].

Lemma III.9. Given G ⊆ F , � ≥ 0, and ε > 0, one can
compute, in O

(
m
εd

log(m/ε)
)
time, a partition Ψ = Ψε(G, �),

such that C(G, �) � Ψ � C(G, (1 + ε)�), where m = |G|.
Remark III.10. The partition Ψ computed by Lemma III.9
is monotone, that is, for � ≤ �′ and ε ≤ ε′, we have Ψε(G, �) �
Ψε′(G, �′). Moreover, for each cluster C ∈ Ψε(G, �), we have
that cl(C) ≤ (1 + ε)�.

III-A4. Computing a splitting distance
Definition III.11. Given a partitionΨ = Ψε(G, �) of G, with
m = |Ψ| clusters, a distance x is a splitting distance if
m/4 ≤ |Ψ1(G, x/4)| and |Ψ1(G, x)| ≤ (7/8)m.

Lemma III.12. Given a partition Ψ = Ψε(G, �) of G, one
can compute a splitting distance for it, in expected O(n(log n+
t)) time, where n = |G| and t is the maximum cluster size in
Ψ.

Proof: For each cluster C ∈ Ψ, let rC be its dis-
tance from all the functions in G \ C; that is rC =
minf∈C ming∈G\C �(f, g). Note that rC ≥ �. Now, let r1 ≤
r2 ≤ · · · ≤ rm be these distances for the m clusters of Ψ. We
randomly pick a cluster C ∈ Ψ and compute �′ = rC for it
by brute force – computing the distance of each function of
C with the functions of G \ C.
Let i be the rank of �′ = rC among r1, . . . , rm. With

probability 1/2, we have that m/4 ≤ i ≤ (3/4)m. If so we
have that:

(A) All the clusters that correspond to ri, . . . , rm are
singletons in the partition Ψ1(G, �/4), as the dis-
tance of each one of these clusters is larger than �′.
We conclude that |Ψ1(G, �′/4)| ≥ m/4.

(B) All the clusters of Ψ that correspond to r1, . . . , ri are
contained inside a larger cluster of Ψ1(G, �′) (i.e.,
they were merged with some other cluster). But
then, the number of clusters in Ψ1(G, �′) is at most
(7/8)m. Indeed, put an edge between such a cluster,
to the cluster realizing the smallest distance with it.
This graph has at least e ≥ m/4 edges, and it is easy
to see that each component of size at least 2 in the
underlying undirected graph has the same number
of edges as vertices. As such the number of singleton
components is at most m − e while the number of
components of size at least 2 is at most e/2. It
follows that the total number of components is at
most m− e/2 ≤ 7m/8. Since each such component
corresponds to a cluster in Ψ1(G, �′) the claim is

721

Search(G, Υ, q)
// G: set of functions

// Υ = Ψ1(G, �) for some value �
// Invariant: �(q,G) > �N
if |Υ| = 1 then

return �(q,G) = minf∈G �(q, f) (*)
x← compute a splitting distance of Υ, see Lemma III.12

// Perform an interval approximate nearest

// neighbor query on the interval [x/8N, x8N]
// for the set G, see Lemma III.2.

if �(q,G) ∈
[
x/8N, x8N2

]
or (1 + ε

4
)-ANN found then

return nearest function found by the
(1 + ε/4)-approximate interval query.

if �(q,G) < x/8N then

f ← 2-approximate near neighbor query on G
and distance x/8, see Lemma III.1.

Find cluster C ∈ Ψ1(G, x/4), such that f ∈ C,
see Lemma III.9.

return Search(C, Υ[C], q)
if �(q,G) > x8N2 then

return Search(G, Ψ1(G, xN), q) (**)

Figure III.1: Search algorithm: We are given a query point
q, and an approximation parameter ε > 0. The quantity N
is a parameter to be specified shortly. Initially, we call this
procedure on the set of functions F with Υ being the partition
of F into singletons (i.e., � = 0). Here, Υ[C] denotes the
partition of C induced by the partition Υ.

proved.
Now, compute Ψ1(G, �′) and Ψ1(G, �′/4) using

Lemma III.9. With probability at least half they have
the desired sizes, and we are done. Otherwise, we repeat the
process. In each iteration we spend O(n(log n+ t)) time, and
the probability for success is half. As such, in expectation
the number of rounds needed is constant.

III-B. The search procedure

III-B1. An initial “naive” implementation
The search procedure is presented in Figure III.1. The

following lemma, whose proof appears in the full version [1],
proves its correctness.

Lemma III.13. Search(G,Υ, q) returns a function f ∈ G,
such that �(q, f) ≤ (1+ ε)�(q,G). The depth of the recursion
of Search is h = O(log n), where n = |G|.
III-B2. But where is the beef? Modifying Search to provide

fast query time
The reader might wonder how we are going to get an

efficient search algorithm out of Search, as the case that
Υ is a single cluster, still requires us to perform a scan on
all the functions in this cluster and compute their distance
from the query point q. Note however, we have the invariant
that the distance of interest is polynomially larger than the
connectivity level of each of the clusters of Υ. In particular,
precomputing for all the sets of functions such that (*) might

be called on, their ε/8-sketches, and answering the query by
computing the distance on the sketches, reduces the query
time to O(1/εcsk + log2 n) (assuming that we precomputed
all the data-structures used by the query process). Indeed, an
interval query takes O(log n) time, and there O(log n) such
queries. The final query on the sketch takes time proportional
to the sketch size which is O(1/εcsk).
As such, the major challenge is not making the query

process fast, but rather building the search structure quickly,
and arguing that it requires little space.
III-B3. Sketching a sketch
To improve the efficiency of the preprocessing for Search,

we are going to use sketches more aggressively. Specifically,
for each of the clusters of Υ, we can compute their δ-sketches,
for δ = ε/(8h) = O(ε/ log n), see Lemma III.13. From this
point on, when we manipulate this cluster, we do it on its
sketch. To make this work set N = n4csk , see (P3)p4 and
Lemma II.15.
The only place in the algorithm where we need to compute

the sketches, is in (**) in Figure III.1. Specifically, we com-
pute Ψ1(G, xN), and for each new cluster C ∈ Ψ1(G, xN),
we combine all the sketches of the clusters D ∈ Υ such
that D ⊆ C into a single set of functions. We then compute
a δ-sketch for this set, and this sketch is this cluster from
this point on. In particular, the recursive calls to Search
would send the sketches of the clusters, and not the clusters
themselves. Conceptually, the recursive call would also pass
the minimum distance where the sketches are active – it is
easy to verify that we use these sketches only at distances
that are far away and are thus allowable (i.e., the sketches
represent the functions they correspond to, well in these
distances).
Importantly, whenever we compute such a new set, we do

so for a distance that is bigger by a polynomial factor (i.e.,
N) than the values used to create the sketches of the clusters
being merged. Indeed, observe that x > � and as such xN is
N times bigger than � (an upper bound on the value used to
compute the input sketches).
As such, all these sketches are valid, and can be used at this

distance (or any larger distance). Of course, the quality of the
sketch deteriorates. In particular, since the depth of recursion
is h, the worst quality of any of the sketches created in this
process is at most (1 + δ)h ≤ 1 + ε/4.
Significantly, before using such a sketch, we would shrink it

by computing a ε/8-sketch of it. This would reduce the sketch
size to O(1/εcsk). Note, however, that this still does not help
us as far as recursion - we must pass the larger δ-sketches in
the recursive call of (**).
This completes the description of the search procedure. It

is still unclear how to precompute all the data-structures
required during the search. To do that, we need to better
understand what the search process does.

III-C. The connectivity tree, and the preprocessing

Given a set of functions F , consider the tree tracking the
connected components of the MST of the functions. Formally,
initially we start with n singletons (which are the leafs of the
tree) that are labeled with the value zero, and we store them

722

in a set F of active nodes. Now, we compute for each pair
of sets of functions X,Y ∈ F the distance �(X,Y), and let
X ′, Y ′ be the pair realizing the minimum of this quantity.
Merge the two sets into a new set Z = X ′ ∪ Y ′, create a
new node for this set having the node for X ′ and Y ′ as
children, and set its label to be �(X ′, Y ′). Finally, remove
X ′ and Y ′ from F and insert Z into it. Repeat till there is a
single element in F. Clearly, the result is a tree that tracks
the connected components of the MST.
To make the presentation consistent, let �≈(X,Y) be the

minimum x such that Ψ1(X ∪ Y, x) is connected. Computing
�≈(X,Y) can be done by computing �≈(f, g) for each pair
of functions separately. This in turn, can be done by first
computing α = �(f, g) and observing that r is between α/4
and α. In particular, r must be a power of two, so there are
only 3 candidate values to consider, and which is the right
one can be decided using Lemma III.9.

So, in the above, we use �≈(·, ·) instead of �(·, ·), and let
H be the resulting tree. For a value �, let LH(�) be the
set of nodes such that their label is smaller than �, but
their parent label is larger than �. It is easy to verify that
LH(�) corresponds to Ψ = Ψ1(F , �); indeed, every cluster
C ∈ Ψ corresponds to a node u ∈ LH(�), such that the set of
functions stored in the leaves of the subtree of u, denoted by
F(u) is C. The following can be easily proved by induction.

Lemma III.14. Consider a recursive call Search(G,Υ, q)
made during the search algorithm execution. Then G = F(u),

and Υ =
{
F(v)

∣∣∣ v ∈ LH(�) and v is in the subtree of u
}
.

That is, a recursive call of Search corresponds to a subtree
of H.

Of course, not all possible subtrees are candidates to be
such a recursive call. In particular, Search can now be
interpreted as working on a subtree T of H, as follows:

(A) If T is a single node u, then find the closet function
to F(u). Using the sketch this can be done quickly.

(B) Otherwise, compute a distance x, such that the
number of nodes in the level LT (x) is roughly half
the number of leaves of T .

(C) Using interval data-structure determine if the dis-
tance �(q,F(T)) is in the range [x/8N, x8N2]. If so,
we found the desired ANN.

(D) If �(q,F(T)) > x8N2 then continue recursively on
portion of T above LT (x).

(E) If �(q,F(T)) < x/8N then we know the node u ∈
LT (x) such that the ANN belongs to F(u). Continue
the search recursively on the subtree of T rooted at
u.

That is, Search breaks T into subtrees, and continues the
search recursively on one of the subtrees. Significantly, every
such subtree has constant fraction of the size of T , and every
edge of T belongs to a single such subtree.

The preprocessing now works by precomputing all the
data-structures required by Search. Of course, the most
natural approach would be to precompute H, and build the
search tree by simulating the above recursion on H. Fortu-
nately, this is not necessary, we simulate running Search,

and investigate all the different recursive calls. We thus only
use the above H in analyzing the preprocessing running time.
See Figure III.1p6.

In particular, given a subtree T with m edges, the cor-
responding partition Υ would have at most m sets. Each
such set would have a δ-sketch, and we compute a ε/8-
sketch for each one of these sketches. Namely, the in-
put size here is M = O(m/δcsk). Computing the ε/8-
sketches for each one of these sketches reduces the to-
tal number of functions to M ′ = O(m/εcsk), and takes
U1 = O(M/εcsk) = O

(
m(εδ)−csk

)
time, see Section II-B2.

Computing the splitting distance, using Lemma III.12,
takes U2 = O(M ′ logM ′ + 1/εcsk) = O

(
mε−csk logm

)
time. Computing the interval data-structure Lemma III.2
takes U3 = O

(
M ′ε−d−1 log n logM ′) time, and requires

S1 = O
(
M ′ε−d−1 log n

)
space. This breaks T into edge

disjoint subtrees T1, . . . , Tt, and we compute the search data-
structure for each one of them separately (each one of these
subtrees is smaller by a constant fraction of the original
tree). Finally, we need to compute the δ-sketches for the
clusters sent to the appropriate recursive calls, and this takes
U4 = O(M/δcsk), by Section II-B2.
Every edge of the tree T gets charged for the amount of

work spent in building the top level data-structure. That is,
the top level amortized work each edge of T has to pay is

O
(
(U1 + U2 + U3 + U4) /m

)
= O

(
(εδ)−csk + ε−csk logm+ ε−d−1−csk log2 n+ δ−2csk

)
= O

(
ε−2csk log2csk n

)
,

assuming csk ≥ 2. Since an edge of T gets charged at most
O(log n) times by this recursive construction, we conclude
that the total preprocessing time is O

(
nε−2csk log2csk+1 n

)
.

As for the space, we have by the same argumentation, that
each edge requires O(log n · (S1/m)) =

(
ε−d−1−csk log2 n

)
.

As such, the overall space used by the data-structure is(
nε−d−1−csk log2 n

)
. As for the query time, it boils down to

O(log n) interval queries, and then scanning one O(ε)-sketch.
As such, this takes O

(
log2 n+ 1/εcsk

)
time.

III-D. The result

Our main result is the following,

Theorem III.15. Let F be a set of n functions in IRd that
complies with our assumptions, see Section II-B, and has
sketch constant csk ≥ d. Then, one can build a data-structure
to answer ANN for this set of functions, with the following
properties:

(A) The query time is O(log n+ 1/εcsk).
(B) The preprocessing time is O

(
nε−2csk log2csk+1 n

)
.

(C) The space used is O
(
nε−d−1−csk log2 n

)
.

Proof: The query time for the algorithm described above
is O

(
log2 n+ 1/εcsk

)
. To get the improved query time, we

observe that Search performs a sequence of point-location
queries in a sequence of interval near neighbor data-structures
(i.e., compressed quadtrees), and then it scans a set of
functions of size O(1/εcsk) to find the ANN. We take all these
quadtrees spread through our data-structure, and assign

723

them priority, where a quadtree Q1 has higher priority than
a compressed quadtree Q2 if Q1 is queried after Q2 for any
search query. This defines an acyclic ordering on these com-
pressed quadtrees. Overlaying all these compressed quadtrees
together, one needs to return for the query point, the leaf of
the highest priority quadtree that contains the query point.
This can be easily done by scanning the compressed quadtree,
and for every leaf computing the highest priority leaf that
contains it (observe, that here we are overlaying only the
nodes in the compressed quadtrees that are marked by some
sublevel set – nodes that are empty are ignored).
A tedious but straightforward induction implies that doing

a point-location query in the resulting quadtree is equivalent
to running the search procedure as described above. Once we
found the leaf that contains the query point, we scan the
sketch associated with this cell, and return the computed
nearest-neighbor.
An important corollary is the following,

Corollary III.16. Let F be a set of n functions in IRd that
complies with our assumptions, see Section II-B, and has
sketch constant csk ≥ d. Then, one can build a data-structure
to answer ANN for this set of functions, with the following
properties:

(A) The improved query time is O(log n).

(B) The preprocessing time is O
(
n/εO(1) log2csk+1 n

)
.

(C) The space used is S = O
(
n/εO(1) log2 n

)
.

In particular, we can compute an AVD of complexity O(S)
for the given functions. That is, one can compute a space
decomposition, such that every region has a single function
associated with it, and for any point in this region, this
function is a (1 + ε)-ANN among the functions of F . Here, a
region is either a cube, or the set difference of two cubes.

Proof: We build the data-structure of Theorem III.15,
except that instead of linearly scanning the sketch during
the query time, we preprocess each such sketch for an
exact point-location query; that is, we compute the lower
envelope of the sketch and preprocess it for vertical ray

shooting [25]. This would require O
(
1/εO(1)

)
space for each

such sketch, and the linear scanning that takes O(1/εO(1))
time, now is replaced by a point-location query that takes

O
(
log 1/εO(1)

)
= O(log 1/ε) = O(log n), as desired.

As for the second part, observe that every leaf of the
compressed quadtree is the set difference of two canonical
grid cells. The lower envelope of the functions associated with
such a leaf, induce a partition of this leaf into regions with

total complexity O
(
1/εO(1)

)
.

IV. Applications

We present some concrete classes of functions that satisfy
our framework, and for which we construct AVD’s efficiently.

IV-A. Multiplicative distance functions with additive offsets

As a warm-up we present the simpler case of additively
offset multiplicative distance functions. The results of this
section are almost subsumed by more general results in
Section IV-B. Here the sublevel sets look like expanding

O

∂O

ρ

p ∈ ∂O

R ≤ αr

r

CH(ball(ρ, r) ∪ p)

Figure IV.1: Being α-rounded fat.

balls but there is a time lag before the balls even come
into existence i.e. sublevel sets are empty up-to a certain
level, this corresponds to the additive offsets. In Section IV-B
the sublevel sets are more general fat bodies but there is
no additive offset. The results in the present section essen-
tially give an AVD construction of approximate weighted
Voronoi diagrams. More formally, we are given a set of points
P = {p1, . . . , pn}. For i = 1, . . . , n, the point pi has weight
wi > 0, and a constant αi ≥ 0 associated with it. We define
fi(q) = wi ‖q− pi‖ + αi. Let F = {f1, . . . , fn}. We have,

(fi)�y = ∅ for y < αi and (fi)�y = B
(
pi,

y−αi
wi

)
for y ≥ αi.

The proof that F complies with the framework of Sec-
tion II-B is present in the full version [1].

We thus get the following result.

Theorem IV.1. Consider a set P of n points in IRd, where
the ith point pi has additive weight αi ≥ 0 and multi-
plicative weight wi > 0. The ith point induces the addi-
tive/multiplicative distance function fi(q) = wi ‖q− pi‖+αi.
Then one can compute a (1 + ε)-AVD for these distance
functions, with near linear space complexity, and logarithmic
query time. See Theorem III.15 for the exact bounds.

IV-B. Scaling distance – generalized polytope distances

Let O ⊆ IRd be a compact set homeomorphic to B(0, 1)
and containing a “center” point ρ in its interior. Then O is
star shaped if for any point v ∈ O the entire segment ρv
is also in O. Naturally, any convex body O with any center
ρ ∈ O is star shaped. The t-scaling of O with a center ρ is

the set tO =
{
t (v − ρ) + ρ

∣∣∣ v ∈ O
}
.

Given a star shaped object O with a center ρ, the scaling
distance of a point q from O is the minimum t, such that
p ∈ tO, and let FO(q) denote this distance function. Note
that, for any y ≥ 0, the sublevel set (FO)�y is the y-scaling
of O, that is (FO)�y = yO.

Note that for a point p ∈ IRd, if we take O = B(p, 1) with
center p, then FO(q) = ‖p− q‖. That is, this distance notion
is a strict extension of the Euclidean distance.

Henceforward, for this section, we assume that an object
O contains the origin in its interior and the origin is the
designated center, unless otherwise stated.

Definition IV.2. Let O ⊆ IRd be a star shaped object cen-
tered at ρ. We say that O is α-fat if there is a number r such
that, ball(ρ, r) ⊆ O ⊆ ball(ρ, αr).

724

Definition IV.3. Let O be a star shaped object centered at
ρ. We say that O is α-rounded fat if there is a radius r such
that, (i) ball(ρ, r) ⊆ O ⊆ ball(ρ, αr) and, (ii) For every point
p in the boundary of O, the cone CH(ball(ρ, r) ∪ p), lies within
O, see Figure IV.1.

By definition any α-rounded fat object is also α-fat. However,
it is not true that a α-fat object is necessarily α′-rounded fat
for any α′, that is even allowed to depend on α. The following
useful result is easy to see.

Lemma IV.4. Let O be a α-fat object. If O is convex then
O is also α-rounded fat.

Given a set O = {O1, O2, . . . , On} of n star shaped objects,
consider the set F of n scaling distance functions, where the
ith function, for i = 1, . . . , n is fi = FOi . We assume that the
boundary of each object Oi has constant complexity.

The proof that F complies with the framework of Sec-
tion II-B is present in the full version [1].

We conclude that for α-rounded fat objects, the scaling
distance functions they define, falls under our framework. We
thus get the following result.

Theorem IV.5. Consider a set O of α-rounded fat objects
in IRd, for some constant α. Then one can compute a (1 +
ε)-AVD for the scaling distance functions induced by O, with
near linear space complexity, and logarithmic query time. See
Theorem III.15 and Corollary III.16 for the exact bounds.

Note, that the result in Theorem IV.5 covers any symmetric
convex metric. Indeed, given a convex symmetric shape C
centered at the origin, the distance it induces for any pair of
points p, u ∈ IRd, is the scaling distance of C centered p to u
(or, by symmetry, the scaling distance of p from C centered at
u). Under this distance IRd is a metric space, and of course,
the triangle inequality holds. By an appropriate scaling of
space, which does not affect the norm (except for scaling it)
we can make C fat, and now Theorem IV.5 applies. Of course,
Theorem IV.5 is considerably more general, allowing each
of the points to induce a different scaling distance function,
and the distance induced does not have to obey the triangle
inequality.

IV-C. Nearest furthest-neighbor

For a set of points S ⊆ IRd and a point q, the furthest-
neighbor distance of q from S, is FS(q) = maxs∈S ‖q− s‖;
that is, it is the furthest one might have to travel from q to
arrive to a point of S. For example, S might be the set of
locations of facilities, where it is known that one of them is
always open, and one is interested in the worst case distance
a client has to travel to reach an open facility. The function
FS(·) is known as the furthest-neighbor Voronoi diagram,
and while its worst case combinatorial complexity is similar
to the regular Voronoi diagram, it can be approximated using
a constant size representation (in low dimensions), see [26].

Given n sets of points P1, . . . ,Pn in IRd, we are interested
in the distance function F(q) = mini Fi(q), where Fi(q) =
FPi(q). This quantity arises naturally when one tries to model
uncertainty; indeed, let Pi be the set of possible locations

of the ith point (i.e., the location of the ith point is chosen
randomly, somehow, from the set Pi). Thus, Fi(q) is the worst
case distance to the ith point, and F(q) is the worst-case
nearest neighbor distance to the random point-set generated
by picking the ith point from Pi, for i = 1, . . . , n. We refer
to F(·) as the nearest furthest-neighbor distance, and we
are interested in its approximation.
A naive solution to this problem would maintain a data

structure for computing the furthest neighbor approximately
for each of the Pi and then just compute the minimum
of those distances. A data-structure to compute a 1 − ε
approximation to the furthest neighbor takes O(1/εd) space
for O(1/εd) query time, see [26] although this was probably
known before. Thus the entire data structure would take up
total space of O(n/εd) with a query time of O(n/εd). By using
our general framework we can speed up the computation. We
can show that Fi, for i = 1, . . . , n satisfy the conditions (P1)
– (P3) and (C1)–(C3). The details are present in the full
version [1].
We thus get the following result.

Theorem IV.6. Given n point sets P1, . . . ,Pn in IRd with a
total of m points, and a parameter ε > 0, one can preprocess
the points into an AVD, of size Õ(n), for the nearest furthest-
neighbor distance defined by these point sets. One can now
answer (1 + ε)-approximate NN queries for this distance in
O(log n) time. (Note, that the space and query time used,
depend only on n, and not on the input size.)

Proof: We only need to show how to get the improved
space and query time. Observe that every one of the sets Pi

can be replaced by a subset Si ⊆ Pi, of size O(1/εd log(1/ε)),
such that for any point q ∈ IRd, we have that FSi(q) ≤
FPi(q) ≤ (1 + ε/4)FSi(q). Such a subset can be computed in
O(|Pi|) time, see [26]1. We thus perform this transformation
for each one of the uncertain point sets P1, . . . ,Pn, which
reduces the input size to O(n/εd log(1/ε)). We now apply our
main result to the distance functions induced by the reduced
sets S1, . . . , Sn.

V. Conclusions

In this paper, we investigated what classes of functions have
minimization diagrams that can be approximated efficiently
– where our emphasis was on distance functions. We defined
a general framework and the requirements on the distance
functions to fall under it. For this framework, we presented
a new data-structure, with near linear space and preprocess-
ing time. This data-structure can evaluate (approximately)
the minimization diagram of a query point in logarithmic
time. Surprisingly, one gets an AVD (approximate Voronoi
diagram) of this complexity; that is, a decomposition of space
with near linear complexity, such that for every region of
this decomposition a single function serves as an ANN for
all points in this region.
We also showed some interesting classes of functions for

which we get this AVD. For example, additive and multi-

1One computes an appropriate exponential grid, of size
O(1/εd log(1/ε)), and picks from each grid cell one representative
point from the points stored inside this cell.

725

plicative weighted distance functions. No previous results of
this kind were known, and even in the plane, multiplicative
Voronoi diagrams have quadratic complexity in the worst
case (for which the AVD generated has near linear complexity
for any constant dimension). The framework also works for
Minkowski metrics of fat convex bodies, and nearest furthest-
neighbor. However, our main result applies to even more
general distance functions.
Several questions remain open for further research:

(A) Are the additional polylog factors in the space neces-
sary? In particular, it seems unlikely that using WSPD’s
directly, as done by Arya and Malamatos [17], should
work in the most general settings, so reducing the log-
arithmic dependency seems quite interesting. Specifi-
cally, can the Arya and Malamatos construction [17] be
somehow adapted to this framework, possibly with some
additional constraints on the functions, to get a linear
space construction?

(B) On the applications side, are constant degree polynomi-
als a good family amenable to our framework? Specif-
ically, consider a polynomial τ(x) that is positive for
all x ≥ 0. Given a point u, we associate the distance
function f(q) = τ(‖q− u‖) with u. Given a set of
such distance functions, under which conditions, can one
build an AVD for these functions efficiently? (It is not
hard to see that in the general case this is not possible,
at least under our framework.)

References

[1] S. Har-Peled and N. Kumar, “Approximating minimiza-
tion diagrams and generalized proximity search,” CoRR,
2013, http://arxiv.org/abs/1304.0393.

[2] J. Matoušek, “Efficient partition trees,”Discrete Comput.
Geom., vol. 8, pp. 315–334, 1992.

[3] T. M. Chan, “Optimal partition trees,” in Proc. 26th
Annu. ACM Sympos. Comput. Geom., 2010, pp. 1–10.

[4] M. Sharir and P. K. Agarwal, Davenport-Schinzel
Sequences and Their Geometric Applications. New York:
Cambridge University Press, 1995. [Online]. Available:
http://us.cambridge.org/titles/catalogue.asp?isbn=0521470250

[5] M. de Berg, O. Cheong, M. van Kreveld, and M. H.
Overmars, Computational Geometry: Algorithms and
Applications, 3rd ed. Springer-Verlag, 2008. [Online].
Available: http://www.cs.uu.nl/geobook/

[6] K. L. Clarkson, “A randomized algorithm for closest-point
queries,” SIAM J. Comput., vol. 17, pp. 830–847, 1988.

[7] P. K. Agarwal and J. Matoušek, “Ray shooting and para-
metric search,” SIAM J. Comput., vol. 22, pp. 540–570,
1993.

[8] S. Meiser, “Point location in arrangements of hyper-
planes,” Inform. Comput., vol. 106, pp. 286–303, 1993.

[9] K. L. Clarkson, “Nearest-neighbor searching and metric
space dimensions,” in Nearest-Neighbor Methods
for Learning and Vision: Theory and Practice,
G. Shakhnarovich, T. Darrell, and P. Indyk, Eds.
MIT Press, 2006, pp. 15–59.

[10] P. Indyk and R. Motwani, “Approximate nearest
neighbors: Towards removing the curse of dimensionality,”
in Proc. 30th Annu. ACM Sympos. Theory
Comput., 1998, pp. 604–613. [Online]. Available:
http://theory.lcs.mit.edu/ indyk/nndraft.ps

[11] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate
nearest neighbors: Towards removing the curse of dimen-
sionality,” Theory Comput., vol. 8, pp. 321–350, 2012,
special issue in honor of Rajeev Motwani.

[12] A. Andoni and P. Indyk, “Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions,”Commun. ACM, vol. 51, no. 1, pp. 117–122, 2008.

[13] R. Motwani, A. Naor, and R. Panigrahi, “Lower bounds
on locality sensitive hashing,” in Proc. 22nd Annu. ACM
Sympos. Comput. Geom., 2006, pp. 154–157.

[14] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu, “An optimal algorithm for
approximate nearest neighbor searching in fixed
dimensions,” J. Assoc. Comput. Mach., vol. 45,
no. 6, pp. 891–923, 1998. [Online]. Available:
http://www.cs.umd.edu/ mount/Papers/dist.pdf

[15] S. Har-Peled, Geometric Approximation Algorithms.
Amer. Math. Soc., 2011.

[16] ——, “A replacement for Voronoi diagrams of near
linear size,” in Proc. 42nd Annu. IEEE Sympos. Found.
Comput. Sci., 2001, pp. 94–103. [Online]. Available:
http://cs.uiuc.edu/ sariel/papers/01/avoronoi/

[17] S. Arya and T. Malamatos, “Linear-size approximate
Voronoi diagrams,” in Proc. 13th ACM-SIAM Sympos.
Discrete Algs., 2002, pp. 147–155.

[18] P. B. Callahan and S. R. Kosaraju, “A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields,” J. Assoc.
Comput. Mach., vol. 42, pp. 67–90, 1995.

[19] S. Arya, T. Malamatos, and D. M. Mount, “Space-time
tradeoffs for approximate nearest neighbor searching,” J.
Assoc. Comput. Mach., vol. 57, no. 1, pp. 1–54, 2009.

[20] J. Erickson, “New lower bounds for Hopcroft’s problem,”
Discrete Comput. Geom., vol. 16, pp. 389–418, 1996.

[21] N. N. Dalvi, C. Ré, and D. Suciu,“Probabilistic databases:
Diamonds in the dirt,”Commun. ACM, vol. 52, no. 7, pp.
86–94, 2009.

[22] C. C. Aggarwal, Managing and Mining Uncertain Data.
Springer, 2009.

[23] P. K. Agarwal, A. Efrat, S. Sankararaman, and W. Zhang,
“Nearest-neighbor searching under uncertainty,” in Proc.
31st ACM Sympos. Principles Database Syst., 2012, pp.
225–236.

[24] P. K. Agarwal, B. Aronov, S. Har-Peled, J. M. Phillips,
K. Yi, and W. Zhang, “Nearest neighbor searching under
uncertainty ii,” in Proc. 32nd ACM Sympos. Principles
Database Syst., 2013, p. to appear.

[25] P. K. Agarwal and J. Erickson, “Geometric range search-
ing and its relatives,” in Advances in Discrete and Com-
putational Geometry, B. Chazelle, J. E. Goodman, and
R. Pollack, Eds. Amer. Math. Soc., 1998.

[26] S. Har-Peled, “Constructing approximate shortest path
maps in three dimensions,” SIAM J. Comput., vol. 28,
no. 4, pp. 1182–1197, 1999.

726

