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Abstract—The Traveling Salesman Problem (TSP) is among
the most famous NP-hard optimization problems. The special
case of TSP in bounded-dimensional Euclidean spaces has
been a particular focus of research: The celebrated results of
Arora [Aro98] and Mitchell [Mit99] – along with subsequent
improvements of Rao and Smith [RS98] – demonstrated
a polynomial time approximation scheme for this problem,
ultimately achieving a runtime of Od,ε(n log n).

In this paper, we present a linear time approximation scheme
for Euclidean TSP, with runtime Od,ε(n). This improvement
resolves a 15 year old conjecture of Rao and Smith, and
matches for Euclidean spaces the bound known for a broad
class of planar graphs [Kle08].

Keywords-Computations on discrete structures; Geometrical
problems and computations;

I. INTRODUCTION

Among all NP-complete problems, the Traveling Sales-
man Problem (TSP) stands out as fundamental and is studied

extensively. Indeed, numerous articles and even whole books

([Rei94], [LLKS85], [GP02], [ABCC07]) are devoted to

TSP, studying various algorithms for different families of

instances. In fact, some of the most basic techniques in

combinatorial optimization were devised to tackle TSP,

including for instance cutting planes. The input for (the

optimization version of) TSP is a complete graph, whose

vertex set we denote by S, together with edge-weights w(·, ·)
that are nonnegative and symmetric,1 and the goal is to find

a closed tour of S of minimum (total) weight, where a tour is

simply a permutation of S, i.e. it visits every vertex exactly

once.

A prominent special case of TSP – called Euclidean TSP
– is where the points are given as d-dimensional vectors

equipped with the �2 norm. Celebrated results of Arora

[Aro98] (for d-dimensional space) and Mitchell [Mit99] (for

the Euclidean plane) prove that Euclidean TSP admits a

Polynomial-Time Approximation Scheme (PTAS). A PTAS

is an algorithm that provides a (1 + ε)–approximation for

every fixed ε > 0. For every constant ε > 0, the runtime is

polynomial in n. The basic techniques employed by Arora

include the imposition of a random quadtree on the point

set, and a proof that there exists a low-cost tour for S which

crosses each quadtree cell a small number of times, and then

Work supported in part by Israel Science Foundation grant #1609/11
1Formally, w(x, y) = w(y, x) ≥ 0 for all x, y ∈ S.

only at a small number of previously designated quadtree

portals. Given such a configuration, a brute-force dynamic

program is employed to construct the tour on the quadtree

in a bottom-up fashion. The final algorithm achieved a

runtime of n logO(
√

d/ε)d−1
n. Subsequently, Rao and Smith

noted that the solution tour may be restricted to the edges

of a low-weight spanner graph of the input set, and this

allows one to eliminate the requirement that the tour cross

the random quadtree only at previously designated portals.

They thereby achieved runtime 2(d/ε)O(d)
+(d/ε)O(d)n log n.

Complementing these results, Trevisan [Tre00] showed that

TSP in Euclidean metrics of dimension log n is NP-hard to

approximate to within some constant c > 1. It is therefore

not surprising that the running time of the aforementioned

PTAS is doubly-exponential in the dimension.

Rao and Smith [RS98] further posited that that a stronger

result may be possible (see also [Cha08], [BE12], [Epp12]).

We may encapsulate their conjecture in the following ques-

tion:

Question 1. Does Euclidean TSP admit an approximation
algorithm with linear dependence on the set size?

It turns out that in some common models of computation,

the answer to Question 1 is in fact negative. For example, re-

sults of Das et al. [DKS97] and Young [You13] demonstrate

a Ω(n log n) time lowerbound for 1-dimensional Euclidean

TSP in the decision tree model. Indeed, the conjecture of

Rao and Smith was expressed specifically in the real RAM

model, augmented with the floor or mod functions as atomic

operators (i.e., basic O(1) time operations).

A. Results

Our central contribution is a linear time approximation

scheme for Euclidean TSP.

Theorem I.1. Given a set S of d-dimensional points with in-
tegral coordinates realizing the range [0, �n

√
d

ε �], there exists
a randomized algorithm that with probability 1−e−Od(n1/3d)

computes a (1+ ε)-approximation to the optimal tour for S

in time 2(d/ε)O(d)
n in the integer RAM model.

The statement of Theorem I.1 assumes that the input

vectors are bounded integral values: S ⊂ {0, . . . , R}d

for R = �n
√

d
ε � (though we could actually tolerate any
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R = 2(d/ε)O(d)
n). That is, we assume the data is not padded

with extraneous information unnecessary for achieving a

(1+ε)-approximation (similar to Arora’s rounding the points

to a grid [Aro98]). If the data is not given in this integral

form, we may round the data into this form using the floor

or mod functions – assuming these functions are atomic

operations, the rounding can be done in O(dn) total time.

We note that this one-time rounding step is the only non-

trivial operation utilized in this paper, and we further do

not make use of bit-wise operators. Hence, we resolve the

conjecture of Rao and Smith [RS98] in the affirmative:

Corollary I.2. Given a set S of d-dimensional points,
there exists a randomized algorithm that with probability
1 − e−Od(n1/3d) computes a (1 + ε)-approximation to the
optimal tour for S in time 2(d/ε)O(d)

n in the real-RAM model
with atomic floor or mod operators.

B. Techniques

We build upon the framework of [Aro98], [RS98], and

will assume that the reader has basic familiarity with these

works. Our algorithm includes the following linear time

techniques: (i) A dynamic graph which approximates the

true weight of the MST for the input set, over all localities

(Section IV). (ii) A procedure that decompose the input set

into a group of sets, each of which has a sparse minimum

spanning tree (Section V). This construction was inspired

by the recent decomposition scheme of [BGK12], although

that scheme required superlinear time. (iii) A clustering for

the sparse sets, in Section VI. This allows simultaneous

calculation of a low weight spanner and low distortion tour.

We first show that a shallow hierarchy for point sets

can be constructed very quickly. Using this hierarchy, we

break up the input set into smaller sets with very favorable

properties – that the MST of these sets are everywhere

sparse. Hence, these sets have the property that their low-

weight spanners are also everywhere sparse. Finally, we

show how to build a clustering which is crossed few times

by the low weight spanners. Utilizing the standard dynamic

programming algorithm, we can immediately derive a low

weight tour which is restricted to the edges of the spanner.

Related work: Arora’s geometric approach was subse-

quently employed for other Euclidean problems in [CL98],

[ARR98], [CLZ02], [KR07]. A linear time approximation

scheme for TSP on a class of planar graphs was given in

[Kle08].

A series of papers culminated in a PTAS for metric spaces

with bounded doubling dimension [Tal04], [BGK12]. Chan

and Gupta [CG08] gave an algorithm for TSP that runs in

sub-exponential time in a larger family of instances, in which

an alternative notion of dimension is assumed to be bounded.

Further extension of the algorithms of [Aro98], [Tal04] to the

problem of TSP with neighborhoods (under mild conditions)

include [Mit07] and [CE11].

II. PRELIMINARIES

Here we present background information.
Euclidean properties: For a d-dimensional point set S,

we will use the notation B(u, s)∩S to refer to the points of

S contained in the ball centered at u with radius s; that is,

all points of S within distance s of u. When S is understood

from context, we may refer just to B(u, s). B∗(u, s) is the

edge set of the full graph on B(u, s).
It is well known that if S contains points with minimum

interpoint distance 1, then |B(u, s)∩S| = sO(d) (when s ≥
2). We will refer to this fact as the Packing Property of

Euclidean space.
TSP tours: Throughout, a tour W is a finite sequence of

points; by convention, it is undirected, and may visit a point

more than once. A transition in W is a pair of successive

points in the sequence, which may be viewed as an edge in

the complete graph on S. Let w(x, y) for x, y ∈ S be the

length (or weight) of an edge connecting x and y. A closed
tour is defined in the natural way by adding a transition

between the last and first points in the sequence.

The weight (or length) of a multiset M of transitions

is defined as w(M) def=
∑

(x,y)∈M w(x, y). This notation

naturally extends to a tour W , by viewing W as sequence

of transitions, hence w(W ) represents the total length of

the tour W . Let OPT(S) denote the minimum weight TSP

tour on the set S. It is well-known that w(MST(S)) ≤
w(OPT(S)) < 2w(MST(S)). For Euclidean set S, we also

have w(MST(S)) = O(|S|1−1/d diam(S)) [Aro98].
Point hierarchies: Similar to what was described in

[GGN06], [KL04], a subset of points X ⊆ Y is an s-net of

Y if it satisfies the following properties:

(i) Packing: For every x, y ∈ X , d(x, y) ≥ s.

(ii) Covering: Every point y ∈ Y is strictly within distance

s of some point x ∈ X: d(x, y) < s.

The previous conditions require that the points of X be

spaced out, yet nevertheless cover all points of Y . A point

in Y covering a point in X is called a parent of the covered

point; this definition allows for a point to have multiple

parents.

A hierarchy H for set S is composed of discrete center

sets, where each level of the hierarchy is a discrete center

set of the level beneath it. For each i = 0, . . . , P (where

P := �log diam(S)�), fix Hi ⊆ S to be an 2i-net of S,

called the net of level i, or of scale 2i. Notice that the

bottom hierarchical level H0 contains all points, and the top

level HP contains only a single point. The hierarchy may be

augmented with neighbor links: Each point x ∈ Hi records

what points of Hi are within distance b · 2i of x – these are

the b-neighbors of x. By the packing property of Euclidean

spaces, a point may have bO(d) b-neighbors. We will need

the following lemma:

Lemma II.1. If two points u, v ∈ Hj are b-neighbors (for
b ≥ 8), then all distinct respective ancestors u′, v′ ∈ Hi
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(i > j) are also b-neighbors.

Proof: We have d(u, u′) ≤ ∑i
k=j 2k < 2 · 2i, and

similarly d(v, v′) < 2 · 2i. It follows that d(u′, v′) ≤
d(u′, u)+d(u, v)+d(v, v′) < 4·2i+b·2j ≤ (4+ b

2 )2i ≤ b2i.

To save space in the hierarchy, we use the standard

compression scheme found in [CG06]: First assign each

point in Hi as a child of only one parent in Hi+1. (If

a copy of the smae point exists in Hi+1, then that copy

will be the assigned parent.) Now, beginning at i = 1 and

proceeding upwards, any point of Hi that has no b-neighbors

and only one child in Hi−1 is represented implicitly. This

scheme results in a compressed hierarchy H̃, whose points

and neighbor links can be stored in bO(d)n space. For

a point x ∈ Hi which survives (is stored explicitly) in

the compressed hierarchy H̃, we may refer to its lowest

surviving ancestor as its parent. Note that lemma II.1 implies

that if u, v ∈ Hi are b-neighbors, then these points and all

their distinct respective ancestors must survive as well.

From a compressed hierarchy, one can extract a net-tree T
by representing each surviving point occurrence in each level

Hi as a node in tree level Ti, and placing an edge between

nodes in T which represent parent-child pairs in H̃. Note

that if a single point v ∈ S appears multiple times in the

compressed hierarchy, then there will be multiple nodes in

T corresponding to v.

Both the compressed hierarchy and net-tree T support

deletions of an entire subtree T ′ in 2O(d)|T ′| time, by simply

removing these points from the tree and maintaining in T
only the root of T ′. (This procedure assures that no Steiner

points remain in the hierarchy.) The total size of H̃ and T
remains bO(d)n, where S is the updated point set.

Quadtrees: Let R ∈ N be a power of 2, set L =
{0, 1, 2, . . . , R}, and let S = Ld be a set of d-dimensional

vectors. Let t = log2 R. Define the quadtree Q of S
rooted at the origin as follows: The top level of Q –

level i = t – contains a single cell (hypercube) of side-

length R rooted at the origin, and covers all points. The

next level Qi−1 contains 2d child cells of side-length R
2 ,

created by partitioning the larger cell using d orthogonal

(d − 1)-dimensional hyperplanes. Each level Qj is created

by partitioning the cells of level Qj+1 into child cells in

an analogous manner. The bottom level 0 contains cells of

side-length 1, each covering at most one point.

A compressed quadtree can be derived from a quadtree

as follows: First, all empty cells (those containing no points

of S) are removed. Then, beginning from the second lowest

quadtree level and moving up, any cell with only a single

child is removed, and the child is linked as a child of the

removed cell’s parent. The compressed quadtree has size

O(n).
Graph spanners: A graph R is a (1+δ)-stretch spanner

of graph G if R is a subgraph of G that contains all nodes

of G (but not all edges), and dR(u, v) ≤ (1 + δ)dG(u, v)
for all u, v ∈ G, where dG(u, v) (dR(u, v)) denotes the

shortest path distance between u and v in G (R). As in

[KL04], [GGN06], a (1 + δ)-stretch spanner for the full

graph G on S can be derived from the hierarchy of S by

adding an edge between any point pair x, y ∈ Hi with

dG(x, y) ≤ 2
δ 2i. We call this edge an Hi level edge. Then the

resulting spanner contains only δ−O(d)n edges. We call this

spanner the complete hierarchical spanner. (Other spanner

constructions may be found in [Vai91], [Sal91], [CK95],

[Soa94], [AMS99], [BGM04].)

The weight of the complete hierarchical spanner may be

quite high. To produce a light weight spanner, we may

prune the spanner edges via the greedy algorithm of [DN97]:

The greedy algorithm takes a (1 + δ)-stretch Euclidean

spanner R, and orders the edges of R by increasing length.

It then builds a (1 + δ)2-stretch spanner R′ by taking

each edge (u, v) in turn, and adding it to P ′ only if

dR′(u, v) ≥ (1 + δ)dR(u, v) (where dR′(u, v) denotes the

distances on R′ before the addition of the new edge). It

follows from the work of [DN97] that the resulting spanner

has weight δ−O(d)w(MST(S)) (see also [GLN02]). We call

this spanner the greedy hierarchical spanner.

Net-Respecting Tours: A tour W is said to be net
respecting (NR) relative to a given hierarchy {Hi}�log R�

i=0

and value ε > 0, if for every transition in W , say of

length �, both of its endpoints belong to Hi for i such that

si ≤ ε� < si+1. We will find it convenient to view the

edge as connecting the occurrences of the endpoints in the

single level Hi. (When � < 1
ε , it suffices to connect H0

level points; in this case the hierarchy implicitly contains

levels Hi for all i < 0, and like H0 these nets contain all

points of S.) We denote by OPTNR(S) a minimum length

net-respecting tour on S (for some ε). Any tour restricted

to the edges of the (1 + ε)-greedy hierarchical spanner is

net-respecting.

III. FAST HIERARCHY CONSTRUCTION

In this section, we show that given a set S ⊆ Ld, where

L = {0, 1, 2, . . . R}, we can construct for S a hierarchy

with b-neighbor links (for constant b) in time Od,ε(R + n).
The first step is to use a shuffle to construct a quadtree

for S in linear time, as in the work of Chan [Cha08] (see

also [Gar82], [Har10]). This construction assumes simple

bit-wise operators, which we can precompute: By bucketing

points in an array of integral range [0, R], we can store each

integer in groups of consecutive words of size log n
3 , and

for each word compute its bit-wise operator with all other

words, in time O(log n) per word pair. The results are stored

in a look-up table, and this can all be done in time and space

Od,ε(R + n). It remains only to prove the following:

Lemma III.1. Given a compressed quadtree Q for S, a
hierarchy may be extracted in dO(d)|S| time.
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Proof: We first expand the quadtree Q, so that for

every uncompressed cell in Q, all its neighboring cells are

uncompressed as well. This can be done in 2O(d)|S| time

and space. We then build a hierarchy for S in a bottom-

up fashion: All points appear in H0, and H1 is constructed

by including any point not within distance 2 of an already

included point. If we associate each point in H1 with its

corresponding containing cell in Q1, we can determine if a

nearby point has already been included, all in dO(d) time

(since the cell diagonal has length
√

d times the cell side-

length). Similarly, we include a point of Hi in level Hi+1 if

no Hi point within distance 2i+1 has already been included

in Hi+1. Since a hierarchy possesses O(n) points, the total

construction can be done in time dO(d)|S|.
IV. DYNAMIC APPROXIMATE MST

In this section we show that given point set S and its

compressed hierarchy (Section III), one can construct in

linear time a graph G which spans S, and whose weight ap-

proximates the weight of MST over all local neighborhoods

(Lemma IV.1). Further, like the hierarchy and net-tree, graph

G can be efficiently maintained under subtree deletions.

Graph construction: The construction of G begins

at the bottom level of the hierarchy, and then proceeds

iteratively to the next level. We maintain the invariant that

at each level Hi, all Hi hierarchical points within distance

c · 2i are in the same component, for c := 6. At the end

of the algorithmic run on Hi, either a close pair in Hi

are connected directly by an Hi level edge, or we have

determined that there exists some path between them on

lower level edges. In the former case, we say that the points

are explicitly connected in level Hi; otherwise they are

implicitly connected.

The algorithm first considers points in H0, and adds

an edge between any pair within distance c. We call the

resulting graph G0. We then consider each level in turn, and

all point pairs u, v ∈ Hi within distance c ·2i. The algorithm

inspects all Hi−1-net points within distance 2c · 2i of one

endpoint, say u, to see if there exists a path among these

net points connecting u and v: This path may be formed

from both explicit and implicit Hi−1 connections. If a path

is found, we record that u and v are implicitly connected.

Otherwise, we add an Hi level edge between u and v. Let

Gi be the current graph, consisting of all level Hj edges

for j ≤ i. The final graph is G = G�log R�. We prove the

following lemma:

Lemma IV.1. Graph G possesses the following properties:
(i) G can be constructed in time 2O(d)n, supports the

deletion of the points of a hierarchy subtree T from S
in 2O(d)|T | time, and occupies space 2O(d)|S|.

(ii) w(G ∩B∗(u, 5c · 2i)) ≥ w(MST(B(u, c · 2i))).
(iii) w(G ∩B∗(u, c · 2i)) ≤ 2O(d)w(MST(B(u, 2c · 2i)).

Proof: We prove each item in turn.

(i): The construction time and space is immediate from

the size of the hierarchy and the packing property. When

the points of a hierarchy subtree are removed from S,

we maintain only the subtree root in S. Beginning at the

bottom hierarchical level, for each point removed from Hi

we determine if any close point pair from Hi+1 (remaining

in S) were connected implicitly only via a path through the

deleted point. If so, an edge must be added between the pair,

and the are connected explicitly. This all can be done in time

2O(d)|T |.
(ii): By construction of G, any Hi point pair within

distance c2i is connected by a direct edge, or by some

edge path in Gi−1 within distance
∑j

k=0 2c · 2i < 4c · 2i

of either point of the pair. It follows that all points of

B(u, c · 2i) are covered by some connected subgraph of

G ∩ B∗(u, 5c · 2i). Then the lemma follows from the

optimality of MST(B(u, c ·2i)), and the fact that B(u, c ·2i)
is a subset of B(u, 5c · 2i).

(iii): We claim that if u, v ∈ Hi are connected by a

direct edge in Gi, then the (1+ 2
c )-stretch greedy hierarchical

spanner for S must possess a Hi-level edge with endpoints

within distance 2c·2i of u. To see this, consider the complete

hierarchical (1 + 2
c )-stretch spanner R restricted to the

hierarchy of B(u, 2 · 2i). By construction, R connects all

Hj point pairs which are within distance c · 2j .

Now, the fact that u and v must be connected in Gi

implies that there does not exist any path connecting them

in Gi−1 on lower level edges within distance 2c · 2i of u
or v. It follows that there does not exist such a path on the

full hierarchical spanner, and so there cannot exist such a

path on R. Then R must contain an Hi level edge within

distance 2c · 2i of u or v, or else the shortest path between

u and v in R has length at least 3c ·2i, which is greater than

(1+ c
2 ) times the true distance from u to v. The lemma then

follows from the weight guarantee of R, coupled with the

fact that an Hi level edge can be within close proximity of

only 2O(d) other Hi level points.

V. REMOVING DENSE AREAS

Having constructed the hierarchy H and spanning graph

G, we show in this section how to split S into sparse subsets

– subsets whose MST is not much heavier than the diameter

of the subset. We will prove the following decomposition

theorem:

Theorem V.1. Given set S and its associated compressed
hierarchy H, in time O(|S|) we can split S into sets
S0, . . . , Sm ⊂ S, ∪iSi = S, with the following properties,
for some q = (d/ε)Θ(d):

(i) Sparsity: For each Si, and every u ∈ Si, u ∈ Hj we
have w(MST(B(u, 2j) ∩ Si)) ≤ 2O(d)q2j .

(ii) Tour cost: The subset tours overlap to form a single
connected tour for all of S, and

∑
i OPTNR(Si) ≤

(1 + ε) OPTNR(S).
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(iii) Size:
∑

i |Si| ≤ (d/ε)O(d)|S|.
The rest of this section is devoted to proving Theorem V.1.

We will first present in Section V-A a preliminary lemma

concerning the relationship between a local MST and global

one, and then present the actual proof in Section V-B.

A. Preliminary lemma

In this section, we will show that if a ball is partitioned

into a series of rings (or annuli), then the sum of the weights

of the MST for each ring is not much greater than the weight

of the MST of the ball.

Given a hierarchy, define the annulus A(u, s1, s2) to

include points of B(u, s2) not in B(u, s1). Define a δ-ball

Bδ(u, 2i) for δ < 1 to include all Hi−�log(1/δ)� level points

within distance 2i of u, as well as the entire subtree rooted

at each of these points. Define the δ-annulus Aδ(u, s1, s2)
to include the points of Bδ(u, s2) not in Bδ(u, s1). We have

the following lemma:

Lemma V.2. For any ball Bδ(u, s), fix annuli diame-
ter δ, and define the k-th annuli to be Aδ(u, kδs, (k +
1)δs). Then

∑�1/δ�−1
k=0 w(MST(Aδ(u, kδs, (k + 1)δs)) ≤

12w(MST(Bδ(u, s))) + δ−O(d)s.

Proof: The first step is to connect all Hi−�log(1/δ)� level

points in via a spanning graph. For each annulus, we choose

an arbitrary point in the annulus and connect it to all points

in the annulus. We then connect the � 1
δ � different annuli

together via these points. The resulting spanning graph has

weight δ−O(d)s.

Now consider some fixed annulus A = Aδ(u, pδs, (p +
1)δs), and we will show that the cost of constructing a

spanning graph connecting the annulus points to each other

or to other points of Hi−�log(1/δ)� can be charged to the

edges of MST(S) inside the larger annulus Ã = Aδ(u, (p−
6)δs, (p+7)δs). Then the lemma follows by summing over

all annuli.

Take the intersection of MST(S) with the edges of the

full graph on A, and call this intersection edge set E. Let

E1, . . . , Eh ⊂ E be maximal connected edge paths in E;

we will connect these edge paths into a spanning graph for

A. Now, if edge sets Et, Et+1 are connecting by a path of

MST(S) contained completely within Ã, then we connect

the last point of Et to the first point of Et+1, and charge

the edge to the path of MST(S) in Ã. If edge sets Et, Et+1

are connecting by a path exiting Ã, then we connect the

last point in Et and the first point in Et+1 to their closest

Hi−�log(1/δ)� level points, and charge the two new edges

of total length at most 4δs to the part of the exiting path

found at distance range [p− 4δs, (p + 5)δs)] from u. Since

every point of S is within distance 2δs of an ancestor in

Hi−�log(1/δ)�, the charged path has total length at least 4δs.

The lemma follows.

B. Partitioning algorithm

To complete Theorem V.1, we will need the following

lemma. First, a few definitions: The size of a point occur-

rence v ∈ Hi is the number of nodes in the subtree of T
rooted at the node corresponding to v ∈ Hi. The weight of a

point occurrence v ∈ Hi with respect to G is the sum of the

weights of Hi edges in G incident on v. The weight with

respect to G of the subtree rooted at v ∈ Hi is the sum of

weights of all points in the subtree.

Lemma V.3. Given a point set S and its compressed hier-
archy H̃, let Hi be the lowest hierarchical level containing
heavy subtrees of weight q2i or greater. Assume we are given
Gi ⊂ G, along with a point v ∈ Hi which is the root of
a heavy subtree. Then S can be split into two intersecting

sets S1 and S2 with the following properties, for any fixed
ε < 1

8 :

(i) Sparsity: w(MST(S2)) ≤ 2O(d)q diam(S2).
(ii) Tour cost: w(OPTNR(S1)) + w(OPTNR(S2)) ≤

w(OPTNR(S)) + εw(OPTNR(S2)).
(iii) Split size: S1, S2 � S. |S1 ∩ S2| = (d/ε)O(d),

and S1 and S2 are covered by respective hierarchies
H̃1, H̃2 ⊂ H̃, |H̃1 ∩ H̃2| ≤ (d/ε)O(d).

(iv) Runtime: S2 can be located in time O(|S2|).
Proof: Recall that all descendants of v ∈ Hi are within

distance 2 ·2i of v. We will take S2 to be all points of some

ball Bδ(v, s), where δ = ε
d . To find an appropriate value of

s, we define sk := 2(1+k/δ)·2i, and for each k = 0, . . . , δ−
1 in turn, we compute the weight of the MST of the annulus

Aδ(v, sk, sk+1) and of the ball Bδ(v, sk). The computation

uses the MST algorithm of Fredman and Willard [FW94],

which in our setting runs in deterministic linear time (see

also [DRK95], [CRT05]). This procedure terminates once

we encounter a relatively light weight annulus – one with

MST weight at most ε times the weight of the MST of the

inner ball. Below, we will prove that a relatively light-weight

annulus must exist.

Upon terminating at a value k, we set S2 to be the (larger)

ball Bδ(v, sk+1). The points of S2 are split off of S, and

the remaining set is S1 = S−S2. We also add to S1 copies

of all the Hi−�log(1/δ)� level points in S2. The number of

duplicated points is (d/ε)O(d). Also, since S2 contains the

entire subtree of v, w(MST(S2)) > q2i. We prove each item

in turn:

(i): Hi is the lowest level containing heavy subtrees,

and by the packing property each point of Hi can be the

parent of at most 2O(d) points of Hi−1. It follows that

the weight of the MST of the ball Bδ(v, s0) is bound by

2O(d)q2i. Likewise, the weight of the MST of any ball

Bδ(v, sk) is bound by 2O(d)q2i as well.

(ii): To prove this, we will take the optimal net-

respecting tour for S, split it into separate tours for S1 and

S2, and then patch these respective tours. Consider first the
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long edges of length at least ε
δ 2i cut by the split. Since the

tour for S was net-respecting, these edges are incident on

Hi−�log(1/δ)� level points of the annulus. We patch these

edges via the MST of Hi−�log(1/δ)� level points in S1 (and

these points are also found in S2). Since there are (d/ε)O(d)

such points, the MST has weight (d/ε)O(d)2i, which is less

than εq2i < εw(MST(S2)), for an appropriate choice of q.

Now consider the smaller edges of length less than ε
δ 2i

cut by the split. These edges must all be incident on points

inside the annulus, so they can all be patched by the annulus

MST of weight εq2i.

(iii): The overlap of S1 and S2 and their hierarchies

amount to (d/ε)O(d) points. The MST of the overlap points

is at most (d/ε)O(d)2i which is less than MST(S2) for an

appropriate choice of q. Hence, S2 must contain points not

found in S1, and S1 is a proper subset of S.

(iv): Since H̃ possesses b-neighbor links, the en-

tire procedure described above can all be done in time

(d/ε)O(d)|S1|.

It remains only to demonstrate that a relatively light

weight annulus must exist. Note first that as a consequence

of Lemma V.2 applied to v and any radius s, the sum of the

weights of all distinct annuli in Bδ(v, s) is only a constant

fraction times w(Bδ(v, s)). Now, if we find any annulus

whose weight is not more than a factor gε (for some constant

g) times the sum of the weights of all annuli internal to

the current annulus, then we may take that annulus and

it satisfies the conditions of the lemma (up to constant

factors). It must be that some annulus satisfies this condition,

for if no annuli satisfy this condition, then the weight of

the sum of all annuli internal to Bδ(v, 4 · 2i) is at least

(1+ gε)d/ε = Θ(2gd) times w(Bδ(v, 2i)), and then Lemma

V.2 implies that the weight of w(Bδ(v, 2 · 2i)) must be

Ω(2gd) times w(Bδ(u, 2i)). For appropriate choice of g, this

exceeds the weight upper bound implied by the covering

property (as in (i) above).

Having presented Lemma V.3, we can now proceed to

prove Theorem V.1.

Proof of Theorem V.1: Our plan is to use Lemma V.3 to

repeatedly remove from S subsets which approach a density

upper bound. We then show that each subset can be broken

off of S while increasing the total tour cost and total set

sizes by only a small amount. This increase will be charged

to the removed set.

We begin by incrementally building the graph G for S,

executing the algorithm of Section IV. As described, the

algorithm begins at the bottom hierarchical level H0 and

proceeds upwards. At each level Hi, it builds partial graph

Gi by adding the appropriate Hi level edges to Gi−1.

During the run of the algorithm, we can simultaneously

maintain the weight of each point and subtree rooted in

Hi. If we see that no point in level Hi possesses a subtree

of weight greater than qsi, then by Lemma IV.1 and the

packing property of Euclidean spaces, we conclude that all

balls B(u, O(2i)) have MST weight bounded by 2O(d)q2i.

Otherwise, if during the construction process we encounter

a level Hi in which one or more points v possesses a subtree

of weight greater than q2i, we invoke Lemma V.3 to identify

a set S2 which can be split from S, leaving set S1. For S1,

we repair the compressed hierarchy H̃ and graph G of S,

all in Od(|S2|) time. Note that the repair to G may change

the weight of other subtrees in levels Hj j ≤ i, but this is

not problematic: Although subtrees in Hj may increase in

weight, all subtrees rooted at Hj were already determined

to be sparse, and removal of points from S cannot increase

the local MST. Once all dense sets in Hi are removed, we

proceed to level Hi+1. At the conclusion of this process, we

have achieved the sparsity bound of the theorem.

It remains to show that the subtree weights can be

maintained efficiently under deletions. This follows from the

fact that every Hj level edge added to H̃ (for j ≤ i) due

to the deletion of v ∈ H0 has an endpoint with distance∑j
k=0 2c·2k < 4c·2j of v, so this endpoint is within distance

4c ·2j +2 ·2j = (4c+2)2j of v’s ancestor in Hj . It follows

that all affected points of Gi are (4c + 2)-neighbors of an

ancestor of v in the hierarchy H̃2. Assuming the hierarchy

maintains b-neighbors for b ≥ 4c + 2 = 26, all updates to

the affected points can be charged to hierarchical points in

H̃2, and |H̃2| = O(|S2|).
The stated runtime follows from recalling that G can

be constructed in linear time, and noting that the cost of

removing a subset using Lemma V.3 is linear in the size

of subset or hierarchy points being removed. The claimed

tour cost and set size follow from charging the tour and

size increase in Lemma V.3 to the tours and points of each

removed subset S2.

VI. TSP ALGORITHM FOR SPARSE SETS

In Section V, we showed how to split the set S into

subsets each with a sparse (or light-weight) MST. In this

section, we show that sparse sets admit fast algorithms

for finding almost optimal tours. Recall that the greedy

hierarchical spanner is one built by the execution of the

greedy algorithm on the complete hierarchical spanner. We

will prove the following theorem:

Lemma VI.1. Given a point set S which is 2O(d)q2i-sparse
for every ball, along with the compressed hierarchy H̃ of S;
In time 2O(d)|S| we can compute the greedy hierarchical
spanner of S and H̃, along with a hierarchical clustering
wherein each Hi level cluster cuts at most r = (d/ε)O(d)

edges of the spanner over all levels Hj , j ≤ i.

Before proving the lemma, we note that given the clus-

tering of Lemma VI.1, the standard dynamic programming

algorithm functioning on the clustering yields an approxi-

mate tour for the point set. This fact is expressed in the

following corollary:
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Corollary VI.2. Given a point set S which is 2O(d)q2i-
sparse for every ball, and the compressed hierarchy H̃ of S;
in time 2O(r)|S| = 2(d/ε)O(d) |S| we can compute a (1 + ε)-
approximate tour for S.

Finally, Theorem I.1 follows immediately from Corollary

VI.2 and the sparse decomposition of Theorem V.1. It

remains only to prove Lemma VI.1, which we do in the

next section.

A. Sparse clustering

In this section we address the proof of Lemma VI.1.

Consider the following standard construction: For each level

Hi, we assign an arbitrary ordering to the points, and

choose for each point a different random radius in the range

[2i, 2 · 2i]. We then create a partition for level Hi, assigning

to each u ∈ Hi all previously unassigned points within

the radius of u. A clustering can then be constructed, for

example, by building the the bottom level partition, and

allowing the higher levels to segment the lower partition

into smaller clusters. (This construction differs from that

of [FRT03] in that each center of each level is assigned

a different random radius.)

Note that the above clustering already has some favorable

properties: The probability that an arbitrary ball of level

Hj (j < i) is cut by an Hi partition in this scheme is

2O(d)2j/2i (this follows easily from [Bar96], [GKL03]),

and so in expectation an Hj ∈ H̃ ball to be cut by only

O(d) higher level partitions – that is, the probability of the

Hj ball to be cut decreases exponentially once its size is

smaller than the larger balls by a factor 2−O(d). By linearity

of expectation, this implies that the entire random clustering

can be constructed in expected linear time: The construction

time for each partition is proportional to the number of balls

that partition cuts, so the total runtime is the sum of the

number of times each ball is cut.

Suppose now that the edges of the greedy hierarchical

spanner were known. A similar argument as above can be

applied to all Hj level edges of the greedy spanner: Since

each edge has length O(2j/ε), we expect each one to be cut

by only O(d+log(1/ε)) higher level partitions. By Lemma

V.3(i), all balls have locally sparse MST, and the local

weight of the greedy spanner is bound by the local weight

of the MST [DN97]. So a ball B(u, R) covers edge weight

q2O(d)R, and therefore each cluster cuts an expected number

q2O(d) = (d/ε)O(d) edges. Hence, a random clustering

possesses the necessary construction time and lightness

properties in expectation; we must show how to achieve

these bounds with high probability while simultaneously

constructing the greedy hierarchical spanner.

The procedure begins at level H0: We give each point

u ∈ H0 a different random radius in the range [1, 2]: The

cluster for u is assigned all previously unassigned points

within the radius of u. We simultaneously build the bottom

level of the greedy hierarchical spanner by enumerating all

interpoint distances in the range [1, c/ε], sorting them into

O(1/ε) buckets of additive increment ε. We then running

the greedy algorithm by determining for each pair whether

a low-stretch path already exists – it suffices for each point

to inspect edges connecting ε−O(d) neighbors.

The procedure then considers each higher level Hi sep-

arately. Assume by induction that the clustering and the

greedy spanner edges of levels Hj j < i have already been

constructed. An arbitrary ordering is placed on the points,

after which we assign each point a random radius. We want

a radius which cuts (d/ε)O(d) greedy spanner edges over

all levels Hj j < i, and as above a constant fraction of

radii satisfy this requirement. We further require that the

radius not cut ‘too many’ balls of H̃ – that is, at most a

constant factor more than the average over all radii for this

center. This average value can be estimated by storing at

each point the sum of the radii of the nodes in the point’s

subtree. (Recall that probability that the ball centered at the

node is cut, is linearly proportional to the node’s radius.)

Given the random radius, we test its validity by inspecting

the balls and edges of levels Hj for j = i, i− 1, . . . cut by

this radius. If we discover that it cuts a constant factor more

balls or edges than the estimated average, we sample a new

radius and retest. For a given center, we will allow n1/3d

resamples before declaring that the algorithm has failed.

Once we have discovered valid radii for all Hi centers,

we use the radii to create Hi level clusters in the usual

way. There is a single caveat: If an Hi level partition cuts

a lower level cluster into two, such that one of the halves

now has too many edges incident upon it, then we either

include all or none of the lower level cluster as part of the

larger one. More specifically, suppose cluster B is cut by

an Hi level partition into two distinct cluster B1, B2, B1

inside the partition and B2 outside of it. B had previously

cut only b edges, b1 of which are now incident on B1 and

b2 of which are now incident on B2 (where b1 + b2 = b).

The cut also introduce b′ new cut edges incident on both B1

and B2. Now, suppose one of b1 + b′ or b2 + b′ exceeds the

allowed number of cuts: If b′ > b2, then we incorporate the

entire cluster B into the partition, and this can only reduce

the number of edges incident on the partition. Otherwise it

must be that b′ > b1, in which case we eject the entire cluster

B from the partition, which again decreases the number of

edges incident on the partition.

After creating a cluster, we calculate the spanner distances

from the cluster center to its (d/ε)O(d) Hi level exit portals:

For every newly cut edge, beginning at the lowest level

cluster in which it is cut, we calculate the spanner distance

from the edge to all other edges exiting its cluster. Having

computed the distance from the edge to all edges exiting

the Hj level cluster, the distance from the edge to other

edges exiting Hj+1 level clusters can be computed in

time (d/ε)O(d), so that the total runtime is proportional to
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(d/ε)O(d) times the number of lower level balls cut by Hi

level partition. Given the distances from cluster centers to

the cut edges, we can calculate the distance from cluster

centers on the partial greedy spanner, and determine what

Hi level edges must be added to the spanner in (d/ε)O(d)

time per Hi level point.
It remains to show that the algorithm succeeds in linear

time with high probability 1 − e−Od(n1/3d). The clustering

algorithm fails if (i) any radius is resampled n1/3d times,

or (ii) the total runtime exceeds some fixed constant times

n. The first event occurs with probability 2−O(n1/3d). In the

remainder of this section we will bound the later event.
Let Xi be the maximum allowed runtime for a single radii

test of point pi ∈ Hj , and recall that Xi is proportional to

the expected number of smaller balls cut by a random ball

B(pi, O(2i)). As mentioned above,
∑

i Xi = Od(|H̃|). We

can also show that for any pi, Xi = Od(|H̃|1−1/d): Clearly,

the worst-case is one where the all |H̃|−1 hierarchical balls

are found in B(pi, O(2j)), and further that the balls are in

the highest level possible (since a ball with a larger radius is

more likely to be cut). Recall that the probability that a ball

of level Hk is cut by an Hj ball (j > k) is 2O(d)2k/2j , and

so Xi is bound by 2O(d)
∑(log |H̃|)/d

f=1
2df

2i = Od(|H̃|1−1/d),
where the numerator represents the maximum number of

balls which can be packed in the k-th level below the point,

and the numerator is the ratio between the point’s radius and

the radius of the k-th level below.
Let random variable Zi be the total time taken to deter-

mine a radius for pi, that is the combined runtime for all

the radii tests for pi until a valid radius is found. The total

runtime of the algorithm is
∑

i Zi, and since the probability

of requiring k samples is only 2−O(k), we have E[
∑

i Zi] =∑
i E[Zi] =

∑
i O(Xi) = Od(|H̃|). Since at most n1/3d

resamples are permitted, the maximum value attained by Zi

is bounded by n1/3dXi = Od(n1/3d|H̃|1−1/d).
By Hoeffding’s inequality, the probability that

the total runtime
∑

i Zi exceeds its expectation by

more than |H̃| is Pr[
∑

i Zi − E[
∑

i Zi] ≥ |H̃|] =
e−Od(|H̃|2/

P
i(n

1/3dXi)
2) = e−Od(|H̃|2/n2/3d P

i(Xi)
2) =

e−Od(|H̃|2/n2/3d|H̃|1−1/d P
i Xi) =

e−Od(|H̃|2/n2/3d|H̃|1−1/d|H̃|) = e−Od(|H̃|1/d/n2/3d) =
e−Od(n1/3d).
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