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Abstract—In this paper we study the two player randomized
communication complexity of the sparse set disjointness and
the exists-equal problems and give matching lower and upper
bounds (up to constant factors) for any number of rounds for
both of these problems. In the sparse set disjointness problem,
each player receives a k-subset of [m] and the goal is to
determine whether the sets intersect. For this problem, we give
a protocol that communicates a total of O(k log(r) k) bits over r
rounds and errs with very small probability. Here we can take
r = log∗ k to obtain a O(k) total communication log∗ k-round
protocol with exponentially small error probability, improving
on the O(k)-bits O(log k)-round constant error probability
protocol of Håstad and Wigderson from 1997.

In the exists-equal problem, the players receive vectors
x, y ∈ [t]n and the goal is to determine whether there exists
a coordinate i such that xi = yi. Namely, the exists-equal
problem is the OR of n equality problems. Observe that exists-
equal is an instance of sparse set disjointness with k = n, hence
the protocol above applies here as well, giving an O(n log(r) n)
upper bound. Our main technical contribution in this paper is
a matching lower bound: we show that when t = Ω(n), any
r-round randomized protocol for the exists-equal problem with
error probability at most 1/3 should have a message of size
Ω(n log(r) n). Our lower bound holds even for super-constant
r ≤ log∗ n, showing that any O(n) bits exists-equal protocol
should have log∗ n − O(1) rounds. Note that the protocol we
give errs only with less than polynomially small probability
and provides guarantees on the total communication for the
harder set disjointness problem, whereas our lower bound
holds even for constant error probability protocols and for
the easier exists-equal problem with guarantees on the max-
communication. Hence our upper and lower bounds match in
a strong sense.

Our lower bound on the constant round protocols for exists-
equal shows that solving the OR of n instances of the equality
problems requires strictly more than n times the cost of a single
instance. To our knowledge this is the first example of such a
super-linear increase in complexity.

Keywords-communication complexity; direct-sum; round-
elimination; isoperimetric inequality

I. INTRODUCTION

In a two player communication problem the players,

named Alice and Bob, receive separate inputs, x and y, and

they communicate in order to compute the value f(x, y) of

a function f . In an r-round protocol, the players can take at

most r turns alternately sending each other a message and

the last player to receive a message declares the output of

the protocol. A protocol can be deterministic or randomized;

in the latter case the players can base their actions on a com-

mon random source and we measure the error probability:

the maximum over inputs (x, y), of the probability that the

output of the protocol differs from f(x, y).

A. Sparse set disjointness

Set disjointness is perhaps the most studied problem in

communication complexity. In the most standard version

Alice and Bob receive a subset of [m] ··= {1, . . . ,m} each,

with the goal of deciding whether their sets intersect or not.

The primary question is whether the players can improve on

the trivial deterministic protocol, where the first player sends

the entire input to the other player, thereby communicating

m bits. The first lower bound on the randomized complexity

of this problem was given in [3] by Babai et al., who showed

that any ε-error protocol for disjointness must communicate

Ω(
√
m) bits. The tight bound of Ω(m)-bits was first given

by Kalyanasundaram and Schnitger [29] and was later

simplified by Razborov [42] and Bar-Yossef et al. [4].

In the sparse set disjointness problem DISJmk , the sets

given to the players are guaranteed to have at most k
elements. The deterministic communication complexity of

this problem is well understood. The trivial protocol, where

Alice sends her entire input to Bob solves the problem in

one round using O(k log(2m/k)) bits. On the other hand, an

Ω(k log(2m/k)) bit total communication lower bound can

be shown even for protocols with an arbitrary number of

rounds, say using the rank method; see [32], page 175.

The randomized complexity of the problem is far more

subtle. The results cited above immediately imply a Ω(k)
lower bound for this version of the problem. The folklore

1-round protocol solves the problem using O(k log k) bits,

wherein Alice sends O(log k)-bit hashes for each element

of her set. Håstad and Wigderson [24] gave a protocol

that matches the Ω(k) lower bound mentioned above. Their

O(k)-bit randomized protocol runs in O(log k)-rounds and

errs with a small constant probability. In Section II, we

improve this protocol to run in log∗ k rounds, still with O(k)
total communication, but with exponentially small error in

k. We also present an r-round protocol for any r < log∗ k
with total communication O(k log(r) k) and error probability

well below 1/k; see Theorem 1. (Here log(r) denotes the

iterated logarithm function, see Section I-E.) As the exists-

equal problem with parameters t and n (see below) is a

special case of DISJtnn , our lower bounds for the exists-

equal problem (see below) show that complexity of this

algorithm is optimal for any number r ≤ log∗ k of rounds,
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even if we allow the much larger error probability of 1/3.

Buhrman et al. [13] and Woodruff [45] (as presented in [40])

show an Ω(k log k) lower bound for 1-round complexity

of DISJmk by a reduction from the indexing problem (this

reduction was also given in [17]). We note that these lower

bounds do not apply to the exists-equal problem, as the input

distribution they use generates instances inherently specific

to the disjointness problem; furthermore this distribution

admits a O(log k) bits protocol in two rounds.

B. The exists-equal problem

In the equality problem Alice and Bob receive elements x
and y of a universe [t] and they have to decide whether x =
y. We define the two player communication game exists-

equal with parameters t and n as follows. Each player is

given an n-dimensional vector from [t]n, namely x and y.

The value of the game is one if there exists a coordinate

i ∈ [n] such that xi = yi, zero otherwise. Clearly, this

problem is the OR of n independent instances of the equality

problem.

The direct sum problem in communication complexity

is the study of whether n instances of a problem can be

solved using less than n times the communication required

for a single instance of the problem. This question has been

studied extensively for specific communication problems as

well as some class of problems [14], [26], [27], [7], [19],

[25], [22], [5]. The so called direct sum approach is a very

powerful tool to show lower bounds for communication

games. In this approach, one expresses the problem at hand,

say as the OR of n instances of a simpler function and the

lower bound is obtained by combining a lower bound for the

simpler problem with a direct sum argument. For instance,

the two-player and multi-player disjointness bounds of [4],

the lopsided set disjointness bounds [41], and the lower

bounds for several communication problems that arise from

streaming algorithms [28], [34] are a few examples of results

that follow this approach.

Exists-equal with parameters t and n is a special case of

DISJtnn , so our protocols in Section II solve exists-equal.

We show that when t = Ω(n) these protocols are optimal,

namely every r-round randomized protocol (r ≤ log∗ n)

with at most 1/3 error error probability needs to send at

least one message of size Ω(n log(r) n) bits. See Theorem 4.

Our result shows that computing the OR of n instances of

the equality problem requires strictly more than n times

the communication required to solve a single instance of

the equality problem when the number of rounds is smaller

than log∗ n−O(1). Recall that the equality problem admits

an ε-error log(1/ε)-bit one-round protocol in the common

random source model.

For r = 1, our result implies that to compute the OR of n
instances of the equality problem with constant probability,

no protocol can do better than solving each instance of the

equality problem with high probability so that the union

bound can be applied when taking the OR of the computed

results. The single round case of our lower bound also

generalizes the Ω(n log n) lower bound of Molinaro et al.

[37] for the one round communication problem, where the

players have to find all the answers of n equality problems,

outputting an n bit string.

C. Lower bound techniques

We obtain our general lower bound via a round elim-

ination argument. In such an argument one assumes the

existence of a protocol P that solves a communication

problem, say f , in r rounds. By suitably modifying the

internals of P , one obtains another protocol P ′ with r − 1
rounds, which typically solves smaller instances of f or

has larger error than P . Iterating this process, one obtains

a protocol with zero rounds. If the protocol we obtain

solves non-trivial instances of f with good probability, we

conclude that we have arrived at a contradiction, therefore

the protocol we started with, P , cannot exist. Although

round elimination arguments have been used for a long

time, our round elimination lemma is the first to prove a

super-linear communication lower bound in the number of

primitive problems involved, obtaining which requires new

and interesting ideas.

The general round elimination presented in Section V

is very involved, but the lower bound on the one-round

protocols can also be obtained in a more elementary way. As

the one round case exhibits the most dramatic super-linear

increase in the communication cost and also generalizes the

lower bound in [37], we include this combinatorial argument

separately in Section III, see Theorem 2.

At the heart of the general round elimination lemma is

a new isoperimetric inequality on the discrete cube [t]n

endowed with the Hamming distance. We present this result,

Theorem 3, in Section IV. To the best of our knowledge, the

first isoperimetric inequality on this metric space was proven

by Lindsey in [33], where the subsets of [t]n of a certain

size with the so called minimum induced-edge number were

characterized. This result was rediscovered in [31] and [16]

as well. See [2] for a generalization of this inequality to

universes which are n-dimensional boxes with arbitrary

side lengths. In [9], Bollobás et al. study isoperimetric

inequalities on [t]n endowed with the �1 distance. For the

purposes of our proof we need to find sets S that minimize a

substantially more complicated measure. This measure also

captures how spread out S is and can be described roughly

as the average over points x ∈ [t]n of the logarithm of the

number of points in the intersection of S and a Hamming

ball around x.

D. Related work

In [36], a round elimination lemma was given, which

applies to a class of problems with certain self-reducibility

properties. The lemma is then is used to get lower bounds
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for various problems including the greater-than and the

predecessor problems. This result was later tightened in

[44] to get better bounds for the aforementioned problems.

Different round elimination arguments were also used in

[30], [20], [38], [35], [18], [6] for various communication

complexity lower bounds and most recently in [10] and

[12] for obtaining lower bounds for the gapped Hamming

distance problem.

In parallel and independent of the present form of this pa-

per Brody et al. [11] have also established an Ω(n log(r) n)
lower bound for the r-round communication complexity

of the exists-equal problem with parameter n. Their result

applies for protocols with a polynomially small error prob-

ability like 1/n. This stronger assumption on the protocol

allows for simpler proof techniques, namely the information

complexity based direct sum technique developed in several

papers including [1], [14], but it is not enough to create

an example where solving the OR of n communication

problems requires more than n times the communication

of solving a single instance. Indeed, even in the shared

random source model one needs log n bits of communication

(independent of the number of rounds) to achieve 1/n error

in a single equality problem.

E. Notation

For a positive integer t, we write [t] for the set of positive

integers not exceeding t. For two n-dimensional vectors x,

y, let Match(x, y) be the number of coordinates where x
and y agree. Notice that n −Match(x, y) is the Hamming

distance between x and y. For a vector x ∈ [t]n we write

xi for its ith coordinate. We denote the distribution of a

random variable X by dist(X) and the support set of it

by supp(X). We write Prx∼ν [·] and Ex∼ν [·] for the prob-

ability and expectation, respectively, when x is distributed

according to a distribution ν. We write μ for the uniform

distribution on [t]n. For instance, for a set S ⊆ [t]n, we have

μ(S) = |S|/tn.

For x, y ∈ [t]n we denote the value of the exists-equal

game by EEt
n(x, y). Recall that it is zero if and only if x

and y differ in each coordinate. Whenever we drop t from

the notation we assume t = 4n. Often we will also drop n
and simply denote the game value by EE(x, y) if n is clear

from the context.

All logarithms in this paper are to the base 2. Analogously,

throughout this paper we take exp(x) = 2x. We will also

use the iterated versions of these functions:

log(0) x ··= x, exp(0) x ··= x,

log(r) x ··= log(log(r−1) x), exp(r) x ··= exp(exp(r−1) x)

for r ≥ 1. Moreover we define log∗ x to be the smallest

integer r for which log(r) x < 2.

Throughout the paper we ignore divisibility problems,

e.g., in Lemma 2 in Section III we assume that tn/2c+1 is

an integer. Dealing with rounding issues would complicate

the presentation but does not add to the complexity of the

proofs.

F. Information theory

Here we briefly review some definitions and facts from

information theory that we use in this paper. For a ran-

dom variable X , we denote its binary Shannon entropy by

H(X). We will also use conditional entropies H(X |Y ) =
H(X,Y ) − H(Y ). Let μ and ν be two probability dis-

tributions, supported on the same set S. We denote the

binary Kullback-Leibler divergence between μ and ν by

D(μ ‖ ν). A random variable with Bernoulli distribution

with parameter p takes the value 1 with probability p and the

value 0 with probability 1−p. The entropy of this variable is

denoted by H2(p). For two reals p, q ∈ (0, 1), we denote by

D2(p ‖ q) the divergence between the Bernoulli distributions

with parameters p and q.

If X ∈ [t]n and L ⊆ [n], then the projection of X to the

coordinates in L is denoted by XL. Namely, XL is obtained

from X = (X1, . . . , Xn) by keeping only the coordinates Xi

with i ∈ L. The following lemma of Chung et al. [15] relates

the entropy of a variable to the entropy of its projections.

Lemma 1. (Chung et al. [15]) Let supp(X) ⊆ [t]n. We have
l
n H(X) ≤ EL[H(XL)], where the expectation is taken for
a uniform random l-subset L of [n].

II. THE UPPER BOUND

Recall that in the communication problem DISJmk , each

of the two players is given a subset of [m] of size at most k
and they communicate in order to determine whether their

sets are disjoint or not. In 1997, Håstad and Wigderson [39],

[24] gave a probabilistic protocol that solves this problem

with O(k) bits of communication and has constant one-sided

error probability. The protocol takes O(log k) rounds. Let us

briefly review this protocol as this is the starting point of our

protocol.

Let S, T ⊆ [m] be the inputs of Alice and Bob. Observe

that if they find a set Z satisfying S ⊆ Z ⊆ [m], then

Bob can replace his input T with T ′ = T ∩ Z as T ′ ∩
S = T ∩ S. The main observation is that if S and T are

disjoint, then a random set Z ⊇ S will intersect T in a

uniform random subset, so one can expect |T ′| ≈ |T |/2.

In the Håstad-Wigderson protocol the players alternate in

finding a random set that contains the current input of one

of them, effectively halving the other player’s input. If in

this process the input of one of the players becomes empty,

they know the original inputs were disjoint. If, however, the

sizes of their inputs do not show the expected exponential

decrease in time, then they declare that their inputs intersect.

This introduces a small one sided error. Note that one of the

two outcomes happens in O(log k) rounds. An important

observation is that Alice can describe a random set Z ⊇ S
to Bob using an expected O(|S|) bits by making use of the
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joint random source. This makes the total communication

O(k).

In our protocol proving the next theorem, we do almost

the same, but we choose the random sets Z ⊇ S not uni-

formly, but from a biased distribution favoring ever smaller

sets. This makes the size of the input sets of the players

decrease much more rapidly, but describing the random set

Z to the other player becomes more costly. By carefully

balancing the parameters we optimize for the total commu-

nication given any number of rounds. When the number of

rounds reaches log∗ k − O(1) the communication reaches

its minimum of O(k) and the error becomes exponentially

small.

Theorem 1. For any r ≤ log∗ k, there is an r-round
probabilistic protocol for DISJmk with O(k log(r) k) bits
total communication. There is no error for intersecting input
sets, and the probability of error for disjoint sets can be
made O(1/ exp(r)(c log(r) k) + exp(−√k))� 1/k for any
constant c > 11

For r = log∗ k − O(1) rounds this means an O(k)-bit
protocol with error probability O(exp(−√k)).

Proof: We start with the description of the protocol. Let

S0 and S1 be the input sets of Alice and Bob, respectively.

For 1 ≤ i ≤ r, i even Alice sends a message describing

a set Zi ⊃ Si based on her “current input” Si and Bob

updates his “current input” Si−1 to Si+1 ··= Si−1∩Zi. In odd

numbered rounds the same happens with the role of Alice

and Bob reversed. We depart from the Håstad-Wigderson

protocol in the way we choose the sets Zi: Using the shared

random source the players generate li random subsets of

[m] containing each element of [m] independently and with

probability pi. We will set these parameters later. The set

Zi is chosen to be the first such set containing Si. Alice or

Bob (depending on the parity of i) sends the index of this

set or ends the protocol by sending a special error signal

if none of the generated sets contain Si. The protocol ends

with declaring the inputs disjoint if the error signal is never

sent and we have Sr+1 = ∅. In all other cases the protocol

ends with declaring “not disjoint”.

This finishes the description of the protocol except for the

setting of the parameters. Note that the error of the protocol

is one-sided: S0 ∩ S1 = Si ∩ Si+1 for i ≤ r, so intersecting

inputs cannot yield Sr+1 = ∅.
We set the parameters (including ki used in the analysis)

1 In an earlier manuscript of this paper we shared in 2010 with the
first two authors of [11], we gave a protocol with identical communication
cost but polynomially small error probability of k−c. In [11] a version
of this protocol with polynomially small error that works for EEt

k was
presented and it was mentioned that the error bound can be improved to
exp(−∏r

i=1 log
(i) k). This work inspired us to explore and lower the

error further and led us to obtain the tighther 1/ exp(r)(c log(r) k) +
exp(−√k) bound.

as follows:

u = (c+ 1) log(r) k,

pi =
1

exp(i) u
for 1 ≤ i ≤ r,

l1 = k exp(ku),

li = k2k/2
i−4

for 2 ≤ i ≤ r,

k0 = k1 = k,

ki =
k

2i−4 exp(i−1) u
for 2 ≤ i ≤ r,

kr+1 = 0.

The message sent in round i > 1 has length �log(li +
1)� < k/2i−4+log k+1, thus the total communication in all

rounds but the first is O(k). The length of the first message

is �log(l1 +1)� ≤ ku+ log k+1. The total communication

is O(ku) = O(ck log(r) k) as claimed (recall that c is a

constant).

Let us assume the input pair is disjoint. To estimate the

error probability we call round i bad if an error message

is sent or a set Si+1 is created with |Si+1| > ki+1. If

no bad round exists we have Sr+1 = ∅ and the protocol

makes no error. In what follows we bound the probability

that round i is bad assuming the previous rounds are not bad

and therefore having |Sj | ≤ kj for 0 ≤ j ≤ i.
The probability that a random set constructed in round i

contains Si is p
−|Si|
i ≥ p−ki

i . The probability that none of

the li sets contains Si and thus an error message is sent is

therefore at most (1− pki
i )li < e−k.

If no error occurs in the first bad round i, then |Si+1| >
ki+1. Note that in this case Si+1 = Si−1∩Zi contains each

element of Si−1 independently and with probability pi. This

is because the choice of Zi was based on it containing Si, so

it was independent of its intersection with Si−1 (recall that

Si ∩ Si−1 = S1 ∩ S0 = ∅). For i < r we use the Chernoff

bound. The expected size of Si+1 is |Si−1|pi ≤ ki−1pi ≤
ki+1/2, thus the probability of |Si+1| > ki+1 is at most

2−ki+1/4. Finally for the last round i = r we use the simpler

estimate prkr−1 ≤ k/ exp(r) u for |Sr+1| > kr+1 = 0.

Summing over all these estimates we obtain the following

error bound for our protocol:

Pr[error] ≤ re−k +
k

exp(r) u
+

r∑
i=2

2−ki/4.

In case kr ≥ 4
√
k this error estimate proves the theorem.

In case kr < 4
√
k we need to make a minor adjustments in

the setting of our parameters. We take j to be the smallest

value with kj < 4
√
k, modify the parameters for round j

and stop the protocol after this round declaring “disjoint” if

Sj+1 = ∅ and “intersecting” otherwise. The new parameters

for round j are k′j = 4
√
k, p′j = 2−2

√
k, l′j = k28k. This

new setting of the parameters makes the message in the last

round linear in k, while both the probability that round j−1
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is bad because it makes |Sj | > k′j , or the probability that

round j is bad for any reason (error message or Sj+1 �= ∅)
is O(2−

√
k). This finishes the analysis of our protocol.

III. LOWER BOUND FOR SINGLE ROUND PROTOCOLS

In this section we give an combinatorial proof that any sin-

gle round randomized protocol for the exists-equal problem

with parameters n and t = 4n has complexity Ω(n log n) if

its error probability is at most 1/3. As pointed out in the

Introduction, to our knowledge this is the fist established

case when solving the OR of n instances of a communication

problem requires strictly more than n times the complexity

needed to solve a single such instance.

We start with with a simple and standard reduction from

the randomized protocol to the deterministic one and further

to a large set of inputs that makes the first (and in this

case only) message fixed. These steps are also used in the

general round elimination argument therefore we state them

in general form.

Let ε > 0 be a small constant and let P be an 1/3-

error randomized protocol for the exists-equal problem with

parameters n and t = 4n. We repeat the protocol P in

parallel taking the majority output, so that the number of

rounds does not change, the length of the messages is

multiplied by a constant and the error probability decreases

below ε. Now we fix the coins of of this ε-error protocol

in a way to make the resulting deterministic protocol err

on at most ε fraction of the possible inputs. Denote the

deterministic protocol we obtain by Q.

Lemma 2. Let Q be a deterministic protocol for the
EEn problem that makes at most ε error on the uniform
distribution. Assume Alice sends the first message of length
c. There exists an S ⊂ [t]n of size μ(S) = 2−c−1 such that
the first message of Alice is fixed when x ∈ S and we have
Pry∼μ[Q(x, y) �= EE(x, y)] ≤ 2ε for all x ∈ S.

Proof: Note that the quantity e(x) = Pry∼μ[Q(x, y) �=
EE(x, y)], averaged over all x, is the error probability of Q
on the uniform input, hence is at most ε. Therefore for at

least half of x, we have e(x) ≤ 2ε. The first message of

Alice partitions this half into at most 2c subsets. We pick S
to consist of tn/2c+1 vectors of the same part: at least one

part must have this many elements.

We fix a set S as guaranteed by the lemma. We assume we

started with a single round protocol, so Q(x, y) = Q(x′, y)
whenever x, x′ ∈ S. Indeed, Alice sends the same message

by the choice of S and then the output is determined by

Bob, who has the same input in the two cases.

We call a pair (x, y) bad if x ∈ S, y ∈ [t]n and Q errs on

this input, i.e., Q(x, y) �= EE(x, y). Let b be the number of

bad pairs. By Lemma 2 each x ∈ |S| is involved in at most

2εtn bad pairs, so we have

b ≤ 2ε|S|tn.

We call a triple (x, x′, y) bad if x, x′ ∈ S, y ∈ [t]n,

EE(x, y) = 1 and EE(x′, y) = 0. The proof is based

on double counting the number z of bad triples. Note that

for a bad triple (x, x′, y) we have Q(x, y) = Q(x′, y) but

EE(x, y) �= EE(x′, y), so Q must err on either (x, y) or

(x′, y) making one of these pairs bad. Any pair (bad or not)

is involved in at most |S| bad triples, so we have

z ≤ b|S| ≤ 2ε|S|2tn.
Let us fix arbitrary x, x′ ∈ S with Match(x, x′) ≤

n/2. We estimate the number of y ∈ [t]n that makes

(x, x′, y) a bad triple. Such a y must have Match(x, y) >
Match(x′, y) = 0. To simplify the calculation we only count

the vectors y with Match(x, y) = 1. The match between

y and x can occur at any position i with xi �= x′i. After

fixing the coordinate yi = xi we can pick the remaining

coordinates yj of y freely as long as we avoid xj and x′j .

Thus we have

|{y | (x, x′y) is bad}| ≥ (n−Match(x, x′))(t− 2)n−1

≥ (n/2)(t− 2)n−1 > tn/14,

where in the last inequality we used t = 4n. Let s be the size

of the Hamming ball Bn/2(x) = {y ∈ [t]n | Match(x, y) >
n/2}. By the Chernoff bound we have s < tn/nn/2 (using

t = 4n again). For a fixed x we have at least |S|−s choices

for x′ ∈ S with Match(x, x′) ≤ n/2 when the above bound

for triples apply. Thus we have

z ≥ |S|(|S| − s)tn/14.

Combining this with the lower bound on the number of bad

triples we get

28ε|S| ≥ |S| − s.

Therefore we conclude that we either have large error

ε > 1/56 or else we have |S| ≤ 2s < 2tn/nn/2. As we

have |S| = tn/2c+1 the latter possibility implies

c ≥ n log n/2− 2.

Summarizing we have the following.

Theorem 2. A single round probabilistic protocol for EEn

with error probability 1/3 has complexity Ω(n log n).
A single round deterministic protocol for EEn that errs

on at most 1/56 fraction of the inputs has complexity at
least n log n/2− 2.

IV. AN ISOPERIMETRIC INEQUALITY ON THE DISCRETE

GRID

The isoperimetric problem on the Boolean cube {0, 1}n
proved extremely useful in theoretical computer science. The

problem is to determine the set S ⊆ {0, 1}n of a fixed

cardinality with the smallest “perimeter”, or more generally,

to establish connection between the size of a set and the

size of its boundary. Here the boundary can be defined
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in several ways. Considering the Boolean cube as a graph

where vertices of Hamming distance 1 are connected, the

edge boundary of a set S is defined as the set of edges

connecting S and its complement, while the vertex boundary
consists of the vertices outside S having a neighbor in S.

Harper [21] showed that the vertex boundary of a Ham-

ming ball is smallest among all sets of equal size, and the

same holds for the edge boundary of a subcube. These results

can be generalized to other cardinalities [23]; see the survey

by Bezrukov [8].

Consider the metric space over the set [t]n endowed with

the Hamming distance. Let f be a concave function on the

nonnegative integers and 1 ≤ M < n be an integer. We

consider the following value as a generalized perimeter of a

set S ⊆ [t]n:

E
x∼μ

[f (|BM (x) ∩ S|)],

where BM (x) = {y ∈ [t]n | Match(x, y) ≥ M} is the

radius n−M Hamming ball around x. Note that when M =
n− 1 and f is the counting function given as f(0) = 0 and

f(l) = 1 for l > 0 (which is concave), the above quantity is

exactly the normalized size of the vertex boundary of S. For

other concave functions f and parameters M this quantity

can still be considered a measure of how “spread out” the

set S is.

We start the technical part of this section by introducing

the notation we will use. For x, y ∈ [t]n and i ∈ [n] we

write x ∼i y if xj = yj for j ∈ [n]\{i}. Observe that ∼i is

an equivalence relation. A set K ⊆ [t]n is called an i-ideal
if x ∼i y, xi < yi and y ∈ K implies x ∈ K. We call a set

K ⊆ [t]n an ideal if it is an i-ideal for all i ∈ [n].
For i ∈ [n] and x ∈ [t]n we define downi(x) =

(x1, . . . , xi−1, xi − 1, xi+1, . . . , xn). We have downi(x) ∈
[t]n whenever xi > 1. Let K ⊆ [t]n be a set, i ∈ [n]
and 2 ≤ a ∈ [t]. For x ∈ K, we define downi,a(x,K) =
downi(x) if xi = a and downi(x) /∈ K and we

set downi,a(x,K) = x otherwise. We further define

downi,a(K) = {downi,a(x,K) | x ∈ K}. For K ⊆ [t]n

and i ∈ [n] we define

downi(K) =
{
y ∈ [t]n | yi ≤ |{z ∈ K | y ∼i z}|

}
.

Finally for K ⊆ [t]n we define

down(K) = down1(down2(. . . downn(K) . . .)).

The following lemma states few simple observations about

these down operations.

Lemma 3. Let K ⊆ [t]n be a set and let i, j ∈ [n] be
integers. The following hold.

(i) downi(K) can be obtained from K by applying several
operations downi,a.

(ii) | downi,a(K)| = |K| for each 2 ≤ a ≤ t,
| downi(K)| = |K| and | down(K)| = |K|.

(iii) downi(K) is an i-ideal and if K is a j-ideal, then
downi(K) is also a j-ideal.

(iv) down(K) is an ideal. For any x ∈ down(K) we have
P ··= [x1] × [x2] × · · · × [xn] ⊆ down(K) and there
exists a set T ⊆ K with P = down(T ).

Proof: For statement (i) notice that as long as K is

not an i-ideal one of the operations downi,a will not fix K
and hence will decrease

∑
x∈K xi. Thus a finite sequence

of these operations will transform K into an i-ideal. It is

easy to see that the operations downi,a preserve the number

of elements in each equivalence class of ∼i, thus the i-ideal

we arrive at must indeed be downi(K).

Statement (ii) follows directly from the definitions of each

of these down operations.

The first claim of statement (iii), namely that downi(K)
is an i-ideal, is trivial from the definition. Now assume

j �= i and K is a j-ideal, y ∈ downi(K) and yj > 1.

To see that downi(K) is a j-ideal it is enough to prove that

downj(y) ∈ downi(K). Since y ∈ downi(K), there are yi
distinct vectors z ∈ K that satisfy z ∼i y. Considering the

vectors downj(z) ∼i downj(y) and using that these distinct

vectors are in the j-ideal K proves that downj(y) is indeed

contained in downi(K).

By statement (iii), down(K) is an i-ideal for each i ∈ [n].
Therefore down(K) is an ideal and the first part of statement

(iv), that is, P ⊆ K ′ follows. We prove the existence

of suitable T by induction on the dimension n. The base

case n = 0 (or even n = 1) is trivial. For the inductive

step consider K ′ = down2(down3(. . . downn(K) . . .)). As

x ∈ down(K) = down1(K
′), we have distinct vectors

x(k) ∈ K ′ for k = 1, . . . , x1, satisfying x(k) ∼1 x. Notice

that the construction of K ′ from K is performed indepen-

dently on each of the (n − 1)-dimensional “hyperplanes”

Sl = {y ∈ [t]n | y1 = l} as none of the operations

down2, . . . , downn change the first coordinate of the vec-

tors. We apply the inductive hypothesis to obtain the sets

T (k) ⊆ Sx
(k)
1 ∩K such that down2(. . . downn(T

(k)) . . .) =

{x(k)
1 }× [x2]×· · ·× [xn]. Using again that these sets are in

distinct hyperplanes and the operations down2, . . . , downn
act separately on the hyperplanes Sl, we get for T :=
∪x1

k=1T
(k) that

down2(. . . downn(T ) . . . ) = {x(k)
1 | k ∈ [x1]}×[x2]×· · ·×[xn].

Applying down1 on both sides finishes the proof of this last

part of the lemma.

For sets x ∈ [t]n, I ⊆ [n], and integer M ∈ [n] we

define BI,M (x) = {y ∈ [t]n | Match(xI , yI) ≥ M}. The

projection of BI,M to the coordinates in I is the Hamming

ball of radius |I| −M around the projection of x.

Lemma 4. Let I ⊆ [n], M ∈ [n] and let f be a concave
function on the nonnegative integers. For arbitrary K ⊆ [t]n
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we have

E
x∼μ

[f(|BI,M (x) ∩ down(K)|)] ≤ E
x∼μ

[f(|BI,M (x) ∩K|)].

Proof: By Lemma 3(i), the set down(K) can be ob-

tained from K by a series of operations downi,a with various

i ∈ [n] and 2 ≤ a ≤ t. Therefore, it is enough to prove

that the expectation in the lemma does not increase in any

one step. Let us fix i ∈ [n] and 2 ≤ a ≤ t. We write

Nx = BI,M (x) ∩K and N ′
x = BI,M (x) ∩ downi,a(K) for

x ∈ [t]n. We need to prove that

E
x∼μ

[f(|Nx|)] ≥ E
x∼μ

[f(|N ′
x|)].

Note that |Nx| = |N ′
x| whenever i /∈ I or xi /∈ {a, a −

1}. Thus, we can assume i ∈ I and concentrate on x ∈
[t]n with xi ∈ {a, a − 1}. It is enough to prove f(|Nx|) +
f(|Ny|) ≥ f(|N ′

x|)+ f(|N ′
y|) for any pair of vectors x, y ∈

[t]n, satisfying xi = a, and y = downi(x).
Let us fix such a pair x, y and set C = {z ∈ K \

downi,a(K) | Match(xI , zI) = M}. Observe that Nx =
N ′

x ∪ C and N ′
x ∩ C = ∅. Similarly, observe that N ′

y =
Ny ∪downi,a(C) and Ny ∩downi,a(C) = ∅. Thus we have

|N ′
x| = |Nx| − |C| and |N ′

y| = |Ny| + | downi,a(C)| =
|Ny|+ |C|.

The inequality f(|Nx|) + f(|Ny|) ≥ f(|N ′
x|) + f(|N ′

y|)
follows now from the concavity of f , the inequalities |N ′

x| ≤
|Ny| ≤ |N ′

y| and the equality |Nx| + |Ny| = |N ′
x| + |N ′

y|.
Here the first inequality follows from downi,a(N

′
x) ⊆

downi,a(Ny), the second inequality and the equality comes

from the observations of the previous paragraph.

Lemma 5. Let K ⊆ [t]n be arbitrary. There exists a vector
x ∈ K having at least n/5 coordinates that are greater than
k ··= t

2μ(K)5/(4n).

Proof: See the full version [43].

Theorem 3. Let S be an arbitrary subset of [t]n. Let k =
t
2μ(S)

5/(4n) and M = nk/(20t). There exists a subset T ⊂
S of size kn/5 and I ⊂ [n] of size n/5 such that, defining
Nx = {x′ ∈ T | Match(xI , x

′
I) ≥M}, we have

(i) Prx∼μ[Nx = ∅] ≤ 5−M and
(ii) Ex∼μ[log |Nx|] ≥ (n/5 − M) log k − n log k/5M ,

where we take log 0 = −1 to make the above expecta-
tion exist.

Proof: By Lemma 3(ii), we have | down(S)| = |S|. By

Lemma 5, there exists an x ∈ down(S) having at least n/5
coordinates that are greater than k. Let I ⊂ [n] be a set of

n/5 coordinates such that xi ≥ k for a fixed x ∈ down(S).
By Lemma 3(iv), down(S) is an ideal and thus it contains

the set P =
∏

i Pi, where Pi = [k] for i ∈ I and Pi = {1}
for i /∈ I . Also by Lemma 3(iv), there exists a T ⊆ S such

that P = down(T ). We fix such a set T . Clearly, |T | = kn/5.

For a vector x ∈ [t]n, let h(x) be the number of coordi-

nates i ∈ I such that xi ∈ [k]. Note that Ex∼μ[h(x)] = 4M

and h(x) has a binomial distribution. By the Chernoff bound

we have Prx∼μ[h(x) < M ] < 5−M . For x with h(x) ≥M
we have |BI,M (x) ∩ P | ≥ kn/5−M , but for h(x) < M
we have BI,M (x) ∩ P = ∅. With the unusual convention

log 0 = −1 we have

E
x∼μ

[log |BI,M (x) ∩ P |]
≥ Pr[h(x) ≥M ](n/5−M) log k − Pr[h(x) < M ]

> (n/5−M) log k − n log k/5M

We have down(T ) = P and our unusual log is concave

on the nonnegative integers, so Lemma 4 applies and proves

statement (ii):

E
x∼μ

[log |Nx|] ≥ E
x∼μ

[log |BI,M (x) ∩ P |]
≥ (n/5−M) log k − n log k/5M .

To show statement (i), we apply Lemma 4 with the

concave function f defined as f(0) = −1 and f(l) = 0
for all l > 0. We obtain that

Pr
x∼μ

[Nx = ∅] = − E
x∼μ

[f(|Nx|)]
≤ − E

x∼μ
[f(|BI,M (x) ∩ P |)]

= Pr
x∼μ

[BI,M (x) ∩ P = ∅] < 5−M .

This completes the proof.

V. LOWER BOUND FOR MULTIPLE ROUND PROTOCOLS

In this section we prove our main lower bound result:

Theorem 4. For any r ≤ log∗ n, an r-round probabilistic
protocol for EEn with error probability at most 1/3 sends
at least one message of size Ω(n log(r) n).

Note that the r = 1 round case of this theorem was proved

as Theorem 2 in Section III. The other extreme, which

immediately follows from Theorem 4, is the following.

Corollary 1. Any probabilistic protocol for EEn with
maximum message size O(n) and error 1/3 has at least
log∗ n−O(1) rounds.

Theorem 4 is a direct consequence of the corresponding

statement on deterministic protocols with small distribu-

tional error on uniform distribution; see Theorem 5 at the

end of this section. Indeed, we can decrease the error of a

randomized protocol below any constant ε > 0 for the price

of increasing the message length by a constant factor, then

we can fix the coins of this low error protocol in a way that

makes the resulting deterministic protocol Q err in at most

ε fraction of the possible inputs. Applying Theorem 5 to the

protocol Q proves Theorem 4.

In the rest of this section we use round-elimination to

prove Theorem 5, that is, we will use Q to solve smaller

instances of the exists-equal problem in a way that the first

message is always the same, and hence can be eliminated.
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Suppose Alice sends the first message of c bits in Q. By

Lemma 2, there exists a S ⊂ [t]n of size μ(S) = 2−c−1 such

that the first message of Alice is fixed when x ∈ S and we

have Pry∼μ[Q(x, y) �= EE(x, y)] ≤ 2ε for all x ∈ S. Fix

such a set S and let k ··= t/2
5(c+1)

4n +1 and M ··= nk/(20t).
By Theorem 3, there exists a T ⊂ S of size kn/5 and I ⊂ [n]
of size n/5 such that defining

Nx = {y ∈ T | Match(xI , yI) ≥M}
we have Prx∼μ[Nx = ∅] ≤ 5−M and Ex∼μ[log |Nx|] ≥
(n/5 −M) log k − n log k/5M . Let us fix such sets T and

I . Note also that Theorem 3 guarantees that T is a strict

subset of S. Designate an arbitrary element of S \ T as x′e.

A. Embedding the smaller problem

The players embed a smaller instance u, v ∈ [t′]n
′

of the

exists-equal problem in EEn concentrating on the coordi-

nates I determined above. We set n′ ··= M/10 and t′ ··= 4n′.
Optimally, the same embedding should guarantee low error

probability for all pairs of inputs, but for technical reasons

we need to know the number of coordinate agreements

Match(u, v) for the input pairs (u, v) in the smaller problem

having EEn′(u, v) = 1. Let R ≥ 1 be this number, so we

are interested in inputs u, v ∈ [t′]n
′

with Match(u, v) = 0
or R. We need this extra parameter so that we can eliminate

a non-constant number of rounds and still keep the error

bound a constant. For results on constant round protocols

one can concentrate on the R = 1 case.

In order to solve the exist-equal problem with parameters

t′ and n′ Alice and Bob use the joint random source to

turn their input u, v ∈ [t′]n
′

into longer random vectors

X ′, Y ∈ [t]n, respectively, and apply the protocol Q above

to solve this exists-equal problem for these larger inputs.

Here we informally list the main requirements on the process

generating X ′ and Y . We require these properties for the

random vectors X ′, Y ∈ [t]n generated from a fixed pair

u, v ∈ [t′]n
′

satisfying Match(u, v) = 0 or R.

(P1) EE(X ′, Y ) = EE(u, v) with large probability,

(P2) supp(X ′) = T ∪ {x′e} and

(P3) for most x′ ∼ X ′, we have dist(Y |X ′ = x′) is close

to uniform distribution on [t]n.

Combining these properties with the fact that

Pry∼μ[Q(x, y) �= EE(x, y)] ≤ 2ε for each x ∈ S,

we will argue that for the considered pairs of inputs

Q(X ′, Y ) equals EE(u, v) with large probability, thus

the combined protocol solves the small exists-equal

instance with small error, at least for input pairs with

Match(u, v) = 0 or R. Furthermore, by Property (P2) the

first message of Alice will be fixed and hence does not

need to be sent, making the combined protocol one round

shorter.

The random variables X ′ and Y are constructed as

follows. Let m ··= 2n/(MR) be an integer. Each player

repeats his or her input (u and v, respectively) m times,

obtaining a vector of size n/(5R). Then using the shared

randomness, the players pick n/(5R) uniform random maps

mi : [t
′]→ [t] independently and apply mi to ith coordinate.

Furthermore, the players pick a uniform random 1-1 map-

ping π : [n/(5R)]→ I and use it to embed the coordinates

of the vectors they constructed among the coordinates of the

vectors X and Y of length n. The remaining n − n/(5R)
coordinates of X is picked uniformly at random by Alice

and similarly, the remaining n − n/(5R) coordinates of

Y is picked uniformly at random by Bob. Note that the

marginal distribution of both X and Y are uniform on [t]n.

If Match(u, v) = 0 the vectors X and Y are independent,

while if Match(u, v) = R, then Y can be obtained by

selecting a random subset of I of cardinality mR, copying

the corresponding coordinates of X and filling the rest of Y
uniformly at random.

This completes the description of the random process for

Bob. However Alice generates one more random variable

X ′ as follows. Recall that Nx = {z ∈ T | Match(zI , xI) ≥
M}. The random variable X ′ is obtained by drawing x ∼ X
first and then choosing a uniform random element of Nx. In

the (unlikely) case that Nx = ∅, Alice chooses X ′ = x′e.

Note that X ′ either equals x′e or takes values from T ,

hence Property (P2) holds. In the next lemma we quantify

and prove Property (P1) as well.

Lemma 6. Assume n ≥ 3, M ≥ 2 and u, v ∈ [t′]n
′
. We

have
(i) if Match(u, v) = 0 then Pr[EE(X ′, Y ) = 0] > 0.77;

(ii) if Match(u, v) = R, then Pr[EE(X ′, Y ) = 1] ≥ 0.80.

Proof: For the first claim, note that when

Match(u, v) = 0, the random variables X and Y are

independent and uniformly distributed. We construct X ′

based on X , so its value is also independent of Y . Hence

Pr[EE(X ′, Y ) = 0] = (1 − 1/t)n. This quantity goes to

e−1/4 since t = 4n and is larger than 0.77 when n ≥ 3.

This establishes the first claim.

For the second claim let J = {i ∈ I | Xi = Yi}
and K = {i ∈ I | X ′

i = Xi}. By construction, |J | =
Match(XI , YI) ≥ mR and |K| = Match(X ′

I , XI) ≥ M
unless NX = ∅. By our construction, each J ⊂ I of

the same size is equally likely by symmetry, even when

we condition on a fix value of X and X ′. Thus we have

E[|J ∩ K| |NX �= ∅] ≥ mRM/|I| = 10 and Pr[J ∩ K =
∅ |NX �= ∅] < e−10. Note that X is distributed uniformly

over [t]n, therefore by Theorem 3(i) the probability that

NX = ∅ is at most 5−M . Note that Match(X ′, Y ) ≥ |J∩K|
and thus Pr[EE(X ′, Y ) = 0] ≤ Pr[J ∩ K = ∅] ≤
Pr[J ∩ K = ∅ |NX �= ∅] + Pr[NX = ∅] ≤ e−10 + 5−M .

This completes the proof.

We measure “closeness to uniformity” in Property (P3)

by simply calculating the entropy. This entropy argument is

postponed to the next subsection; here we show how such
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a bound to the entropy implies that the error introduced by

Q is small.

Lemma 7. Let x′ ∈ S be fixed and let γ be a probability
in the range 2ε ≤ γ < 1. If H(Y |X ′ = x′) ≥ n log t −
D2(γ ‖ 2ε) then Pry∼Y |X′=x′ [Q(x′, y) �= EE(x′, y)] ≤ γ.

Proof: For a distribution ν over [t]n, let e(ν) =
Pry∼ν [Q(x′, y) �= EE(x′, y)]. We prove the contrapos-

itive of the statement of the lemma, that is assuming

Pry∼Y |X′=x′ [Q(x′, y) �= EE(x′, y)] > γ we prove

H(Y |X ′ = x′) < n log t−D2(γ ‖ 2ε):
n log t−H(Y |X ′ = x′) = D(dist(Y |X ′ = x′) ‖μ)

≥ D2(e(dist(Y |X ′ = x′)) ‖ e(μ))
≥ D2(γ ‖ 2ε),

where the first inequality follows from the chain rule for the

Kullback-Leibler divergence.

B. Establishing Property (P3)

We quantify Property (P3) using the conditional entropy

H(Y |X ′). If Match(u, v) = R our process generates X and

Y with the expected number E[Match(XI , YI)] of matches

only slightly more than the minimum mR. We lose most of

these matches with Y when we replace X by X ′ and only

an expected constant number remains. A constant number

of forced matches with X ′ within I restricts the number

of possible vectors Y but it only decreases the entropy by

O(1). The calculations in this subsection make this intuitive

argument precise.

Lemma 8. Let X ′, Y be as constructed above. The following
hold.

(i) If Match(u, v) = 0 we have H(Y |X ′) = n log t.
(ii) If M > 100 log n and Match(u, v) = R we have

H(Y |X ′) = n log t−O(1).

Proof: Part (i) holds as Y is uniformly distributed and

independent of X ′ whenever EE(u, v) = 0.

For part (ii) recall that if Match(u, v) = R one can

construct X and Y by uniformly selecting a size mR
set L ⊆ I and selecting X and Y uniformly among all

pairs satisfying XL = YL. Recall that L is the set of

coordinates the mR matches between um and vm were

mapped. These are the “intentional matches” between XI

and YI . Note that there may be also “unintended matches”

between XI and YI , but not too many: their expected number

is (n/5 − mR)/t < 1/20. As given any fixed L, the

marginal distribution of both X and Y are still uniform, so

in particular X is independent of L and so is X ′ constructed

from X . Therefore we have

H(Y |X ′) = H(Y |X ′, L) + H(L)−H(L |Y,X ′).

We treat the terms separately. First we split the first term:

H(Y |X ′, L) = H(YL |X ′, L) + H(Y[n]\L |X ′, L, YL)

and use that Y[n]\L is uniformly distributed for any fixed L,

X ′ and YL, making

H(Y[n]\L |X ′, L, YL) = (n−mR) log t.

We have XL = YL, thus

H(YL |X ′, L) = H(XL |X ′, L)

≥ mR

n/5
H(XI |X ′)

≥ mR log t− 10 log k − MR

5M−1
log k,

where the first inequality follows by Lemma 1 as L is

a uniform and independent of X and X ′ and the second

inequality follows from Lemma 9 that we will prove shortly

and the formula defining m.

The next term, H(L) is easy to compute as L is a uniform

subset of I of size mR:

H(L) = log

(
n/5

mR

)

It remains to bound the term H(L |Y,X ′). Let Z = {i |
i ∈ I and X ′

i = Yi}. Note that Z can be derived from X ′, Y
(as I is fixed) hence H(L |Y,X ′) ≤ H(L |Z). Further, let

C = |Z \ L|. We obtain

H(L |Y,X ′) ≤ H(L |Z) ≤ H(L |Z,C) + H(C)

< E
Z,C

[
log

(
n/5− |Z|+ C

mR− |Z|+ C

)]
+ E

Z,C

[
log

(|Z|
C

)]
+ 2

where we used H(C) < 2. Note that for any fixed x′ ∈ T
and x ∈ supp(X |X ′ = x′), we have

E[|Z|−C |X = x,X ′ = x′] = Match(xI , x
′
I)mR/(n/5) ≥ 10

as Match(xI , x
′
I) ≥M by definition.

Hence we have

log

(
n/5

mR

)
− log

(
n/5− |Z|+ |C|
mR− |Z|+ |C|

)
≥ 10 log

n

5m
−O(1),

E
Z,C

[
log

(|Z|
C

)]
≤ E[|Z|] < 20.

Summing the estimates above for the various parts of

H(Y |X ′) the statement of the lemma follows.

It remains to prove the following simple lemma that

“reverses” the conditional entropy bound in Theorem 3(ii):

Lemma 9. For any u, v ∈ [t′]n
′

we have H(XI |X ′) ≥
n
5 log t−M log k − n log k/5M .

Proof: Using the fact that H(A,B) = H(A |B) +
H(B) = H(B |A) + H(A) we get

H(XI |X ′) = H(X ′ |XI) + H(XI)−H(X ′)

≥ n

5
log t+H(X ′ |XI)− n

5
log k,
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where in the last step we used H(X ′) ≤ log | supp(X ′)| =
log |T | = n

5 log k and H(XI) = (n/5) log t as X is

uniformly distributed.

Observe that H(X ′ |XI) = H(X ′ |X) = Ex∼μ[log |Nx|],
where log 0 is now taken to be 0. From Theorem 3(ii) we

get H(X ′ |X) ≥ n
5 log k −M log k − n log k/5M finishing

the proof of the lemma.

C. The round elimination lemma

Let νn be the uniform distribution on [t]n × [t]n, where

we set t = 4n. The following lemma gives the base case of

the round elimination argument.

Lemma 10. Any 0-round deterministic protocol for EEn

has at least 0.22 distributional error on νn, when n ≥ 1.

Proof: The output of the protocol is decided by a single

player, say Bob. For any given input y ∈ [t]n we have

3/4 ≤ Prx∼μ[EE(x, y) = 0] < e−1/4 < 0.78. Therefore the

distributional error is at least 0.22 for any given y regardless

of the output Bob chooses, thus the overall error is also at

least 0.22.

The next is the statement of our full round elimination

lemma followed by the main theorem of this section. The

proofs are omitted due to space reasons; see the full version

[43].

Lemma 11. Let r > 0, c, n be an integers such that
c < (n log n)/2. There is a constant 0 < ε0 < 1/200 such
that if there is an r-round deterministic protocol with c-bit
messages for EEn that has ε0 error on νn, then there is an
(r−1)-round deterministic protocol with O(c)-bit messages
for EEn′ that has ε0 error on νn′ , where n′ = Ω(n/2

5c
4n ).

Theorem 5. There exists a constant ε0 such that for any
r ≤ log∗ n, an r-round deterministic protocol for EEn

which has ε0 error on νn sends at least one message of
size Ω(n log(r) n).
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