
Fourier sparsity, spectral norm, and the Log-rank conjecture

Hing Yin Tsang*

hytsang@cse.cuhk.edu.hk
Chung Hoi Wong*

hoiy927@gmail.com
Ning Xie†

nxie@cis.fiu.edu
Shengyu Zhang*

syzhang@cse.cuhk.edu.hk

Abstract—We study Boolean functions with sparse Fourier
spectrum or small spectral norm, and show their applications
to the Log-rank Conjecture for XOR functions f(x ⊕ y) —
a fairly large class of functions including well studied ones
such as Equality and Hamming Distance. The rank of the
communication matrix Mf for such functions is exactly the
Fourier sparsity of f . Let d = deg2(f) be the F2-degree of
f and DCC(f ◦ ⊕) stand for the deterministic communication
complexity for f(x⊕ y). We show that

1) DCC(f ◦ ⊕) = O(2d
2/2 logd−2 ‖f̂‖1). In particular,

the Log-rank conjecture holds for XOR functions with
constant F2-degree.

2) DCC(f ◦ ⊕) = O(d‖f̂‖1) = Õ(
√
rank(Mf)). This

improves the (trivial) linear bound by nearly a quadratic
factor.

We obtain our results through a degree-reduction protocol
based on a variant of polynomial rank, and actually con-
jecture that the communication cost of our protocol is at
most logO(1) rank(Mf). The above bounds are obtained from
different analysis for the number of parity queries required
to reduce f ’s F2-degree. Our bounds also hold for the parity
decision tree complexity of f , a measure that is no less than
the communication complexity.

Along the way we also prove several structural results
about Boolean functions with small Fourier sparsity ‖f̂‖0 or
spectral norm ‖f̂‖1, which could be of independent interest.
For functions f with constant F2-degree, we show that: 1)
f can be written as the summation of quasi-polynomially
many indicator functions of subspaces with ±-signs, improving
the previous doubly exponential upper bound by Green and
Sanders; 2) being sparse in Fourier domain is polynomially
equivalent to having a small parity decision tree complexity;
and 3) f depends only on polylog‖f̂‖1 linear functions of input
variables. For functions f with small spectral norm, we show
that: 1) there is an affine subspace of co-dimension O(‖f̂‖1)
on which f(x) is a constant, and 2) there is a parity decision
tree of depth O(‖f̂‖1 log ‖f̂‖0) for computing f .

Keywords-Fourier analysis, Fourier sparsity, Log-rank con-
jecture, low-degree polynomials

I. INTRODUCTION

Fourier analysis of Boolean functions. Fourier analysis

has been widely used in theoretical computer science to

study Boolean functions with applications in PCP, property

*The Chinese University of Hong Kong, Shatin, NT, Hong Kong. Work
supported by Research Grants Council of the Hong Kong S.A.R. (Project
no. CUHK418710, CUHK419011)
† SCIS, Florida International University, Miami, FL 33199, USA. Part of

the work was done when the author was at CSAIL, MIT and was supported
by NSF awards CCF-1217423 and CCF-1065125.

testing, learning, circuit complexity, coding theory, social

choice theory and many more; see [O’D12] for a comprehen-

sive survey. The Fourier coefficients of a Boolean function

measure the function’s correlations with parity functions; the

distribution as well as various norms of Fourier spectrum

have been found to be related to many complexity measures

of the function. However, another natural measure, Fourier

sparsity – i.e. the number of non-zero Fourier coefficients –

has been much less studied. It seems to be of fundamental in-

terest to understand properties of functions that are Boolean

in the function domain and, at the same time, sparse in the

Fourier domain. In particular, what Boolean functions have

sparse Fourier spectra? Being sparse in the Fourier domain

should imply that the function is simple, but in which

aspects? Gopalan et al. [GOS+11] studied the problem of

testing Fourier sparsity and low-dimensionality and revealed

several interesting structural results for Boolean functions

having or close to having sparse Fourier spectra. In a related

setting, Green and Sanders [GS08] showed that Boolean

functions with a small spectral norm (i.e. the �1-norm of the

Fourier spectrum) can be decomposed into a small number

of signed indicator functions of subspaces. However, the

number of subspaces in their bound is doubly exponential

in the function’s spectral norm, making their result hard to

apply in many computer science related problems.

The Log-rank Conjecture in communication complexity.
In a different vein, Fourier sparsity also naturally arises

in the study of Log-rank Conjecture in communication

complexity. Communication complexity quantifies the mini-

mum amount of communication needed for computation on

inputs distributed to different parties [Yao79], [KN97]. In

a standard scenario, two parties Alice and Bob each hold

an input x and y, respectively, and they desire to compute

a function f on input (x, y) by as little communication as

possible. Apart from its own interest as a question about

distributed computation, communication complexity has also

found numerous applications in proving lower bounds in

complexity theory.

Of particular interest are lower bounds of communica-

tion complexity, and one of the most widely used meth-

ods is based on the rank of the communication matrix

Mf = [f(x, y)]x,y; see [LS09] for an extensive survey on

classical and quantum lower bounds proved by rank and

its variations. Since it was shown 30 years ago [MS82]

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.76

658

that log rank(Mf) is a lower bound of the deterministic

communication complexity DCC(f), the tightness of the

lower bound has long been an important open question. The

Log-rank Conjecture, proposed by Lovász and Saks [LS88],

asserts that the lower bound is polynomially tight for all total

Boolean functions f – namely DCC(f) ≤ logc rank(Mf)
for some absolute constant c. As one of the most impor-

tant problems in communication complexity, the conjecture

links communication complexity – a combinatorially defined

quantity, to matrix rank – a much better understood measure

in linear algebra. Should the conjecture hold, understanding

the communication complexity is more or less reduced to

a usually much easier task of calculating matrix ranks. The

conjecture is also known to be equivalent to many other

conjectures [LS88], [Lov90], [Val04], [ASTS+03].

Despite its importance, Log-rank Conjecture is also no-

toriously hard to attack. Nisan and Wigderson [NW95]

showed that to prove the conjecture, it is sufficient to show

a seemingly weaker statement about the existence of a

large monochromatic rectangle. In the same paper, they

also exhibited an example f for which log rank(Mf) =
O(DCC(f)α) where α = log3 2 = 0.63..., later improved

by Kushilevitz to α = log6 3 = 0.61... (also in [NW95]).

The best upper bound for the DCC(f) in terms of rank

is DCC(f) ≤ (log 4
3)rank(Mf) [KL96], [Kot97]. Re-

cently, assuming the Polynomial Freiman-Ruzsa conjecture

in additive combinatorics, Ben-Sasson, Lovett and Ron-

Zewi gave in [BSLRZ12] a better upper bound D(f) ≤
O(rank(Mf)/ log rank(Mf)).

Communication complexity of XOR functions. In view

of the difficulty of the Log-rank Conjecture in its full

generality, Shi and Zhang [ZS10] initiated the study of

communication complexity of a special class of functions

called XOR functions.

Definition 1. We say F (x, y) : {0, 1}n × {0, 1}n → {0, 1}
is an XOR function if there exists an f : {0, 1}n → {0, 1}
such that for all x and y in {0, 1}n, F (x, y) = f(x ⊕ y),
where ⊕ is the bit-wise XOR. Denote F by f ◦ ⊕.

XOR functions include important examples such as Equal-

ity and Hamming Distance, and the communication com-

plexity of XOR functions has recently drawn an increas-

ing amount of attention [ZS09], [ZS10], [LZ10], [MO10],

[LLZ11], [SW12], [LZ13]. In general, the additional sym-

metry in the communication matrix MF should make Log-

rank Conjecture easier for XOR functions. In particular, a

very nice feature of XOR functions is that the rank of the

communication matrix MF is exactly the Fourier sparsity of

f , the number of nonzero Fourier coefficients of f .

Proposition 1 ([BC99]). For XOR functions F (x, y) =
f(x⊕ y), it holds that rank(MF) = ‖f̂‖0.

Therefore the Log-rank Conjecture for XOR functions is

equivalent to the question that whether every Fourier sparse1

function f admits an efficient communication protocol to

compute f(x⊕ y).
However, the Log-rank conjecture seems still very difficult

to study even for this special class of functions. One nice

approach proposed in [ZS10] is to first design an efficient

parity decision tree (PDT) for computing f , and then to

simulate it by a communication protocol. Parity decision

trees allow to query the parity of any subset of input

variables (instead of just one input variable as in usual

decision trees). A communication protocol can exchange

two bits �(x) and �(y) (here �(·) is an arbitrary linear

function) to simulate one query �(x ⊕ y) in a PDT, thus

DCC(f ◦ ⊕) is at most twice of D⊕(f), the parity decision

tree complexity of f . It is therefore sufficient to show

that D⊕(f) ≤ logO(1) ‖f̂‖0 for all f to prove the Log-

rank Conjecture for XOR functions. Parity decision tree

complexity is an interesting complexity in its own right, with

connections to learning [KM93] and other parity complexity

measures such as parity certificate complexity and parity

block sensitivity [ZS10]. This approach is also appealing

for the purpose of understanding Boolean functions with

sparse Fourier spectra. It is not hard to see that small D⊕(f)
implies Fourier sparsity; now if D⊕(f) ≤ logO(1) ‖f̂‖0 is

true, then functions with small Fourier sparsity also have

short parity decision trees. Thus the elusive property of being

Fourier sparse is roughly equivalent to the combinatorial and

computational property of having small PDT.

Back to the Log-rank conjecture, though upper bounds

for D⊕(f) translate to efficient protocols for DCC(f ◦ ⊕),
the task of designing efficient PDT algorithms itself does

not seem to be an easy task. To see this, let us examine

the effect of parity queries. Each query “t · x =?” basically

generates two subfunctions through restriction, and its effect

on the Fourier domain can be shown to be f̂b(s) = f̂(s) +
(−1)bf̂(s + t), where fb is the subfunction obtained from

restricting f on the half space {x : t · x = b}. Thus the

process is like to fold the spectrum of f along the line t, and

we hope that the folding has many “collisions” in nonzero

Fourier coefficients, namely many s ∈ supp(f̂), with s+t ∈
supp(f̂) as well. In general, small D⊕(f) implies that many

Fourier coefficients2 are “well aligned” with respect to a

subspace V with a small co-dimension, so that querying

basis of V ⊥ makes those Fourier coefficients collide. But

the question is—Where is the subspace?

Note that D⊕(f) is invariant under change of input basis,

thus one tempting way to upper bound D⊕(f) is to first

rotate input basis, and then (under the new basis) use the

fact that the standard decision tree complexity D(f) is at

1Note that if the Fourier sparsity of f is large, say 2n
Ω(1)

, then Log-rank
Conjecture is vacuously true for f , as the communication complexity of
any function is at most O(n).

2Technically, we mean characters with the corresponding Fourier coeffi-
cients being nonzero.

659

most O(deg(f)3) [Mid04], where the deg(f) is the (Fourier)

degree (maxs:f̂(s) �=0 |s|) of f [BdW02]. Thus if deg(f) =

logO(1) ‖f̂‖0, then D⊕(f) ≤ D(f) ≤ logO(1) ‖f̂‖0. How-

ever, one should also note that this approach cannot handle

all the Fourier sparse functions because, as shown in [ZS10],

there exist functions f such that D⊕(f) ≤ log2 n + 4 but

D(f) ≥ n/4, the latter holds even under an arbitrary basis

change (i.e. minL D(Lf) ≥ n/4 where Lf(x) = f(Lx)).

A. Our approach, ideas, and results

Result 1: Main protocol and general conjecture. In

previous studies of parity decision tree, one needs to upper

bound the number of queries for all possible execution

paths. In this paper, we show that it suffices to prove the

existence of one short path! To put this into context, we need

the concept of polynomial rank. View a Boolean function

f : {0, 1}n → {0, 1} as a polynomial in F2[x1, ..., xn].
Call the degree of this polynomial the F2-degree, denoted as

deg2(f). The polynomial rank of f is the minimum number

r s.t. f can be written as a function of r polynomials with

lower degree. Here we propose a new concept called linear
rank: For a polynomial f , its linear rank lin-rank(f) is the

minimum number r s.t. f can be written as

f = �1f1 + · · ·+ �rfr + f0, (1)

where each �i is a linear function in x and each fi is a

function of F2-degree at most deg2(f) − 1. Linear rank is

in general larger than polynomial rank, but linear rank better

suits our need for designing efficient PDT algorithms. Now

we will describe a simple PDT algorithm: query all �i(x)
and get answers ai, and we then face a new function f ′ =∑r

i=1 aifi + f0. Recurse on this function. Note that from f
to f ′, the F2-degree is reduced by at least 1, and one can

also show that the Fourier sparsity of f ′ is also at most that

of f . Finally, it is known that deg2(f) ≤ log ‖f̂‖0. Putting

these nice properties together, we know that, as long as the

linear rank of an arbitrary function f is upper bounded by

logO(1) ‖f̂‖0, so is D⊕(f).

Conjecture 2. For all f : {0, 1}n → {0, 1}, we have
lin-rank(f) = O(logc(‖f̂‖0)) for some c = O(1).

Theorem 3. If Conjecture 2 is true, then
1) All Boolean functions with small ‖f̂‖0 have small

parity decision tree complexity as well: D⊕(f) =
O(logc+1(‖f̂‖0)).

2) The Log-rank Conjecture is true for all XOR functions:
DCC(f ◦ ⊕) = O(logc+1(‖f̂‖0)).

Result 2: low degree polynomials. Next we focus

on upper bounding the linear rank, starting from small

degrees. For degree-2 polynomials, the classic theorem

by Dickson implies that lin-rank(f) = O(log ‖f̂‖0).
For degree-3 polynomials, Haramaty and Shpilka proved

in [HS10] that lin-rank(f) = O(log2(1/‖f‖U3)) =
O(log2(1/bias(f))).3 By a proper shift, we can make

bias(f) ≥ 1/

√
‖f̂‖0 and thus get lin-rank(f) =

O(log2 ‖f̂‖0). For degree-4 polynomials, however, the

bound is exponentially worse even for the polynomial rank

[HS10], and there were no results for higher degrees. A

natural question is: Can one prove the lin-rank(f) =
O(logO(1) ‖f̂‖0) for degree-4 polynomials? Further, if it is

too challenging to prove lin-rank(f) ≤ logO(1) ‖f̂‖0 for

general degree d (which is at most log ‖f̂‖0), can one prove

it for constant-degree polynomials (even if the power O(1)
is a tower of 2’s of height d)? In this paper, we show that

this is indeed achievable. Actually, we can even replace the

�0-norm by �1-norm4 of f̂ in the bound, and the dependence

on d is “only” singly exponential.

Lemma 4. For all Boolean functions f with F2-degree d,
we have lin-rank(f) = O(2d

2/2 logd−2 ‖f̂‖1).
The lemma immediately implies the following two results.

Theorem 5. If f is a Boolean function of constant F2-
degree, then DCC(f ◦ ⊕) ≤ logO(1) (rank(Mf◦⊕)).

Recursively expanding Eq.(1) and applying the bound on

ranks in Lemma 4 gives that

Corollary 6. Every Boolean function f of F2-degree d

depends only on O(2d
3/2 logd

2 ‖f̂‖1) linear functions of
input variables.

Another corollary is the following. Green and Sanders

proved that any f : {0, 1}n → {0, 1} can be written as

f =
∑T

i=1±�Vi , where T = 22
O(‖f̂‖41)

and each �Vi is

the indicator function of the subspace Vi. For constant de-

gree polynomials, we can improve their doubly-exponential

bound to quasi-polynomial.

Corollary 7. If f : {0, 1}n → {0, 1} has constant F2-
degree, then f =

∑T
i=1±�Vi where T = 2log

O(1) ‖f̂‖1 and
each �Vi is the indicator function of the subspace Vi.

The proof of Lemma 4 follows the general approach laid

out in the Main protocol, i.e., a rank-based degree-reduction

process, with several additional twists. First, to find a “good”

affine subspace restricted on which f becomes a lower

degree polynomial, we recursively apply the derivatives of

f to guide our search. Second, even though our final goal is

to reduce the degree of f , we actually achieve this through

reducing the spectral norm of f . This is done by studying

the effect of restriction on two non-Boolean functions.

Last, in the induction step, we in fact need to prove a

3Recall that for f : {0, 1}n → {0, 1}, the bias of f is defined to be
bias(f) = |Pr(f(x) = 0)− Pr(f(x) = 1)|.

4Strictly speaking, in view of the corner case of ‖f̂‖1 = 1, one should

replace log(‖f̂‖1) by log(‖f̂‖1 + 1). But like in most previous papers,

we omit the “+1” term for all ‖f̂‖1 in this paper for simplicity of notation.

660

stronger statement about a chain inequality involving rank,

minimum parity 0-certificate complexity C0
⊕,min, minimum

parity 1-certificate complexity C1
⊕,min and parity decision

tree complexity D⊕. And the induction is used in a “cyclic”

way: we upper bound min{C0
⊕,min,C

1
⊕,min} by induction on

max{C0
⊕,min,C

1
⊕,min}, which upper bounds lin-rank. This

can then be used to show that D⊕ is small, which in turn

upper bounds max{C0
⊕,min,C

1
⊕,min} to finish the inductive

step.

Result 3: functions with small spectral norms. While

Theorem 5 handles the low-degree case, the bound dete-

riorates exponentially with the F2-degree. Via a different

approach, we are able to upper bound lin-rank(f) by the

�1-norm of f̂ .

Lemma 8. For all f : {0, 1}n → {0, 1}, we have
lin-rank(f) ≤ O(‖f̂‖1).

In fact we prove a slightly stronger result that there exists

an affine subspace of codimension at most O(‖f̂‖1) on

which f is constant. In other words, if a Boolean function

has small spectral norm then it is constant on a large affine

subspace.

The proof of the lemma uses a greedy algorithm that

always makes the two largest Fourier coefficients to collide

(with the same sign). Exploiting the property that f is

Boolean, one can show that this greedy folding either signif-

icantly increases the largest Fourier coefficient, or decreases

‖f̂‖1 by a constant.

The lemma immediately implies the following result for

general (not necessarily XOR) functions.

Theorem 9. For all f : {0, 1}m × {0, 1}n → {0, 1}, we
have DCC(f) ≤ 2D⊕(f) = O(deg2(f) · ‖f̂‖1).

In [Gro97], Grolmusz gave a public-coin randomized

protocol with communication cost O(‖f̂‖21). The above

theorem gives a deterministic protocol, and the bound is

better for functions f with deg2(f) = o(‖f̂‖1).
Another implication of Lemma 8 is that the communica-

tion complexity of f ◦ ⊕ is at most the square root of the

matrix rank.

Theorem 10. For all f : {0, 1}n → {0, 1},

DCC(f ◦⊕) = O(deg2(f) · ‖f̂‖1) = Õ

(√
rank(Mf◦⊕)

)
.

The upper bound of rank/ log rank in [BSLRZ12]

improves the trivial linear bound by a log factor for all

Boolean functions, assuming the Polynomial Freiman-Ruzsa

conjecture. In comparison, our bound of
√
rank log rank

is only for XOR functions, but it improves the linear bound

by a polynomial factor, and it is unconditional.

It is also interesting to note that, for any fixed Boolean

function f , at least one of the above two theorems gives

a desirable result: either ‖f̂‖1 ≥ logk ‖f̂‖0 where k

is a big constant, then Theorem 9 improves Grolmusz’s

bound almost quadratically (since deg2(f) ≤ log ‖f̂‖0); or

‖f̂‖1 ≤ logk ‖f̂‖0, then Theorem 10 confirms the Log-rank

conjecture for f ◦ ⊕!

Result 4: functions with a light Fourier tail. Our last

result deals with Boolean functions whose Fourier spectrum

has a light tail. We call a function f : {0, 1}n → {+1,−1}
μ-close to s-sparse in �2 if

∑
i>s f̂(si)

2 ≤ μ2, where

|f̂(s1)| ≥ ... ≥ |f̂(sN)|. We say two functions f, g :
{0, 1}n → {+1,−1} are ε-close if Prx[f(x)
= g(x)] ≤ ε.

Theorem 11. If f : {0, 1}n → {+1,−1} is μ-close to s-
sparse in �2, where μ ≤ logO(1) ‖f̂‖0√

‖f̂‖0
and s ≤ logO(1) ‖f̂‖0,

then D⊕(f) ≤ logO(1) ‖f̂‖0.

The proof of this theorem uses Chang’s lemma about

large Fourier coefficients of low-density functions, and a

“rounding” lemma from [GOS+11].

B. Related work

The Log-rank Conjecture for XOR functions was shown

to be true for symmetric functions [ZS09], linear threshold

functions (LTFs), monotone functions [MO10], and AC0

functions [KS13]. These results fall into two categories.

The first one, including symmetric functions and LTFs, is

that the rank of the communication matrix (i.e. the Fourier

sparsity) is so large, that the Log-rank conjecture trivially

holds. The second one, including monotone functions and

AC0 functions, is that even the Fourier degree is small, thus

the standard decision tree complexity D(f) is already upper

bounded by the poly-logarithmic of the matrix rank. But as

we mentioned, there are functions that have small Fourier

sparsity and high Fourier degree (even after basis rotation).

These hardcore cases have not been studied before this work.

In [HS10], Haramaty and Shpilka proved that

lin-rank(f) = O(log2(1/‖f‖U3)) = O(log2(1/bias(f)))
for degree-3 polynomials. For degree-4 polynomials,

however, the bound is exponentially worse even for the

polynomial rank [HS10], and there were no results for

higher degrees. In comparison, our Lemma 4 gives a

polylog upper bound for lin-rank(f) of all constant

degree functions f , but the polylog is in ‖f̂‖1 rather

than in bias(f) or Gower’s norm ([Gow98], [Gow01],

[AKK+05]).

Though Boolean functions with a sparse Fourier spectrum

seem to be a very interesting class of functions to study, not

many properties are known. It is shown in [GOS+11] that the

Fourier coefficients of a Fourier sparse function have large

“granularity” and functions that are very close to Fourier

sparse can be transformed into one through a “rounding

off” procedure. Furthermore, they proved that one can use

2 log ‖f̂‖0 random linear functions to partition the character

space so that, with high probability, each bucket contains

at most one nonzero Fourier coefficient. This does not help

661

our problem since what we need is exactly the opposite:

to group Fourier coefficients into buckets so that a small

number of foldings would make many of them to collide

(and thus reducing the Fourier sparsity quickly).

Let A = supp(f̂) be the support of f ’s Fourier spectrum.

One way of designing the parity query is to look for a “heavy

hitter” t of set A + A, i.e. t with many s1, s2 ∈ A and

s1+s2 = t. If such t exists, then querying the linear function

〈t, x〉 reduces the Fourier sparsity a lot. One natural way

to show the existence of a heavy hitter is by proving that

|A+A| is small. Turning this around, one may hope to show

that if it is large, then the function is not Fourier sparse or

has some special properties to be used. The size of |A+A|
has been extensively studied in additive combinatorics, but

it seems that all related studies are concerned with the low-

end case, in which |A+ A| ≤ k|A| for very small (usually

constant) k. Thus those results do not apply to our question.

Recall that the standard polynomial rank is the minimum

r s.t. f can be expressed as a function F of r lower degree
polynomials f1, ..., fr. A nice result for polynomial rank is

that large bias implies low polynomial rank [GT09], [KL08]:

the rank is a function of the bias and degree only, but not

of the input size n. This is, however, insufficient for us

because a Fourier sparse function may have very small bias.

Furthermore, the dependence of the rank on the degree is a

very rapidly growing function (faster than a tower of 2’s of

height d), while our protocol has “only” single exponential

dependence of d.

The work of [SV13]. After completing this work indepen-

dently, the very recent work [SV13] came to our attention,

which studies PDT complexity of functions with small

spectral norm. The authors show C⊕,min(f) ≤ O(‖f̂‖21) and

D⊕(f) = O(‖f̂‖21 log ‖f̂‖0). In comparison, our Lemma 28

and Theorem 10 are at least quadratically better. The paper

[SV13] also studies the size of PDT and approximation of

Boolean functions, which are not studied in this paper.

Remark: Due to space constraint, our results on func-

tions with a light Fourier tail as well as many proofs are

omitted from this conference version, and can be found in

the full version of the paper [TWXZ13].

II. PRELIMINARIES AND NOTATION

All logarithms in this paper are base 2. For two n-bit

vectors s, t ∈ {0, 1}n, define their inner product as s · t =
〈s, t〉 = ∑n

i=1 siti mod 2 and for simplicity we write s+ t
for s⊕t. We often use f to denote a real function defined on

{0, 1}n. In most occurrences f is a Boolean function, whose

range can be represented by either {0, 1} or {+1,−1}, and

we will specify whenever needed. For f : {0, 1}n → {0, 1},
we define f± = 1−2f to convert the range to {+1,−1}. For

each b ∈ range(f), the b-density of f is ρb = |f−1(b)|/2n.

Each Boolean function f : {0, 1}n → {0, 1} can be

viewed as a polynomial over F2, and we use deg2(f) to

denote the F2-degree of f . For a Boolean function f :

{0, 1}n → {0, 1} and a direction vector t ∈ {0, 1}n−{0n},
its derivative Δtf is defined by Δtf(x) = f(x)+ f(x+ t).
It is easy to check that deg2(Δtf) < deg2(f) for any non-

constant f and any t.

Complexity measures. A parity decision tree (PDT) for a

function f : {0, 1}n → {0, 1} is a tree with each internal

node associated with a linear function �(x), and each leaf

associated with an answer a ∈ {0, 1}. When we use a parity

decision tree to compute a function f , we start from the root

and follow a path down to a leaf. At each internal node, we

query the associated linear function, and follow the branch

according to the answer to the query. When reaching a leaf,

we output the associated answer. The parity decision tree

computes f if on any input x, we always get the output equal

to f(x). The deterministic parity decision tree complexity of

f , denoted by D⊕(f), is the least number of queries needed

on a worst-case input by a PDT that computes f .

For a Boolean function f and an input x, the parity

certificate complexity of f on x is

C⊕(f, x) =min{co-dim(H) : x ∈ H,H is an affine

subspace on which f is constant}.
The parity certificate complexity C⊕(f) of f is

maxx C⊕(f, x). Since for each x and each parity

decision tree T , the leaf that x belongs to corresponds to

an affine subspace of co-dimension equal to the length of

the path from it to the root, we have that C⊕(f) ≤ D⊕(f)
[ZS10]. We can also study the minimum parity certificate

complexities Cb
⊕,min(f) = minx:f(x)=b C⊕(f, x) and

C⊕,min(f) = minx C⊕(f, x).
Denote by DCC(F) the deterministic communication com-

plexity of F . One way of designing communication pro-

tocols is to simulate a decision tree algorithm, and the

following is an adapted variant of a well known relation

between deterministic communication complexity and deci-

sion tree complexity to the setting of XOR functions and

parity decision trees.

Fact 12. DCC(f ◦ ⊕) ≤ 2D⊕(f).

Fourier analysis

For any real function f : {0, 1}n → R, the Fourier

coefficients are defined by f̂(s) = 2−n
∑

x f(x)χs(x),
where χs(x) = (−1)s·x. The function f can be written as

f =
∑

s f̂(s)χs. The �p-norm of f̂ for any p > 0, denoted

by ‖f̂‖p, is defined as (
∑

s |f̂(s)|p)1/p. The Fourier sparsity

of f , denoted by ‖f̂‖0, is the number of nonzero Fourier

coefficients of f . As a simple consequence of Cauchy-

Schwarz inequality we have ‖f̂‖1 ≤
√
‖f̂‖0. Note that

‖f̂‖1 can be much smaller than ‖f̂‖0. For instance, the

AND function has ‖f̂‖1 ≤ 3 but ‖f̂‖0 = 2n. The Fourier

coefficients of f : {0, 1}n → {0, 1} and f± are related by

662

f̂±(s) = δs,0n − 2f̂(s), where δx,y is the Kronecker delta

function. Therefore we have

2‖f̂‖1 − 1 ≤ ‖f̂±‖1 ≤ 2‖f̂‖1 + 1,

and ‖f̂‖0 − 1 ≤ ‖f̂±‖0 ≤ ‖f̂‖0 + 1. (2)

For any function f : {0, 1}n → R, Parseval’s Identity says

that
∑

s f̂
2
s = Ex[f(x)

2]. When the range of f is {0, 1},
then

∑
s f̂

2
s = Ex[f(x)]. We sometimes use f̂ to denote the

vector of {f̂(s) : s ∈ {0, 1}n}.
Proposition 13 (Convolution). For two functions f, g :
{0, 1}n → R, the Fourier spectrum of fg is given by the
following formula: f̂ g(s) =

∑
t f̂(t)ĝ(s+ t).

Using this proposition, one can characterize the Fourier

coefficients of Boolean functions as follows.

Proposition 14. A function f : {0, 1}n → R has range
{+1,−1} if and only if∑
t∈{0,1}n

f̂2(t) = 1,
∑

t∈{0,1}n
f̂(t)f̂(s+t) = 0, ∀s ∈ {0, 1}n−0n.

Another fact easily following from the convolution for-

mula is the following.

Lemma 15. Let f, g : {0, 1}n → R, then ‖f̂ g‖0 ≤
‖f̂‖0‖ĝ‖0 and ‖f̂ g‖1 ≤ ‖f̂‖1‖ĝ‖1.

Linear maps and restrictions. Sometimes we need to rotate

the input space: For an invertible linear map L on {0, 1}n,

define Lf by Lf(x) = f(Lx). It is not hard to see that

deg2(Lf) = deg2(f), and that L̂f(s) = f̂((LT)−1s). Thus

‖L̂f‖1 = ‖f̂‖1 and ‖L̂f‖0 = ‖f̂‖0. (3)

For a function f : {0, 1}n → R, define two subfunc-

tions f0 and f1, both on {0, 1}n−1: fb(x2, . . . , xn) =
f(b, x2, . . . , xn). It is easy to see that for any s ∈ {0, 1}n−1,

f̂b(s) = f̂(0s) + (−1)bf̂(1s), thus

‖f̂b‖0 ≤ ‖f̂‖0 and ‖f̂b‖1 ≤ ‖f̂‖1. (4)

The concept of subfunctions can be generalized to general

directions. Suppose f : {0, 1}n → R and S ⊆ {0, 1}n is a

subset of the domain. Then the restriction of f on S, denoted

by f |S is the function from S to R defined naturally by

f |S(x) = f(x), ∀x ∈ S. In this paper, we are concerned

with restrictions on affine subspaces.

Lemma 16. Suppose f : {0, 1}n → R and H = a + V is
an affine subspace, then one can define the spectrum f̂ |H of
the restricted function f |H such that

1) If co-dim(H) = 1, then f̂ |H is the collection of
f̂(s)+(−1)bf̂(s+ t) for all unordered pair (s, s+ t),
where t is the unique non-zero vector orthogonal to V ,
and b = 0 if a ∈ V and b = 1 otherwise. Sometimes
we refer to such restriction as a folding over t.

2) ‖f̂ |H‖p ≤ ‖f̂‖p, for any p ∈ [0, 1].
3) If range(f) = {+1,−1}, then the following three

statements are equivalent: 1) f |H(x) = cχs(x) for
some s ∈ {0, 1}n and c ∈ {+1,−1}, 2) ‖f̂ |H‖0 = 1,
and 3) ‖f̂ |H‖1 = 1.

Using the above lemma, it is not hard to prove by

induction the following fact, which says that short PDT gives

Fourier sparsity.

Proposition 17. ∀f : {0, 1}n → {0, 1}, ‖f̂‖0 ≤ 4D⊕(f).

The following theorem [BC99] says that the F2-degree

can be bounded from above by logarithm of Fourier sparsity.

Fact 18 ([BC99]). For all f : {0, 1}n → {0, 1}, it holds
that deg2(f) ≤ log ‖f̂‖0.

III. LINEAR RANK AND THE MAIN PDT ALGORITHM

The notion of polynomial rank for a polynomial f has

been extensively studied, and is usually defined as the min-

imum number of lower degree polynomials that f depends

on. In particular, degree-2 polynomials are well understood

[Dic58] and degree-3 and -4 polynomials are also recently

studied [HS10].

Here we propose a new notion of linear rank, which

requires a very specific way of composing lower degree

polynomial into the original polynomial f .

Definition 2. The linear rank of a polynomial f ∈
F2[x1, . . . , xn], denoted lin-rank(f), is the minimum integer
r s.t. f can be expressed as

f = �1f1 + . . .+ �rfr + f0,

where deg2(�i) = 1 for all 1 ≤ i ≤ r and deg2(fi) <
deg2(f) for all 0 ≤ i ≤ r. Sometimes we emphasize the
degree by writing the polynomial rank as lin-rankd(f) with
d = deg2(f).

It is not hard to see that linear rank and polynomial rank

are of the same order for polynomials with degree at most

3. But for higher degrees, linear rank can be much larger

than polynomial rank.

Recall that a parity certificate is an affine subspace H
restricted on which f is a constant. The parity certificate

complexity is the largest co-dimension of such H . The next

lemma says that the linear rank is quite small compared to

the parity certificate complexity, even if we merely require

f to have a lower F2-degree (rather than to be a constant)

on the affine subspace; and in addition, even if we take the

minimum co-dimension over all such H .

Lemma 19. For all non-constant f : {0, 1}n → {0, 1}, the
following properties hold.

1) There is a subspace V of co-dimension r =
lin-rank(f) s.t. when restricted to each of the 2r affine
subspaces a+V , f has F2-degree at most deg2(f)−1.

663

2) For all affine subspaces H with co-dim(H) <
lin-rank(f), deg2(f |H) = deg2(f).

Lemma 19, though seemingly simple, is of fundamental

importance to our problem as well as PDT algorithm design-

ing in general. Note that the second part of Lemma 19 says

that, if there exists an affine subspace V +a of co-dimension

k and a vector a ∈ V ⊥ such that deg2(f |V+a) < deg2(f),
then lin-rank(f) ≤ k. Therefore Lemma 19 reduces the

challenging task of lowering the degree of f |V+a for all a
to lowering it for just one a.

In the next two sections, what we are going to use is the

following corollary of it.

Corollary 20. For all non-constant f : {0, 1}n → {0, 1},
we have lin-rank(f) ≤ C⊕,min(f).

A. Main PDT algorithm

Now we describe the main algorithm for computing

function f , by reducing the F2-degree of f .

Main PDT Algorithm
Input: An PDT oracle for x
Output: f(x).

1) while deg2(f) ≥ 1 do
a) Take a fixed decomposition f = �1f1 + · · ·+

�rfr + f0, where r = lin-rankdeg2(f)
(f).

b) for i = 1 to r
c) Query �i(x) and get answer ai.
d) Update the function

f := a1f1 + · · ·+ arfr + f0

2) Output the constant value of f .

To analyze the query complexity of this algorithm, we

need to bound lin-rank(f). We conjecture that the following

is true for all Fourier sparse Boolean functions.

Conjecture 21. For all Boolean functions f : {0, 1}n →
{0, 1}, lin-rank(f) = O(logc(‖f̂‖0)) for some c = O(1).

Call a complexity measure M(f) downward non-
increasing if M(f ′) ≤M(f) for any f and any subfunction

f ′ of f . As mentioned earlier (Lemma 16), M(f) = ‖f̂‖0
and M(f) = ‖f̂‖1 are all downward non-increasing com-

plexity measures.

Theorem 22. The Main PDT algorithm computes f(x)
correctly. If lin-rank(f) ≤ M(f) for some downward
non-increasing complexity measure M , then D⊕(f) ≤
deg2(f)M(f) and DCC(f ◦ ⊕) ≤ 2 log ‖f̂‖0 · M(f). In
particular, if Conjecture 21 is true, then the Log-rank
conjecture holds for all XOR functions.

The Main PDT algorithm, though simple, crucially uses

the fact that restrictions do not increase the Fourier sparsity

and uses the F2-degree as a progress measure to govern

the efficiency. Since deg2(f) ≤ log(‖f̂‖0), the algorithm

finishes in a small number of rounds.

This algorithm also gives a unified way to construct parity

decision tree, reducing the task of designing PDT algorithms

to showing that the linear rank is small. Indeed, the results in

the next two sections are obtained by bounding rank, where

sometimes Theorem 22 will be applied with the complexity

measure ‖f̂‖1.

Note that if the conjecture D⊕(f) ≤ logc ‖f̂‖0 is true,

then the Main PDT algorithm always gives the optimal query

cost up to a polynomial of power c+ 1.

IV. FUNCTIONS WITH LOW F2-DEGREE

In this section, we will show that the Log-rank conjecture

holds for XOR functions with constant F2-degree. We will

actually prove

C⊕,min(f) = O(2d
2/2 logd−2 ‖f̂‖1),

which is stronger than Lemma 4. Theorem 5 then follows

from the PDT algorithm and the simulation protocol for

PDT (Theorem 22). Corollary 6 is also easily proven by

an induction on F2-degree.

The case for degree 1 (linear functions) is trivial and

the case for degree 2 is also simple: applying Dickson’s

theorem gives lin-rank(f) ≤ C⊕,min(f) = O(log ‖f̂‖1) for

all quadratic polynomials f .

For cubic polynomials, one can show the following

Proposition 23. For all function f : {0, 1}n → {0, 1} with
F2-degree 3, it holds that lin-rank(f) = O(log ‖f̂‖1) and
thus D⊕(f) = O(log ‖f̂‖1).
A. Constant-degree polynomials

Now we will bound the lin-rank(f) and use the Main

PDT algorithm to bound the PDT complexity.

Lemma 24. For all non-constant function f : {0, 1}n →
{0, 1} of F2-degree d, we have

lin-rank(f) ≤ C⊕,min(f) ≤ D⊕(f) ≤ O(2d
2/2(logd−2 ‖f̂‖1+1)).

Proof: We will prove by induction on degree d that

lin-rank(f) ≤ C⊕,min(f) ≤ max
b∈{0,1}

Cb
⊕,min(f) ≤ D⊕(f) ≤ Bd

(‖f̂±‖1),
where Bd(m) < 2d

2/2 logd−2 m are a class of bounded

non-decreasing (with respect to both d and argument m)

functions to be determined later. The conclusion then follows

from Eq.(2).

We use Proposition 23 as the base case for induction.

Now suppose that the bound holds for all polynomials of

F2-degree at most d−1, and consider a function f of degree

d ≥ 4. We will first prove a bound for C⊕,min(f), which

also implies a bound on lin-rank(f) by Corollary 20.

First, it is not hard to see that there exists a direction

t ∈ {0, 1}n − {0n} such that Δtf is non-constant (unless

664

f is a linear function, in which case the conclusion trivially

holds anyway). Fix such a t. Since deg2(Δtf) ≤ d− 1, by

induction hypothesis, it holds that

Cb
⊕,min(Δtf) ≤ Bd−1(‖ ̂(Δtf)±‖1).

Define ft(x) = f(x+ t), then by Lemma 15, we have

‖ ̂(Δtf)±‖1 = ‖ ̂f± · f±t ‖1 ≤ ‖f̂±‖1‖f̂±t ‖1 = ‖f̂±‖21,
which implies that

Cb
⊕,min(Δtf) ≤ Bd−1(‖f̂±‖21).

Since Δtf is non-constant, Cb
⊕,min(Δtf) ∈ [1, n] for

both b = 0 and b = 1. For each b, by the definition

of Cb
⊕,min(Δtf), there exists an affine subspace Hb with

co-dim(Hb) ≤ Bd−1(‖f̂±‖21) such that (Δtf)|Hb
= b,

which is equivalent to f(x) + f(x+ t) = b for all x ∈ Hb.

Define

g0(x) =
1

2

(
f±(x) +R f±(x+ t)

)
,

and

g1(x) =
1

2

(
f±(x)−R f±(x+ t)

)
,

where to avoid confusion, special notations plus +R and

minus −R are used to stress that operations are over R.

These two functions have some nice properties. First,

it is easy to see from the definition of g0 and g1 that

f± = g0+R g1. Second, note that g0 and g1 are not Boolean

functions any more; they take values in {−1, 0,+1}. How-

ever, a simple but crucial fact is that they take very special

values on the affine subspace Hb: one always takes value 0,

and the other always takes value in {+1,−1}. Actually, it

is not hard to verify that

gb|Hb
= f±|Hb

and g1−b|Hb
= 0.

Third, in the Fourier domain, note that

f̂±t (s) = Ex[f
±(x+ t)χs(x+ t)χs(t)] = f̂±(s)χs(t),

and thus

ĝb(s) =
1

2

(
f̂±(s) +R (−1)bχs(t)f̂±(s)

)
.

Therefore, we have

ĝ0(s) =

{
f̂±(s) s ∈ t⊥

0 s ∈ t⊥
, ĝ1(s) =

{
0 s ∈ t⊥

f̂±(s) s ∈ t⊥
,

where t⊥ = {s ∈ {0, 1}n : 〈s, t〉 = 0}. Namely ĝ0 and

ĝ1 each takes the Fourier spectrum f± on one of the two

hyperplanes defined by the vector t.

This further implies that ‖f̂±‖1 = ‖ĝ0‖1 + ‖ĝ1‖1. Thus,

either ‖ĝ0‖1 or ‖ĝ1‖1 is at most half of ‖f̂±‖1. Suppose

that ‖ĝb‖1 ≤ 1
2‖f̂±‖1. We claim that restricting f± to Hb

reduces its spectral norm a lot. Indeed, since f±|Hb
= gb|Hb

,

we have

‖f̂±|Hb
‖1 = ‖ĝb|Hb

‖1 ≤ ‖ĝb‖1 ≤ 1

2
‖f̂‖1,

where the first inequality is because of Lemma 16. To

summarize, we have just shown that we can reduce the

spectral norm by at least half using at most Bd−1(‖f̂±‖21)
linear restrictions.

Now we recursively repeat the above process on the

subfunction f±|Hb
until finally we find an affine subspace

H s.t. ‖f̂±|H‖ ≤ 1, at which moment the subfunction is

either a constant or linear function, thus at most one more

folding would give a constant function. In total it takes at

most Bd−1(‖f̂±‖21) log ‖f̂±‖1 + 1 linear restrictions to get

a constant function, which implies that

C⊕,min(f) ≤ Bd−1(‖f̂±‖21) log ‖f̂±‖1 + 1.

Next we will show that actually the

maxb∈{0,1} Cb
⊕,min(f) is not much larger either:

max
b∈{0,1}

Cb
⊕,min(f) ≤Bd−1(‖f̂±‖21) log ‖f̂±‖1

+Bd−1

(‖f̂±‖1)+ 1. (5)

(We need to show this because in the induction step, we

picked one gb with smaller spectral norm and used the

induction hypothesis to upper bound Cb
⊕,min(Δtf) for a

particular b, which could be maxb∈{0,1} Cb
⊕,min(Δtf).) Note

that by the Main PDT algorithm, we know that

D⊕(f) ≤ lin-rank(f) + D⊕(f ′),

for a subfunction f ′ of f with deg2(f
′) < deg2(f). Now

by Corollary 20, we can use C⊕,min(f) to upper bound

lin-rank(f). For the second part, since deg2(f
′) < deg2(f)

and ‖(̂f ′)±‖1 ≤ ‖f̂±‖1, applying the induction hypothesis

on f ′ yields the following upper bound on D⊕(f ′):

D⊕(f) ≤ Bd−1

(‖f̂±‖21) log ‖f̂±‖1 + 1 +Bd−1

(‖f̂±‖1).
(6)

Eq.(5) thus follows from the simple bound Cb
⊕,min(f) ≤

C⊕(f) ≤ D⊕(f). Now define the right-hand side of Eq.(6)

to be Bd

(‖f̂±‖1), and solve the following recursive relation

Bd(m) = Bd−1(m
2) logm+ Bd−1(m) + 1, and B3(m) =

O(logm+ 1), we get

Bd(m) = (1 + o(1))2(d−2)(d−3)/2 logd−2 m,

as desired.

Note that in the above proof, it seems that we lose some-

thing by using C⊕,min to upper bound lin-rank. However, it

is crucial to consider the affine subspace Hb on which Δtf
becomes a constant (instead of, say, a polynomial of lower

F2-degree), because otherwise gb on Hb is not equal to f
(actually not even Boolean), and thus we cannot recursively

apply the procedure on f |Hb
. In addition, if Δtf is not

665

constant on Hb, then we cannot guarantee the decrease of

the spectral norm due to restriction on Hb.

We have showed that low degree polynomials have small

C⊕,min value in terms of the spectral norm. We actually

conjecture that the bound can be improved to the following.

Conjecture 25. There is some absolute constant c s.t. for
any non-constant f : {0, 1}n → {0, 1}, C⊕,min(f) =
O(logc ‖f̂‖1).

It has the consequence as follows.

Proposition 26. If Conjecture 25 is true, then for any
f : {0, 1}n → {0, 1}, lin-rank(f) = O(logc ‖f̂‖1) and
D⊕(f) = O(deg2(f) log

c ‖f̂‖1).
In fact, we are not aware of any counterexample for

Conjecture 25 even for c = 1.

Lemma 24 also implies the following Corollary, from

which Corollary 7 immediately follows.

Corollary 27. If f : {0, 1}n → {0, 1} has F2-degree d, then
f =

∑T
i=1±�Vi , where T = 22

d2/2 logd−2 ‖f̂‖1 and each �Vi

is the indicator function of the subspace Vi.

V. FUNCTIONS WITH A SMALL SPECTRAL NORM

We prove Lemma 28 in this section, which directly

implies Lemma 8, Theorem 9 and Theorem 10.

Lemma 28. For all Boolean function f : {0, 1}n →
{+1,−1}, we have C⊕,min(f) ≤ O(‖f̂‖1).

Proof: Suppose that the nonzero Fourier coefficients

are {f̂(α) : α ∈ A}, where A = supp(f̂). Denote by

a1, a2, ..., as the sequence of |f̂(α)| in the decreasing order,

and the corresponding characters are χα1
, ..., χαs

in that

order (thus |f̂(αi)| = ai and s = ‖f̂‖0 is the Fourier sparsity

of f). For simplicity, we assume s ≥ 4, as doing so can only

add at most a constant to our bound on C⊕,min(f).
Consider the following greedy folding process: fold along

β = α1+α2 and select a proper half-space, namely impose

a linear restriction χβ(x) = b for some b ∈ {0, 1}, s.t. the

subfunction has its largest Fourier coefficient being a1 + a2
(in absolute value). This can be done by Lemma 16.

The lemma now follows from the following two claims,

whose proofs are omitted in this version.

Claim 29. After at most O(‖f̂‖1) greedy foldings, we have
a1 ≥ 1/2.

Claim 30. Each greedy folding increases a1 and decreases
the Fourier �1-norm by at least 2a1 = 2maxs |f̂(s)|.

Thus once a1 ≥ 1/2, then each greedy folding decreases

the Fourier �1-norm by at least 1. So it takes at most ‖f̂‖1
further steps to make the Fourier �1-norm to be at most 1,

in which case at most one more folding makes the function

constant.

Lemma 28 implies that lin-rank(f) ≤ O(‖f̂‖1)
(Lemma 8) by Corollary 20 (that lin-rank(f) ≤ C⊕,min(f)).

Note that our Main PDT algorithm can be simply sim-

ulated by a protocol in which Alice and Bob send �i(x)
and �i(y), respectively. Thus, similar to Fact 12, we have

DCC(f) ≤ 2D⊕(f) for f : {0, 1}n × {0, 1}m → {0, 1}.
Theorem 9 basically follows from this lemma and the fact

that subfunctions have smaller spectral norm (Lemma 16).

Lemma 28 also implies Theorem 10, which asserts up-

per bounds on the deterministic communication complex-

ity of f ◦ ⊕ as DCC(f ◦ ⊕) = O(deg2(f) · ‖f̂‖1) =

O
(√

rank(Mf◦⊕) logrank(Mf◦⊕)
)
. To see this, first re-

call Theorem 22, which states that DCC(f ◦⊕) ≤ 2 log ‖f̂‖0 ·
M(f) where M(f) is a downward non-increasing complex-

ity measure. By Lemma 8, we can take M to be ‖f̂‖1. Now

combining these with Fact 18 (that deg2(f) ≤ log ‖f̂‖0),

and the inequality that ‖f̂‖1 ≤
√
‖f̂‖0 yields Theorem 10.

ACKNOWLEDGMENTS

We are indebted to Andrej Bogdanov for an enlightening

discussion at the early stage of the work, and we would also

like to thank Irit Dinur, Elena Grigorescu, Ronitt Rubinfeld,

Rocco Servedio, Amir Shpilka, Xiaorui Sun and Ben Lee

Volk for valuable comments.

REFERENCES

[AKK+05] Noga Alon, Tali Kaufman, Michael Krivelevich, Si-
mon Litsyn, and Dana Ron. Testing Reed Muller codes. IEEE
Transactions on Information Theory, 51(11):4032–4039, 2005.

[ASTS+03] Andris Ambainis, Leonard Schulman, Amnon Ta-
Shma, Umesh Vazirani, and Avi Wigderson. The quantum
communication complexity of sampling. SIAM Journal on
Computing, 32(6):1570–1585, 2003.

[BC99] Anna Bernasconi and Bruno Codenotti. Spectral analysis
of Boolean functions as a graph eigenvalue problem. IEEE
Transactions on Computers, 48(3):345–351, 1999.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity
measures and decision tree complexity: a survey. Theoretical
Computer Science, 288(1):21–43, 2002.

[Bec75] William Beckner. Inequalities in Fourier analysis. Annals
of Mathematics, 102:159–182, 1975.

[Bon70] Aline Bonami. Étude des coefficients Fourier des fonc-
tiones de Lp(G). Annales de l’institut Fourier, 20(2):335–402,
1970.

[BSLRZ12] Eli Ben-Sasson, Shachar Lovett, and Noga Ron-Zewi.
An additive combinatorics approach relating rank to communi-
cation complexity. In Proceedings of The 53rd Annual IEEE
Symposium on Foundations of Computer Science, pages 177–
186, 2012.

[Cha02] Mei-Chu Chang. A polynomial bound in Freiman’s
theorem. Duke Mathematical Journal, 113(3):399–419, 2002.

666

[Dic58] L. Dickson. Linear groups with an exposition of the Galois
field theory. Dover, New York, 1958.

[GOS+11] Parikshit Gopalan, Ryan O’Donnell, Rocco Servedio,
Amir Shpilka, and Karl Wimme. Testing Fourier dimensionality
and sparsity. SIAM Journal on Computing, 40(4):1075–1100,
2011.

[Gow98] Timothy Gowers. A new proof of Szemerédi’s theorem
for arithmetic progressions of length four. Geometric and
Functional Analysis, 8(3):529–551, 1998.

[Gow01] Timothy Gowers. A new proof of Szemerédi’s theorem.
Geometric and Functional Analysis, 11(3):465–588, 2001.

[Gro97] Vince Grolmusz. On the power of circuits with gates of
low L1 norms. Theoretical Computer Science, 188(1-2):117–
128, 1997.

[GS08] Ben Green and Tom Sanders. Boolean functions with
small spectral norm. Geometric and Functional Analysis,
18(1):144–162, 2008.

[GT09] Ben Green and Terence Tao. The distribution of polyno-
mials over finite fields, with applications to the Gowers norms.
Contributions to Discrete Mathematics, 4(2):1–36, 2009.

[HS10] Elad Haramaty and Amir Shpilka. On the structure of
cubic and quartic polynomials. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, pages 331–340, 2010.

[IMR12] Russell Impagliazzo, Cristopher Moore, and Alexan-
der Russell. An entropic proof of Chang’s inequality.
arXiv:1205.0263, 2012.

[KL96] Andrew Kotlov and László Lovász. The rank and size of
graphs. Journal of Graph Theory, 23:185–189, 1996.

[KL08] Tali Kaufman and Shachar Lovett. Worst case to average
case reductions for polynomials. In Proceedings of the 49th
Annual IEEE Symposium on Foundations of Computer Science,
pages 166–175, 2008.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision
trees using the Fourier spectrum. SIAM Journal on Computing,
22(6):1331–1348, 1993.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Com-
plexity. Cambridge University Press, Cambridge, UK, 1997.

[Kot97] Andrei Kotlov. Rank and chromatic number of a graph.
Journal of Graph Theory, 26:1–8, 1997.

[KS13] Raghav Kulkarni and Miklos Santha. Query complexity
of matroids. In Proceedings of the 8th International Conference
on Algorithms and Complexity, 2013.

[LLZ11] Ming Lam Leung, Yang Li, and Shengyu Zhang. Tight
bounds on the communication complexity of symmetric XOR
functions in one-way and SMP models. In Proceedings of the
8th Annual Conference on Theory and Applications of Models
of Computation, pages 403–408, 2011.

[Lov90] László Lovász. Communication complexity: A survey. In
B. Korte, L. Lovász, H. Prömel, and A. Schrijver, editors, Paths,
flows, and VLSI-layout, Springer-Verlag, page 235–265, 1990.

[LS88] László Lovász and Michael E. Saks. Lattices, Möbius
functions and communication complexity. In Proceedings of the
29th Annual Symposium on Foundations of Computer Science,
pages 81–90, 1988.

[LS09] Troy Lee and Adi Shraibman. Lower bounds on com-
munication complexity. Foundations and Trends in Theoretical
Computer Science, 3(4):263–398, 2009.

[LZ10] Troy Lee and Shengyu Zhang. Composition theorems in
communication complexity. In Proceedings of the 37th Interna-
tional Colloquium on Automata, Languages and Programming
(ICALP), pages 475–489, 2010.

[LZ13] Yang Liu and Shengyu Zhang. Quantum and random-
ized communication complexity of XOR functions in the SMP
model. ECCC, 20(10), 2013.

[Mid04] Gatis Midrijanis. Exact quantum query complexity
for total Boolean functions, 2004. http://arxiv.org/abs/quant-
ph/0403168.

[MO10] Ashley Montanaro and Tobias Osborne. On the commu-
nication complexity of XOR functions. arXiv:, 0909.3392v2,
2010.

[MS82] Kurt Mehlhorn and Erik M. Schmidt. Las Vegas is
better than determinism in VLSI and distributed computing
(extended abstract). In Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pages 330–337, 1982.

[NW95] Noam Nisan and Avi Wigderson. On rank vs. communi-
cation complexity. Combinatorica, 15(4):557–565, 1995.

[O’D12] Ryan O’Donnell. Lecture notes: Analysis of Boolean
functions. 15-859S, Carnegie Mellon University, 2012.

[SV13] Amir Shpilka and Ben Lee Volk. On the structure of
Boolean functions with small spectral norm. ECCC, TR13-049,
2013.

[SW12] Xiaoming Sun and Chengu Wang. Randomized com-
munication complexity for linear algebra problems over finite
fields. In Proceedings of the 29th International Symposium on
Theoretical Aspects of Computer Science, pages 477–488, 2012.

[TWXZ13] Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and
Shengyu Zhang. Fourier sparsity, spectral norm, and the Log-
rank conjecture, 2013. http://arxiv.org/abs/1304.1245.

[Val04] Paul Valiant. The log-rank conjecture and low degree
polynomials. Information Processing Letters, 89(2):99–103,
2004.

[Yao79] Andrew Yao. Some complexity questions related to
distributive computing. In Proceedings of the Eleventh Annual
ACM Symposium on Theory of Computing (STOC), pages 209–
213, 1979.

[ZS09] Zhiqiang Zhang and Yaoyun Shi. Communication com-
plexities of symmetric XOR functions. Quantum Information
& Computation, 9(3):255–263, 2009.

[ZS10] Zhiqiang Zhang and Yaoyun Shi. On the parity complexity
measures of Boolean functions. Theoretical Computer Science,
411(26-28):2612–2618, 2010.

667

