
Rational Protocol Design:
Cryptography Against Incentive-driven Adversaries

Juan Garay∗, Jonathan Katz†, Ueli Maurer‡, Björn Tackmann‡, and Vassilis Zikas§
∗AT&T Labs – Research

Email: garay@research.att.com
†University of Maryland
Email: jkatz@cs.umd.edu

‡ETH Zurich
Email: {maurer,bjoernt}@inf.ethz.ch

§UCLA
Email: vzikas@cs.ucla.edu

Abstract—Existing work on “rational cryptographic
protocols” treats each party (or coalition of parties) run-
ning the protocol as a selfish agent trying to maximize its
utility. In this work we propose a fundamentally different
approach that is better suited to modeling a protocol
under attack from an external entity. Specifically, we
consider a two-party game between an protocol designer
and an external attacker. The goal of the attacker is to
break security properties such as correctness or privacy,
possibly by corrupting protocol participants; the goal of
the protocol designer is to prevent the attacker from
succeeding.

We lay the theoretical groundwork for a study of
cryptographic protocol design in this setting by provid-
ing a methodology for defining the problem within the
traditional simulation paradigm. Our framework provides
ways of reasoning about important cryptographic concepts
(e.g., adaptive corruptions or attacks on communica-
tion resources) not handled by previous game-theoretic
treatments of cryptography. We also prove composition
theorems that—for the first time—provide a sound way to
design rational protocols assuming “ideal communication
resources” (such as broadcast or authenticated channels)
and then instantiate these resources using standard cryp-
tographic tools.

Finally, we investigate the problem of secure function
evaluation in our framework, where the attacker has to
pay for each party it corrupts. Our results demonstrate
how knowledge of the attacker’s incentives can be used to

Research supported in part by NSF awards #0830464, #1111599,
and #1223623, the Army Research Laboratory under Cooperative
Agreement Number W911NF-11-2-0086, the Swiss National Sci-
ence Foundation (SNF), project no. 200020-132794, NSF grants
CCF-0916574, IIS-1065276, CCF-1016540, CNS-1118126, and CNS-
1136174, and Defense Advanced Research Projects Agency through
the U.S. Office of Naval Research under Contract N00014-11-1-0392.
The views and conclusions contained in this document are those of the
authors and should not be viewed as representing the official policies,
either expressed or implies, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any
copyright notation herein.

circumvent known impossibility results in this setting.

Keywords-Cryptographic Protocols, Game Theory, Se-
cure Computation, Composition

I. INTRODUCTION

Consider a cryptographic protocol carrying out some

task. In traditional security definitions, threats to the

protocol are modeled by an explicit external entity—

the adversary—who can corrupt some bounded number

of protocol participants and make them behave in an

arbitrary fashion. A protocol is “secure” if it realizes

the ideal specification of the task against any adversarial

strategy.

While this approach yields strong security guarantees,

it has been criticized as being overly pessimistic since it

neglects the incentives that lead parties to deviate from

their prescribed behavior; this may result in protocols

designed to defend against highly unlikely attacks.

Motivated by this, a recent line of work on “rational

cryptography” has focused on using ideas from game

theory to analyze cryptographic protocols run by a set

of rational parties [1]–[7].1 There, parties are no longer

viewed as being “good” (honest) or “bad” (corrupt); all

parties are simply rational, motivated by some utility

function. The goal of this line of work is to design

protocols for which following the protocol is a game-

theoretic equilibrium for the parties. It has been shown

that by incorporating incentives one can circumvent

impossibility results (e.g., for fairness in the two-party

1Our focus here is on applications of game theory to cryptography,
where the protocol defines the game; another line of work initiated by
Dodis, Rabin, and Halevi [8] focuses on applications of cryptography
to game theory, with the aims to design cryptographic protocols for
playing a pre-existing game [9]–[12].

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.75

648

setting [6], [7]), or design protocols with better effi-

ciency (e.g., using the notion of covert security [13]).

Game-theoretic models of the above sort are useful

for modeling incentive-driven misbehavior of mutually

distrustful protocol participants, but they are not directly

applicable to settings in which a set of mutually trusting

parties willing to follow a protocol are concerned about

an external attacker with its own set of preferences.

In that context, it is more accurate to speak of a two-

party game between the attacker and a defender (i.e., the

protocol designer and the participants themselves). Note

that, similarly to traditional cryptographic definitions,

the notion of a rational external attacker is also suitable

for capturing coalitions of incentive-driven misbehaving

protocol participants.

In this work we propose a framework—which we

term rational protocol design—that is intended to model

exactly the setting just described. We prove a com-

position theorem for our framework which allows us

to analyze protocols assuming idealized communica-

tion resources (e.g., secure point-to-point channels or

a broadcast channel) are available, and then instanti-

ate those idealized assumptions using standard cryp-

tographic primitives. (A composition theorem of this

sort is not known to hold in many existing rational-

cryptography frameworks. See Section III for further

discussion.) Finally, we showcase our framework by

using it to model a scenario in which a protocol for

multi-party computation is run in the presence of an

external attacker who gains utility by violating privacy

or correctness but must pay for corruption of protocol

participants. In that setting we show how full security

is attainable even with no a priori upper bound on

the number of parties that can be compromised by the

attacker. We explain our results in greater detail in the

sections that follow.

A. Overview of our Framework

We provide a high-level overview of our framework,

allowing ourselves to be somewhat informal. Formal

details of the model are given in Section II.

At the most basic level, we propose a new way

of modeling incentive-driven attacks via a two-party

game between a protocol designer D, who specifies a

protocol Π for the (honest) participants to run, and a

protocol attacker A, who specifies a polynomial-time

attack strategy A by which it may corrupt parties and try

to subvert execution of the protocol (uncorrupted parties

follow Π as prescribed). Both D and A are unbounded,

and so this is a zero-sum extensive game with perfect

information and observable actions, or more concretely

a Stackelberg game (cf. [14, Section 6.2]).

The goal of the attacker is to choose a strategy

that maximizes its utility; see below for how utility is

defined. Since this is a zero-sum game, the goal of the

defender is simply to minimize the attacker’s utility.2

We are interested in ε-subgame-perfect equilibria in

this game, a refinement of subgame-perfect equilibria

(the natural solution concept for Stackelberg games)

that allows for negligible deviation in the choice of the

players’ strategies. We remark that although the notion

of subgame-perfect equilibria is the most natural notion

of stability for game-theoretic protocols, this notion

is notoriously difficult to define in a computational

setting [3], [4], [15]–[18]. We can use this notion cleanly

here because the players in our game (namely, D and A)

are unbounded, and because our game tree has (fixed)

depth two.
An additional novelty of our framework lies in the

way we define the utility of the attacker. Fix some

desired functionality F to be realized by a protocol.

Given some moves Π,A by the players of our game,

the utility of the attacker is defined using the traditional

simulation paradigm in which a real-world execution

of protocol Π in the presence of attack strategy A
is compared to an ideal-world execution involving an

ideal-world attack strategy (that is, a simulator) inter-

acting with an ideal functionality for the task at hand.

In our ideal world, however, we allow the simulator to

make explicit queries to a “defective” ideal functionality

〈F〉 that allow the simulator to cause specific “security

breaches.” The utility of the attacker depends on the

queries made by the simulator,3 and our initial game

is specified by fixing a utility function that assigns

values to events that occur in the ideal world. Roughly

speaking, then, the goal of the attacker is to generate

an adversarial strategy A that will “force” the simulator

to cause certain security breaches in the ideal world in

order to complete a successful simulation; Π is “secure”

(with respect to some utility function) if the protocol

can be simulated for any choice of A while generating

utility 0 for the attacker.
Our choice to model utility by the occurrence of

ideal-world events shares the same motivations that lead

to adoption of the simulation paradigm in the standard

cryptographic setting: it allows us, for example, to

capture the fact that some information has been leaked

without having to specify precisely what that informa-

tion corresponds to, or having to worry about the fact

that the information may correspond to different things

2There is some practical justification for assuming a zero-sum
game. We leave consideration of nonzero-sum games for future work.

3Utility need not be positive; some events, such as corrupting
parties, might incur negative utility for the attacker.

649

in different executions. We remark that the “security

breaches” considered in this paper may be viewed as

overly restrictive (making our definitions overly conser-

vative), but our framework is flexible enough to allow

one to specify more fine-grained security breaches and

assign different utilities to each of them, if desired.

An important feature of our framework is that it

also allows us to meaningfully compare two insecure
protocols by comparing the maximum achievable utility

of the attacker when attacking each of them. This, in

turn, means we can speak of an “optimal” protocol (with

respect to some utility function) even when a “secure”

protocol is impossible. Coming back to our original two-

party game, we show that a protocol Π is optimal if

and only if having D choose that protocol yields an ε-
subgame-perfect equilibrium in that game.

B. Results in our Framework

The fact that our framework can be cast as a

cryptographic maximization problem enables us to

prove a composition (subroutine replacement) theorem.

Roughly speaking, this allows us to design and analyze

protocols in a hybrid world where certain ideal func-

tionalities are available (such as secure point-to-point

channels or broadcast) and then draw conclusions about

the resulting real-world protocol when those ideal func-

tionalities are instantiated with secure implementations.

In Section IV we illustrate the benefits of our frame-

work by investigating the problem of (multi-party) se-

cure function evaluation (SFE) in the presence of an

attacker whose goal is to violate the privacy of the

uncorrupted parties’ inputs, by learning more informa-

tion on them than allowed by the inputs and outputs

of corrupted parties, and/or correctness of their out-

puts. The attacker may specify an adversarial strategy

in which arbitrarily many parties may be adaptively

corrupted, though a cost is charged to the attacker for

each corrupted party. We show the following results

(here, “secure” is meant in the rational sense outlined

above):

1. We show a secure protocol for computing arbitrary

functions assuming the cost of corrupting parties is

high compared to the attacker’s utility for violat-

ing privacy. (This assumes static corruption only.)

Conversely, we show that there are functions that

cannot be computed securely when the cost of cor-

ruption is low compared to the attacker’s utility for

violating privacy or correctness. We also show a

secure protocol (even under adaptive corruption) for

computing arbitrary functions even when the utility

for breaking privacy is high, but assuming that the

utility for violating correctness is relatively low (both

compared to the corruption cost).

2. Perhaps more interestingly, we provide a generic

two-party SFE protocol, i.e., a protocol for evalu-

ating any given function, when the utilities for both

breaking privacy and/or correctness are higher than

the cost of corruption (this again assumes static

corruption) and prove that for a natural class of

functions our protocol is in fact optimal, in the

sense that it optimally tames the adversary. Note that

our impossibility result excludes the existence of a

secure protocol for this case.

3. Finally, for any function f in the class of functions

for which 1/p-secure protocols exist [19], [20] (for

some polynomial p), we provide an attack-payoff

secure protocol for evaluating f for any choice of

the attacker’s utility.

We remark that only the last result requires the protocol

designer to have exact knowledge of the attacker’s

utilities; the rest only require known bounds on the

attacker’s utilities.

C. Comparison to Prior Work on Rational Cryptogra-
phy

The main difference of our approach to rational cryp-

tography compared to the traditional approach is that,

instead of defining security in a game among rational

protocol participants, we define it in a “meta”-game be-

tween the protocol designer—who decides the protocol

to be executed by the (non-rational) honest parties—

and the attacker. Our approach provides a simpler, more

intuitive, and composable handling of incentive-driven

attacks against cryptographic protocols. Furthermore, it

allows to make optimality statements for cases for which

security is impossible both in the traditional and in the

rational setting. In the following, we give an abridged

comparison of our results to existing results in rational

cryptography. We refer to the full version [27] for a

more detailed comparison.

To the best of our knowledge, our protocols are the

first to consider incentives to deviate in SFE while

relying on the minimal assumptions of insecure chan-

nels and a PKI. In particular, existing rational protocols

assume ideal communication resources such as access

to a broadcast channel or to secure channels. However,

as we show, such implementations would fail if the

communication resource were instantiated with a secure

broadcast protocol. Similarly, the models from [9],

[11], [12], [21]–[23] make even stronger communica-

tion assumptions which are provably unrealizable from

standard cryptographic primitives [10], [23].

650

Recently, Halpern and Pass [5] suggested a game-

theoretic framework which is suitable for modeling a

protocol being run among a set of computationally

bounded parties as a game. They investigated the re-

lationship between equilibria in such games and tradi-

tional cryptographic notions of security. The motivation

of our work is different, and in particular our aim is

to analyze protocols that are not secure in the standard

cryptographic sense but still offer protection against a

rational attacker.

Aumann and Lindell [13] demonstrated how to take

advantage of the adversary’s “fear” of getting caught

cheating to build more efficient protocols.4 Their model

can be readily captured in our framework by assigning

a negative payoff to the event of (identifiable) abort.

In work closer in spirit to ours, Groce et al. [24]

investigated the feasibility of Byzantine agreement (BA)

in a setting where the parties are rational but are split

into two categories: the “selfish corrupt” parties that

have some known utility function representing potential

attacks to BA, and the “honest” parties who wish to

follow the protocol. Our model can be tuned (by appro-

priately instantiating the utility function) to formalize

the results of [24] in a simulation-based manner.

D. Preliminaries and Notation

Our model is based on the simulation paradigm and

the formalization follows Canetti’s UC framework [33].

We specify our (synchronous) protocols and ideal func-

tionalities in a way similar to Canetti’s synchronous

model [25], knowing that (most) security proofs in that

model carry over to the UC model, given that certain

functionalities are available to the protocols [26]. Before

proceeding to the details of our model and our results,

we recall the basics of this model and specify some

terminology and notation.

All entities involved in a protocol execution are

described by interactive Turing machines (ITMs). The

set of all efficient, i.e., composable polynomial time,

ITMs is denoted by ITM. The view of an ITM in an

execution is the list of all “external write” requests (that

is, input- and output operations of the ITM) that involve

the respective ITM—identified by the contents of its

identity tape.

Most statements in this paper are actually asymptotic

with respect to an (often implicit) security parameter

k ∈ N and we use the standard definitions of negligible
and noticeable (i.e, non-negligible). Furthermore, for

functions f and g we introduce the symbols f
negl≈ g to

4Secure computation with honestly looking parties was also con-
sidered in [34].

denote that for some negligible function μ, |f − g| ≤ μ,

and f
negl≥ g to denote that ∃ negligible μ such that

f ≥ g − μ (“
negl≤” is defined analogously). Unless stated

otherwise, whenever we use strict inequalities we imply

that the two sides differ by a noticeable (i.e., non-

negligible) portion; that is, we write a < b (resp., a > b)
to denote that a is strictly smaller than b − μ (resp.,

a is strictly greater than b + μ), for some noticeable

function μ.

II. CRYPTOGRAPHIC SECURITY AS A GAME

In this section, we introduce our definition of pro-

tocol optimality in terms of a game—which we term

the attack game—between a protocol designer and an

attacker, where the choice of the protocol designer is the

protocol code (to be executed by uncorrupted parties)

and the choice of the attacker is a concrete adversarial

strategy for attacking the chosen protocol.

A. The Attack Game GM
The attack game is a two-player zero-sum extensive

game of perfect information with a horizon of length

two (i.e., two sequential moves) and is formulated as

a so-called Stackelberg game [14]. Informally, such a

game involves two players, called the leader and the

follower, and proceeds in two steps. In the first step,

(only) the leader plays and the follower is (perfectly)

informed about the leader’s move; in the second step

(only) the follower plays and the game terminates. (We

refer to [14, Section 6.2] for a formal definition of

extensive games of perfect information and a description

of Stackelberg games.)

In our attack game, we refer to the leader and the

follower as the protocol designer D and the attacker A,

respectively. The game is parametrized by the (multi-

party) functionality F to be computed—the number n
of parties is implicit in any such description, which

is known to both D and A. The designer D chooses a

protocol for computing the functionality F from the

set of all n-party (probabilistic and polynomial-time

computable) protocols5, the protocol consists of the

code that the (honest) parties are supposed to execute.

D sends to A the description Π ⊆ {0, 1}∗ of this

protocol in some predetermined encoding (in the form

of interactive Turing machines (ITMs), for example).

Upon receiving Π, it is A’s turn to play its strategy. A

chooses a polynomial-time ITM A to attack protocol Π.

The set Z of possible terminal histories is then the set

5As usual, to ensure that the running time of such a protocol is
also polynomial in the respective security parameter, we assume that
inputs to protocol machines include the security parameter in unary
notation.

651

of sequences (Π,A), where Π is an n-party protocol,

and A is a central adversary (strategy) for attacking Π
in the traditional cryptographic definition. We denote

the corresponding game by GM, where the subscript

M in the above notation is referred to as the attack
model, which specifies all the public parameters of the

game, namely, the functionality and the description of

the action sets as well as the utilities (formal definition

in Section II-B below).

We use the standard solution concept for exten-

sive games with perfect information, namely subgame-
perfect equilibrium, where, informally, the actions of

each party at any point in the game (i.e., after any

history) form a best response to this history (cf. [14,

Definition 97.2]). However, as we are interested in

cryptographic security definitions with negligible error

terms, we need a refinement of this notion which we

call ε-subgame perfect equilibrium, and which considers

as solutions all profiles in which the parties’ utilities

are ε-close to their best-response utilities. The formal

definition of ε-subgame perfect equilibrium in our at-

tack game follows trivially by adapting, as above, the

definition from [14, Definition 97.2].

B. Defining the Utilities

In order to define the attacker’s utility we proceed in

three steps, as follows.

The first step is carried out by “relaxing” the ideal

functionality F to obtain a (possibly) weaker ideal

functionality 〈F〉, which explicitly allows the attacks

we wish to model. For example, 〈F〉 could give the

simulator access to the parties’ inputs, or let it modify

their outputs.

For the second step, we define a function v mapping

the joint view of the relaxed functionality 〈F〉 and the

environment Z to a real-valued payoff. We then define

the random variable ensemble v〈F〉,S,Z as the result of

applying v to the views of 〈F〉 and Z in a random

experiment describing an ideal evaluation with ideal-

world adversary S . In other words, v〈F〉,S,Z describes

(as a random variable) the payoff of S in an execu-

tion using directly the functionality 〈F〉. The (ideal)
expected payoff of S with respect to the environment Z
is defined to be the expected value of v〈F〉,S,Z , i.e.,

U
〈F〉
I (S,Z) = E(v〈F〉,S,Z).

We refer to the triple M = (F, 〈F〉, v) as the attack
model.

Finally (step 3), we define the payoff of an adversarial

strategy for a certain protocol Π based on the above

(ideal) expected payoff: The (real) expected payoff of

a pair (A,Z) with respect to Π, where Z is the

environment, A is the adversarial strategy,6 and Π
realizes 〈F〉, is taken to be the payoff of the “best”

simulator for A, that is, the simulator that successfully

emulates A while achieving the minimum score. The

reason for considering a minimizing simulator that some

events (for example, obtaining a party’s input) can be

provoked by the simulator without any effect in the

remaining execution: the simulator can provoke an event

even if it could simulate all necessary messages without

doing so. The adversary, on the other hand, should be

“rewarded” only if it forces the simulator S to provoke

the event; hence, we minimize over the set of all “good”

simulators.

Formally, for a functionality 〈F〉 and a protocol Π,

denote by CA the class of simulators that are “good”

for A, i.e, CA = {S ∈ ITM | ∀Z : EXECΠ,A,Z ≈
EXEC〈F〉,S,Z}. The real expected payoff of the pair

(A,Z) is then defined as

UΠ,〈F〉(A,Z) = inf
S∈CA

{U 〈F〉I (S,Z)}.

In other words, UΠ,〈F〉 assigns to each pair (A,Z) ∈
ITM×ITM (and each value of the security parameter k)

a real number corresponding to the expected payoff

obtained by A in attacking Π within environment Z .

For completeness, for adversaries A with CA = ∅, i.e.,

adversaries that cannot be simulated in the 〈F〉-ideal

world, we define the score to be ∞, as these adversaries

might break the security of the protocol in ways that are

not even incorporated in the model.

Having defined the notion of real expected payoff,

UΠ,〈F〉(A,Z), we proceed to define our main quantity

of interest, namely, the (maximal) payoff of an adver-

sarial strategy A, which, intuitively, corresponds to its

expected payoff when executing the protocol with A’s

“preferred” environment, i.e., the one that maximizes

its score. More formally, the (maximal) payoff of an

adversary A attacking the execution of protocol Π for

realizing 〈F〉 with respect to a certain payoff function

v is defined as

ÛΠ,〈F〉(A) = sup
Z∈ITM

{UΠ,〈F〉(A,Z)}.

Finally, having defined the (maximal) payoff of any

given adversarial strategy A, we can now define the
utility function uA of attacker A in the attack game GM
as follows. Let (Π,A) be a terminal history in GM, i.e.,

A = A(Π). Then

uA(Π,A) := ÛΠ,〈F〉(A).
6We write A instead of A(Π) whenever the protocol Π is implicit

by the context.

652

As GM is a zero-sum game, the designer’s utility is

defined as uD(·) := −uA(·).
We remark that we take the attacker’s utility to be

the maximal utility over the class of all environments,

as (1) this is a natural worst-case assumption, and (2) it

ensures that the achieved solution is stable even when

the cheating parties have prior information about other

parties’ inputs.

A natural class of utility functions. As defined, the

payoff function v can be arbitrary. In many applications,

however, including those in Section IV, meaningful

payoff functions have the following, simple represen-

tation: Let (E1, . . . , En) denote a vector of (disjoint)

events defined on the views (of S and Z) in the ideal

experiment corresponding to the security breaches that

contribute to the attacker’s utility. Each event Ei is

assigned a real number γi, and the payoff function

v�γ assigns, to each ideal execution, the sum of γi’s
for which Ei occurred. The ideal expected payoff of

a simulator is computed according to our definition as

U
〈F〉
I (S,Z) =

∑

Ei∈�E,γi∈�γ
γi Pr[Ei],

where the probabilities are taken over the random coins

of S , Z , and 〈F〉. At times, to make the payoff vector

�γ explicit in the specification of the payoff function, we

write U
〈F〉,�γ
I (S,Z).

III. THE ATTACK GAME AS A CRYPTOGRAPHIC

(MAXIMIZATION) PROBLEM

We give a characterization of protocol optimality

as a maximization problem using only cryptographic

language, which emerges from our formulation of the

problem as a zero-sum game. Furthermore, we provide

a notion of security of protocols which is suitable for

incentive-driven attackers. Let M = (F, 〈F〉, v) be an

attack-model; for any given n-party protocol Π, we refer

to the adversarial strategy A that achieves a (maximal)

payoff ÛΠ,〈F〉(A) as a M-maximizing adversary for Π
(note that in GM, A is a best response of A to protocol

Π). Formally:

Definition 1. Let M = (F, 〈F〉, v) be an attack model

and Π a protocol that realizes 〈F〉. We say that an ITM

A is a M-maximizing adversary for Π if

ÛΠ,〈F〉(A) negl≈ sup
A′∈ITM

ÛΠ,〈F〉(A′) =: ÛΠ,〈F〉.

The notion of maximizing adversaries naturally in-

duces a notion of optimality for protocols:

Definition 2. Let M = (F, 〈F〉, v) be an attack model

and Π be a protocol that realizes functionality 〈F〉. We

say that protocol Π is attack-payoff optimal in M if for

any other protocol Π′, ÛΠ,〈F〉 negl≤ ÛΠ′,〈F〉.

We note that the above notion of optimality is only

meaningful for comparing protocols that use the same

“hybrid” functionalities (otherwise the trivial protocol

using the functionality F would always be optimal, and

the definition would coincide with Definition 4 below).

We chose to nevertheless state the definition in the above

simplified form and refer to [27] for further discussion.

The quantities ÛΠ,〈F〉 and ÛΠ′,〈F〉 in Definition 2

denote the maximal payoffs of (different) adversarial

strategies that attack protocols Π and Π′, respectively.

In the following, we prove an equivalence theorem

linking the above notion of protocol optimality to the

equilibrium in the attack game GM. The equivalence is

stated in the following theorem which follows from a

simple backwards-induction argument:

Theorem 3. Protocol Π is attack-payoff optimal in the
attack modelM = (F, 〈F〉, v) if and only if the strategy
profile (Π, A) is a λ-subgame-perfect equilibrium in the
corresponding attack-game GM for some negligible λ,
where for each Π ∈ ITMn, A(Π) is a M-maximizing
adversary attacking Π.

At times protocols can “tame” the attacker com-

pletely, in the sense that the simulator is able to perform

the simulation without ever provoking the events that

give the chosen adversarial strategy a positive payoff.

This is for example the case for protocols which se-

curely realize the functionality F in the standard cryp-

tographic sense. Still, depending on the attack model

M = (F, 〈F〉, v)—recall that this defines the attacker’s

incentive—a protocol tailored to a particular attacker’s

preference can achieve this “best possible” security even

for functionalities that cannot be implemented in the

traditional cryptographic sense. Intuitively, a protocol

achieving this in some attack model M enjoys full

security in the presence of a M-maximizing adversary.

We will call such protocols attack-payoff secure. In

fact, most of our feasibility results are for attack-payoff

security. Nonetheless, attack-payoff optimality is still a

very interesting notion as it is achievable in settings

where attack-payoff security cannot be obtained (see

Section IV-B).

Definition 4. Protocol Π is attack-payoff secure in

M = (F, 〈F〉, v) if ÛΠ,〈F〉 negl≤ ÛΦF ,〈F〉, where ΦF

is the “dummy” F-hybrid protocol [33].

As protocol ΦF also implements 〈F〉—in the F-

hybrid model—an attack-payoff secure protocol Π is

at least as useful for the honest parties as the ideal

653

functionality F.

Composition. Our model allows for protocol composi-

tion (in the sense of subroutine replacement). Interest-

ingly, by using a backwards-induction argument (similar

in spirit to the argument from [3]) we can show that

support of such subroutine replacement has so far been

lacking in existing rational cryptography models. The

formal statement of the composition theorem can be

found in [27].

Theorem 5 (Informal). Let Π be a H-hybrid protocol,
and Ψ be a protocol that securely realizes H (in the
traditional simulation-based notion of security). Then
for any M = (F, 〈F〉, v) replacing in Π calls to H by
invocations of protocol Ψ does not (noticeably) increase
the utility of a M-maximizing adversary.

The above theorem shows that the subroutine replace-

ment operation can be applied to protocols that (fully,

e.g., UC-)implement a given functionality without af-

fecting optimality statements. If the underlying (sub-

routine) protocol Ψ is only attack-payoff secure/optimal

for H, we obtain only a weaker composition statement

which, roughly speaking, establishes an upper bound on

the utility loss of the designer when using attack-payoff

secure/optimal protocols for replacing a subroutine. The

formal statement and its proof can be found in [27].

IV. SCORING PRIVACY, CORRECTNESS, AND THE

COST OF CORRUPTION

In this section, we use our framework to study the

feasibility of secure function evaluation (SFE) [28]

with respect to a natural class of rational attackers.

Recall that in SFE, a set of n distrustful parties with

indices from the set P = [n] are to correctly compute

a common function on their inputs, and in such a

way that (to the extent possible) their individual inputs

remain private. We consider an attacker whose specific

incentive is to violate those very basic two properties.

We additionally make the natural assumption that the

act of corrupting parties is not for free (cf. [29]) and

that there is a cost (negative payoff) associated with

it, which further motivates the attacker to achieve its

goals with as few corruptions as possible. Our protocols

aim at realizing the fully secure version of SFE (i.e.,

including robustness) in which the parties always obtain

their outputs.

Next, we specify how attacks with the above goals are

modeled in our framework. Following the methodology

described in Section II, we first describe a “relaxed” ver-

sion of the ideal SFE functionality, denoted as 〈FSFE〉,
to allow us to define events in the ideal experiment

corresponding to the adversary achieving those goals.

More precisely, in addition to FSFE’s standard commu-

nication, 〈FSFE〉 accepts the following commands from

the simulator:

Breaking correctness: Upon receiving message (out, y)
from the simulator, replace the output of the function

by y. We let Ec denote the event that the simulator

sends to 〈FSFE〉 a message (out, ·) and assign payoff

γc to it.

Breaking privacy: Upon receiving message (inp, �xI),
where �xI is a vector containing inputs of corrupted

parties (with adaptive corruptions, the set I of corrupted

parties grows between queries), return to S the output

y of the function evaluated on (�x−I , �xI), where �x−I
denotes the inputs given by honest parties (if these in-

puts are not received yet, y := ⊥). To capture a minimal

privacy-breaking event (c.f. [27] for a discussion), the

functionality restricts the class of queries it accepts from

the simulator. In particular, for a query (inp, �xI), each

pi ∈ I must fulfill one of the following conditions: (1)

this is the first time a query with pi ∈ I is made, or

(2) a query with input x′i for pi has been already made,

and xi ∈ {x′i,⊥}. Note, however, that 〈FSFE〉 does not

register the vector �xI as the actual inputs of corrupted

parties; i.e., the command (inp, ·) does not result in

〈FSFE〉 computing the honest parties’ output. We let Ep
denote the event that the simulator sends to 〈FSFE〉 a

(inp, �xI) message and assign payoff γp to it.

Costly Corruption: To model costly corruption, we

define for each set I ⊆ P of (potentially) corrupted

parties the event EI , which occurs when the adversary

corrupts exactly the parties in I and assign payoff γI
to it.

For the above defined events, the adversary’s payoff

is specified by the vector �γ = (γc, γp,−{γI}I⊆P). For

convenience, we generally let the corruption costs γI
be non-negative. We denote the corresponding payoff

function as v�γ . Following our methodology, the ideal

expected utility for a simulator in the above described

attack model M = (FSFE, 〈FSFE〉, v�γ) is defined as:

U
〈F

SFE
〉

I (S,Z) := γcpc + γppp −
∑

I⊆P
γIpI ,

where pc = Pr[Ec], pp = Pr[Ep], and pI = Pr[EI]
(I ⊆ P) are probabilities taken over the random coins

of S , Z , and 〈FSFE〉.
In the remainder of this section, we study feasibility

of SFE in the above attack model. To simplify our

treatment, we restrict ourselves to the setting where the

654

same cost γ$ is associated with corrupting each party—

i.e., for any set I of size t, γI = tγ$. For simplicity

and in slight abuse of notation, we shall denote the

corresponding payoff vector as �γ = (γc, γp,−γ$).
Our protocols assume the availability of a public-key

infrastructure.

A. Feasibility of Attack-Payoff SFE

We study attack-payoff SFE in the attack model

described above, for various choices of the payoff vector

�γ = (γc, γp,−γ$). We start with a possibility result

for static corruptions7 and small payoff for breaking

privacy, i.e., γp < �n2 �γ$ (Theorem 6). Subsequently,

we prove impossibility of attack-payoff security when,

for some t ≥ n
2 , γp > tγ$ and γc > (n − t)γ$

(Theorem 7) and complete the picture with an attack-

payoff secure protocol for a large class of �γ’s that

are not excluded by the above impossibility, i.e., for

γp+γc < tγ$ and γc < (n−t)γ$ (Theorem 8); the latter

protocol is secure even with adaptive corruptions (where

no erasures are assumed). Due to lack of space, our fea-

sibility statements are given in an existential form, i.e.,

we only claim existence of a protocol satisfying them;

we remark however, that the corresponding proofs are

constructive and refer to [27] for detailed descriptions

of the corresponding protocols.

Theorem 6 (Informal). Let γp < �n2 �γ$. Assuming
the existence of enhanced trapdoor permutations, there
exists a protocol ΠSt-SFE which is attack-payoff secure
in the attack model (FSFE, 〈FSFE〉, v�γ) with static but
arbitrarily many corruptions.

Proof (idea): The idea is to design a protocol

Πf
St-SFE which is secure for an honest majority, and

remains correct even if more than half of the parties

are corrupted (i.e., the simulator might only need to

provoke the event Ep in this case). Such a protocol can

be obtained by appropriately modifying the protocol

from [35] (we refer to [27] for a description). Given

such a protocol Πf
St-SFE it is straightforward to verify

that the adversary has no incentive to corrupt any party.

Indeed, let t be the number of corrupted parties. If

t = 0 then the adversary’s utility equals 0. However,

if 0 < t < n/2 then the adversary’s utility is −tγ$ < 0.

Similarly, if t > n/2 then the adversary’s utility is at

most γp − tγ$ < γp − n
2 γ$ < 0.

7Note that this implies that the corresponding class of adversaries
that can be chosen by A in the attack-game GM is restricted to
adversaries that statically choose the set of corrupted parties at the
beginning of the protocol.

Theorem 7. Let t ≥ n/2. If γp > γ$t and γc > γ$(n−
t), then there exists a function f such that there exists
no (polynomial-round) attack-payoff secure protocol Π
in the attack model (Ff

SFE, 〈Ff
SFE〉, v�γ).

Proof (idea): In [30], it was shown that there

is a finite, deterministic function f for which there

is no polynomial-round protocol Π that simultaneously

satisfies the following two properties: (1) Π securely

realizes Ff
SFE in the presence of t corrupted parties, and

(2) Π is (n−t)-private. By appropriately translating the

privacy definition from [30] to our terminology, one can

show that existence of a protocol which is attack-payoff

secure in the attack model described in Theorem 7

contradicts the above impossibility result.

Theorem 8 (Informal). Let t ≥ n/2 and let M =
(FSFE, 〈FSFE〉, v�γ) be an attack model. Assuming en-
hanced trapdoor permutations, if γc + γp < tγ$ and
γc < (n − t)γ$ then there exists a protocol ΠAd-SFE
which is attack-payoff secure in M with arbitrarily
many (adaptive) corruptions.

The protocol construction uses an idea similar to

the one Theorem 6. We refer to [27] for a detailed

description and security proof.

B. A Positive Result for an Impossible Case

So far we have given positive and negative results

for attack-payoff secure function evaluation. Here, we

investigate attack-payoff optimality (cf. Definition 2) in

settings where attack-payoff security is provably un-

achievable. More precisely, consider the case of secure

two-party computation, where the values γp and γc are

both greater than the cost γ$ of corrupting a party.

Theorem 7 shows that in this setting it is impossible

to get an attack-payoff secure protocol implementing

functionality FSFE. We now describe a protocol that

is attack-payoff optimal in (FSFE, 〈FSFE〉, v�γ), assuming

the adversary statically chooses the set of corrupted

parties.

Our protocol, called ΠOp−SFE, consists of two phases; let

f denote the function to be computed:

1. ΠOp−SFE uses a protocol for SFE with abort

(e.g., [31], [32]) to compute the following function

f ′: f ′ takes as input the inputs of the parties to f
and outputs an authenticated two-out-of-two sharing

of the output of f along with an index i ∈R {1, 2}
chosen uniformly at random. In case of an unfair

abort, the honest party takes a default value as the

input of the corrupted party and locally computes the

function f—and the protocol ends here.

655

2. If the evaluation of f ′ did not abort, the second

phase consists of two rounds. In the first round, the

output (sharing) is reconstructed towards pi, and in

the second round it is reconstructed towards pī.

Theorem 9. Let M = (FSFE, 〈FSFE〉, v�γ) be an attack-
model where min{γp, γc} > γ$. Then for any static

adversary attacking ΠOp−SFE in M, ÛΠOp−SFE,〈FSFE
〉 negl≤

min{γp,γc}
2 − γ$.

Proof (idea): If the adversary corrupts party pi,
which is the first to receive (information about) the

output, then he can force the simulator to provoke one

of the events Ec and Ep. However, the simulator can

choose which of the events to provoke (and the best

simulator will choose the one that pays less to the

adversary) as at the point when the index i is announced,

the adversary has only seen a share of the output (hence,

the simulator can wait and query FSFE at the very end).

Because the index i of the party who first learns the

output is chosen at random, the simulator needs to

provoke one of these events with probability 1/2; with

the remaining 1/2 probability the honest party receives

the output first, in which case the adversary can do

nothing.

To prove attack-payoff optimality of the above pro-

tocol, we show that there are functions f for which
min{γp,γc}

2 − γ$ is a lower bound on the adver-

sary’s utility for any protocol in the attack model

(Ff
SFE, 〈Ff

SFE〉, v�γ). The formal statement and proof can

be found in the full version [27].

C. Feasibility for any (Given) Payoff Vector

We finally consider the case where the payoffs for

breaking privacy and/or correctness may be (upper-

bounded by) arbitrarily large constants. As Theorem 7

suggests, for this case it is impossible to have an attack-

payoff secure protocol for arbitrary functions. Nonethe-

less, we show possibility of such protocols for a large

class of functions which, roughly speaking, correspond

to the ones for which we can construct a 1/p-secure

(partially fair) protocol [19], [20]. The high-level idea

is the following: 1/p-secure protocols securely realize

their specification, within an error smaller than the

inverse of an arbitrary polynomial p (in the security

parameter). Because �γ is a vector of (constant) real

values, we can choose the error 1/p to be small enough

so that it is not in the adversary’s interest to corrupt

even a single party.

Theorem 10 (Informal). Let f be a (two-party or multi-
party) function which can be evaluated by a 1/p-secure

protocol [19], [20] and M = (Ff
SFE, 〈Ff

SFE〉, v�γ) be an
attack model where the elements γp, γc, and γ$ of �γ are
arbitrary (known) positive constants. Then, there exists
an attack-payoff secure protocol in M.

REFERENCES

[1] J. Y. Halpern and V. Teague, “Rational secret shar-
ing and multiparty computation: Extended abstract,” in
STOC 2004, L. Babai, Ed. Chicago, Illinois, USA:
ACM Press, Jun. 13–16, 2004, pp. 623–632.

[2] I. Abraham, D. Dolev, R. Gonen, and J. Y. Halpern, “Dis-
tributed computing meets game theory: robust mecha-
nisms for rational secret sharing and multiparty compu-
tation,” in PODC 2006, E. Ruppert and D. Malkhi, Eds.
Denver, Colorado, USA: ACM Press, Jul. 23–26, 2006,
pp. 53–62.

[3] G. Kol and M. Naor, “Cryptography and game the-
ory: Designing protocols for exchanging information,”
in TCC 2008, ser. LNCS, R. Canetti, Ed., vol. 4948.
San Francisco, CA, USA: Springer, Berlin, Germany,
Mar. 19–21, 2008, pp. 320–339.

[4] G. Fuchsbauer, J. Katz, and D. Naccache, “Efficient
rational secret sharing in standard communication net-
works,” in TCC 2010, ser. LNCS, D. Micciancio, Ed.,
vol. 5978. Zurich, Switzerland: Springer, Berlin, Ger-
many, Feb. 9–11, 2010, pp. 419–436.

[5] J. Y. Halpern and R. Pass, “Game theory with costly
computation: Formulation and application to protocol
security,” in ICS 2010, A. C.-C. Yao, Ed. Tsinghua
University Press, 2010, pp. 120–142.

[6] G. Asharov, R. Canetti, and C. Hazay, “Towards a
game-theoretic view of secure computation,” in EURO-
CRYPT 2011, ser. LNCS, K. G. Paterson, Ed., vol. 6632.
Springer, 2011, pp. 426–445.

[7] A. Groce and J. Katz, “Fair computation with ra-
tional players,” in EUROCRYPT 2012, ser. LNCS,
D. Pointcheval and T. Johansson, Eds., vol. 7237.
Springer, 2012, pp. 81–98.

[8] Y. Dodis, S. Halevi, and T. Rabin, “A cryptographic
solution to a game theoretic problem,” in CRYPTO 2000,
ser. LNCS, M. Bellare, Ed., vol. 1880. Santa Barbara,
CA, USA: Springer, Berlin, Germany, Aug. 20–24, 2000,
pp. 112–130.

[9] M. Lepinski, S. Micali, C. Peikert, and A. Shelat,
“Completely fair SFE and coalition-safe cheap talk,” in
PODC 2004, S. Chaudhuri and S. Kutten, Eds. St.
John’s, Newfoundland, Canada: ACM Press, Jul. 25–28,
2004, pp. 1–10.

[10] M. Lepinski, S. Micali, and A. Shelat, “Collusion-free
protocols,” in STOC 2005, H. N. Gabow and R. Fagin,
Eds. Baltimore, Maryland, USA: ACM Press, May 22–
24, 2005, pp. 543–552.

656

[11] S. Izmalkov, S. Micali, and M. Lepinski, “Rational
secure computation and ideal mechanism design,” in
FOCS 2005. Pittsburgh, PA, USA: IEEE Computer
Society Press, Oct. 23–25, 2005, pp. 585–595.

[12] S. Izmalkov, M. Lepinski, and S. Micali, “Verifiably
secure devices,” in TCC 2008, ser. LNCS, R. Canetti,
Ed., vol. 4948. San Francisco, CA, USA: Springer,
Berlin, Germany, Mar. 19–21, 2008, pp. 273–301.

[13] Y. Aumann and Y. Lindell, “Security against covert
adversaries: Efficient protocols for realistic adversaries,”
in TCC 2007, ser. LNCS, S. Vadhan, Ed., vol. 4392.
Springer, 2007, pp. 137–156.

[14] M. Osborne and A. Rubinstein, A Course in Game
Theory. MIT Press, 1994.

[15] S. D. Gordon and J. Katz, “Rational secret sharing,
revisited,” in SCN 2006, ser. LNCS, R. D. Prisco and
M. Yung, Eds., vol. 4116. Maiori, Italy: Springer,
Berlin, Germany, Sep. 6–8, 2006, pp. 229–241.

[16] G. Kol and M. Naor, “Games for exchanging informa-
tion,” in STOC 2008, C. Dwork, Ed. Victoria, British
Columbia, Canada: ACM Press, May 17–20, 2008, pp.
423–432.

[17] J. Y. Halpern, “Beyond Nash equilibrium: solution con-
cepts for the 21st century,” in PODC 2008, R. A. Bazzi
and B. Patt-Shamir, Eds. Toronto, Ontario, Canada:
ACM Press, Aug. 18–21, 2008, pp. 1–10.

[18] R. Gradwohl, N. Livne, and A. Rosen, “Sequential
rationality in cryptographic protocols,” in FOCS 2010.
IEEE Computer Society Press, 2010, pp. 623–632.

[19] D. Gordon and J. Katz, “Partial fairness in secure two-
party computation,” in EUROCRYPT 2010, ser. LNCS,
H. Gilbert, Ed., vol. 6110. Springer, 2010, pp. 157–176.

[20] A. Beimel, Y. Lindell, E. Omri, and I. Orlov, “1/p-
secure multiparty computation without honest majority
and the best of both worlds,” in CRYPTO 2011, ser.
LNCS, P. Rogaway, Ed., vol. 6841. Springer, 2011,
pp. 277–296.

[21] J. Alwen, A. Shelat, and I. Visconti, “Collusion-free
protocols in the mediated model,” in CRYPTO 2008,
LNCS, D. Wagner, Ed., vol. 5157. Santa Barbara, CA,
USA: Springer, Berlin, Germany, Aug. 17–21, 2008, pp.
497–514.

[22] J. Alwen, J. Katz, Y. Lindell, G. Persiano, A. Shelat,
and I. Visconti, “Collusion-free multiparty computation
in the mediated model,” in CRYPTO 2009, ser. LNCS,
S. Halevi, Ed., vol. 5677. Santa Barbara, CA, USA:
Springer, Berlin, Germany, Aug. 16–20, 2009, pp. 524–
540.

[23] J. Alwen, J. Katz, U. Maurer, and V. Zikas, “Collusion-
preserving computation,” in CRYPTO 2012, ser. LNCS,
R. Canetti and J. Garay, Eds. Santa Barbara, CA, USA:
Springer, Berlin, Germany, Aug. 2012, pp. 124–143.

[24] A. Groce, J. Katz, A. Thiruvengadam, and V. Zikas,
“Byzantine agreement with a rational adversary,” in
ICALP 2012, ser. LNCS. Springer, Berlin, Germany,
2012, pp. 561–572.

[25] R. Canetti, “Security and composition of multiparty
cryptographic protocols,” Journal of Cryptology, vol. 13,
pp. 143–202, April 2000.

[26] J. Katz, U. Maurer, B. Tackmann, and V. Zikas, “Uni-
versally composable synchronous computation,” in TCC
2013, ser. LNCS, A. Sahai, Ed., vol. 7785. Springer,
March 2013, pp. 477–498.

[27] J. A. Garay, J. Katz, U. Maurer, B. Tackmann, and
V. Zikas, “Rational protocol design: Cryptography
against incentive-driven adversaries,” Cryptology ePrint
Archive, Report 2013/496, August 2013, (Full version).

[28] O. Goldreich, S. Micali, and A. Wigderson, “How to
play any mental game, or a completeness theorem for
protocols with honest majority,” in STOC ’87, A. Aho,
Ed. New York City,, New York, USA: ACM Press,
May 25–27, 1987, pp. 218–229.

[29] J. A. Garay, D. Johnson, A. Kiayias, and M. Yung,
“Resource-based corruptions and the combinatorics of
hidden diversity,” in ITCS 2013, R. D. Kleinberg, Ed.
ACM, 2013, pp. 415–428.

[30] J. Katz, “On achieving the ’best of both worlds’ in secure
multiparty computation,” in STOC 2007, U. Feige, Ed.
San Diego, California, USA: ACM Press, June 11–13,
2007, pp. 11–20.

[31] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adap-
tively secure multi-party computation,” in STOC ’96,
G. L. Miller, Ed. Philadelphia, Pennsylvania, USA:
ACM Press, May 22–24, 1996, pp. 639–648.

[32] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Uni-
versally composable two-party and multi-party secure
computation,” in STOC 2002, J. H. Reif, Ed. Montréal,
Québec, Canada: ACM Press, May 19–21, 2002, pp.
494–503.

[33] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” in FOCS 2001.
Las Vegas, Nevada, USA: IEEE Computer Society Press,
Oct. 14–17, 2001, pp. 136–145. Updated full version
available at http://eprint.iacr.org/2000/067.

[34] R. Canetti and R. Ostrovsky, “Secure Computation with
honest-looking parties: What if nobody is truly honest?”
in STOC ’99, J. S. Vitter, L. L. Larmore, F. Thomson
Leighton, Eds. Atlanta, Georgia, USA: ACM Press,
May 1–4, 1999, pp. 255–264.

[35] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. “On
combining privacy with guaranteed output delivery in
secure multiparty computation,” in CRYPTO 2006, ser.
LNCS, Cynthia Dwork, Ed., vol. 4117. Santa Barbara,
CA, USA: Springer, Berlin, Germany, Aug. 20–24, 2006,
pp. 483–500.

657

