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Abstract—We consider broadcast network design games in
undirected networks in which every player is a node wishing to
receive communication from a distinguished source node s and
the cost of each communication link is equally shared among
the downstream receivers according to the Shapley value. We
prove that the Price of Stability of such games is constant, thus
closing a long-standing open problem raised in [2]. Our result
is obtained by means of homogenization, a new technique that,
in any intermediate state locally diverging from a given optimal
solution T ∗, is able to restore local similarity by exploiting cost
differences between nearby players in T ∗.

Keywords-Network Design Games, Price of Stability, Nash
equilibria

I. INTRODUCTION

Congestion games [20] are a well established approach to

model resource sharing among selfish players. In such games,

a set of resources is available to a set of n players. Every

player comes along with a set of strategies, each corresponding

to the selection of a subset of resources. A state of the

game is any combination of strategies for the players. The

cost incurred by a player in a given state is defined as the

sum of the costs associated to each selected resource, which

depends on the number of players choosing it. The social

cost of a state denotes its quality from a global perspective,

which is typically defined as the sum of the players’ costs

or the maximum among the players’ costs. By defining an

elegant potential function, Rosenthal [20] has shown that the

natural decentralized mechanism known as Nash dynamics,

in which at each step some player performs an improving

deviation by switching her strategy to a better alternative, is

guaranteed to converge to a (pure) Nash equilibrium [19], i.e.,

a fixed point of such dynamic in which no player can improve

her situation by unilaterally changing her selected strategy.

A Nash equilibrium may not necessarily minimize the social

cost. A widely used measure for quantifying the quality of

equilibria, and thus the performance degradation due to the

players’ selfish behavior, is the price of anarchy, introduced by

Koutsoupias and Papadimitriou [17], which is formally defined

as the worst-case ratio of the social cost of a Nash equilibrium

to the optimal social cost.

Network design games with fair cost allocations, introduced

by Anshelevich et al. [2], are one of the most interesting

subclasses of congestion games. In such games, we are given

a graph with non-negative edge costs and, for each player, a

source and a destination node. The goal of a player is to choose

a path connecting her source and destination nodes. Thus,

edges correspond to resources and paths connecting source

and destination nodes to strategies (subsets of resources). The

cost of each edge e is equally shared by all the players

whose selected path contains e, i.e., according to the Shapley

value [21]. A relevant and largely investigated special case

of network design games occurs when all players share the

same source node (multicast games). In this case, players are

assumed as being associated to the endpoint node they wish

to connect with the source. Broadcast games are multicast

games in which there is a player associated to every node of

the network.

In their seminal paper, Anshelevich et al. [2] raised the

problem of the bad performance of Nash equilibria in network

design games. The price of anarchy, in fact, is as large as

the number of players even for broadcast games in undi-

rected graph. Motivated by this issue, they started to explore

the middle ground between centrally enforced solutions and

completely unregulated anarchy by proposing the notion of

price of stability (PoS), that is the ratio of the social cost

of the cheapest Nash equilibrium and the social cost of an

optimal solution. They argued that each local minimum of

Rosenthal’s potential function is a Nash equilibrium and, by

comparing the social cost of the global minimum with that

of an optimal solution, they obtained an upper bound of

Hn :=
∑n

i=1 1/i = O(log n) on the PoS of network design

games. They also provided an instance of broadcast games

in directed graphs for which PoS = Hn, thus completely

characterizing the PoS of network design games in the directed

case. However, since then, the question of determining tight

bounds for the case of undirected graphs has stood as a major
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open problem and after all these years is still far from being

solved.

At the time of writing this paper, while no improvements

on the O(log n) result by Anshelevich et al. [2] have been

achieved for network design games, two upper bounds of

O(log log n) and O(log n/ log log n) have been given by Fiat

et al. [15] for broadcast games and by Li [18] for multicast

games, respectively. However, the best-known lower bounds,

determined by Bilò et al. [5], are 1.818 for broadcast games,

1.862 for multicast games and 2.245 for network design

games, thus leaving a huge gap to be filled.

A recent result by Kawase and Makino [16] shows that, even

in broadcast games, the social cost of the Nash equilibrium

minimizing Rosenthal’s potential function, which is at the

basis of Anshelevich et al.’s approach, can be Ω(
√
log log n)

times the cost of the social optimum. Such a pathological

behavior does not occur in other special cases of congestion

games where this bounding technique yields tight or asymp-

totically tight upper bounds, see [6], [10], [11]. However, in

network design games with fair cost allocation, this implies

that, in order to get an o(
√
log log n) upper bound on the PoS,

one has to resort on different arguments.

A. Our Contribution

In this work, we close the PoS question for broadcast games

by proving the following result.

Theorem 1: The PoS of broadcast games in undirected

graphs is O(1).
Such a result is achieved by introducing and exploiting the

new concept of homogenization. Roughly speaking, a state is

homogeneous with respect to an optimal state T ∗ if the differ-

ence between the costs of any two players is upper bounded

by a certain function of the set of edges connecting them in

T ∗. We call homogenization process a transformation that has

the property of decreasing Rosenthal’s potential starting from a

given non-homogeneous state. The nice property possessed by

homogeneous states is that, for each improving deviation by a

player that causes the insertion of an edge e not belonging

to T ∗, there always exists either a subsequent improving

deviation which immediately removes e from the state, or

a sequence of improving deviations, that we call absorbing
process, which is able to attract a consistent part of T ∗ in

the current state. Thanks to the afore mentioned properties,

it is possible to design an algorithm which, starting from

T ∗, suitably combines improving deviations, homogenization

and absorbing processes so as to generate a sequence of

states which ends up at a Nash equilibrium whose social cost

compares nicely with that of T ∗.

We stress here that the idea of constructing a Nash equi-

librium of small social cost as an output of an algorithm

that suitably schedules a sequence of improving deviations

starting from an optimal state was already at the basis of

Fiat et al.’s approach [15]. Our approach, however, is not

a refinement of their technique, as it strongly relies on the

new properties of homogeneous profiles (see the beginning

of Section III for a more detailed comparison). Moreover,

our homogenizing process does not consist of improving

deviations, but it corresponds to a transformation globally

decreasing the potential. Hence, it can be appreciated how

crucial is the role of the novel concept of homogenization in

the process of lowering the PoS from a super-constant to a

constant factor.

B. Related Works

Christodoulou et al. [9] consider the case of n = 2, 3 and

show that the PoS is 4/3 for all the three variants of the game

when n = 2 and that the PoS of network design games is

between 1.541 and 1.65 when n = 3. Still for n = 3, Bilò

and Bove [4] lower the upper bound of network design games

to 1.634 and show that the PoS is 1.486 for broadcast games

and it is between 1.524 and 1.532 for multicast games.

Concerning specific topologies, Fanelli at al. [13] prove that

the PoS of network design games on undirected rings is 3/2.

For the generalized setting with weighted players, Anshele-

vich et al. [2] show that pure Nash equilibria are always

guaranteed to exist in the case of n = 2, but a negative result of

Chen and Roughgarden [8] implies that this is no longer true,

even in multicast games, when n ≥ 3. As to the PoS, Chen

and Roughgarden [8] give an upper bound of O(logW ), while

Albers [1] provides a lower bound of Ω(logW/ log logW ),
where W is the sum of the weights of all players in the game.

To the best of our knowledge, no result in the directed case is

known for multicast and broadcast games.

Charikar et al. [7] consider the quality of the states achieved

after sequences of best-responses that start from the empty

state, that is, the situation in which no player has performed

any strategic choice yet. They show that, in multicast games,

the social cost of the state obtained after a sequence of n
best-responses, one for each player (the so called one-round

walk), is at most O(log2 n) times the one of an optimal state.

Moreover, they prove that, if players continue performing

improving deviations until a Nash equilibrium is reached, the

social cost of such an equilibrium is at most O(log3 n) times

the one of an optimal state.

Strong Nash equilibria [3], i.e., Nash equilibria which are

resistant to even joint deviations of coalitions of players,

have been also investigated. In particular, Epstein et al. [12]

show the existence of such equilibria under some topological

properties of the underlying input graph, while Albers [1]

prove an upper bound of O(log n) and a lower bound of

Ω(
√
log n) on the price of anarchy of Strong Nash equilibria

in undirected games.

The determination of upper bounds on the price of anarchy

of strong equilibria and of equilibria reached from the empty

state is fairly related to the PoS problem, as any such bound

translates into a corresponding one for the PoS. Unfortu-

nately, none of them asymptotically improves with respect to

O(log n).

Recently, Feldman and Ron [14] started the study of net-

work design games under the restriction in which edges have

capacity constraints.
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II. PRELIMINARIES

Basic Game Definitions: An instance of the (undi-

rected) broadcast games is defined as a tuple G =(
G = (V,E), (we)e∈E , s

)
, where G is an undirected graph

in which each edge e ∈ E has a positive cost we, and s ∈ V
is a distinguished source node. Without loss of generality we

assume that we ≥ 1 for every e ∈ E. Each node p ∈ V
is associated to a player aiming at connecting s to p. In the

following we will identify a player with its associated node.

Let n = |V | and Σp denote the strategy set of player p ∈ V ,

that is the set of all the paths sp connecting s to p. We often

consider sp as being the set of its contained edges. Let S ∈
×p∈V Σp be the state in which player p chooses the strategy

sp ∈ Σp. We denote by G(S) = (V,E(S)) the subgraph of G
containing all the edges E(S) used by the players in state S,

i.e., E(S) =
⋃

p∈V sp. Given a state S and an edge e ∈ E, let

ne(S) be the number of different players using e in S, that is

ne(S) = |{p ∈ V : e ∈ sp}|. We assume that all the players

using an edge equally share its cost, i.e., for every edge e and

player p using e in state S, the cost charged to p for e is

cep(S) = we

ne(S) . The total cost incurred by player p in S is

defined as the sum of the shared costs of all edges used by p,

i.e., cp(S) =
∑

e∈sp
cep(S) =

∑
e∈sp

we

ne(S) .

Given a state S and a strategy tp ∈ Σp, we denote as S−p �
tp = (s1, . . . , sp−1, tp, sp+1, . . . , sn) the state obtained from

S when player p unilaterally changes her strategy from sp to

tp. A state S−p � tp such that cp(S−p � tp) < cp(S) is an

improving deviation for player p in S. A state S is a (pure)

Nash equilibrium if cp(S) ≤ cp(S−p � tp) for every player

p ∈ V and strategy tp ∈ Σp, i.e., no player possesses an

improving deviation in S. We denote by NE(G) the set of all

Nash equilibria of a broadcast game G.

Potential Function: Let Φ : ×p∈V Σp → R+ be the function

such that

Φ(S) =
∑
e∈E

ne(S)∑
i=1

we

i
=

∑
e∈E

weHne(S).

Function Φ, originally defined by Rosenthal [20] for the

general class of the congestion games, is an exact potential
function, that is

Φ(S−p � tp)− Φ(S) = cp(S−p � tp)− cp(S) (1)

for each state S and strategy tp ∈ Σp.

Social Cost: The social cost of a state S is defined as

the sum of all the players’ costs, i.e., C(S) =
∑

p∈V ci(S).
Obviously C(S) =

∑
e∈E(S) we, that is the sum of the cost of

all the edges used by some player in S. An optimal state for

a broadcast game G, denoted as S∗(G), is a strategy profile

having minimum social cost. Clearly, G(S∗(G)) is a minimum
spanning tree T ∗ of G. The price of stability of a broadcast

game G is defined as PoA(G) = minS∈NE(G)
C(S)

C(S∗(G)) .

Technical Definitions and Notation:
Definition 1 (First edge): Given a player p ∈ V using

strategy sp in state S, the first edge of p in S is defined as

the edge in sp incident to p.

Definition 2 (Function class): Given an edge e ∈ E, we

say that e is of class α ≥ 0 (class(e) = α) if 64α ≤ we <
64α+1. Let Eα ⊆ E be the set of the edges of class α.

In the following, T ∗ will be a fixed minimum spanning

tree of G rooted at s, S∗(G) (or simply S∗) the optimal state

corresponding to T ∗, and πp,q the path connecting p to q in

T ∗. For the sake of brevity, we often identify T ∗ (and its

subtrees) with the corresponding set of edges.

For any subset X ⊆ V , let T ∗(X) be the subtree of T ∗

induced by X and nα,X be the number of edges of class α
in T ∗(X). A segment of T ∗ is any subset X ⊆ V such that

T ∗(X) is a path, i.e., all the nodes in X are consecutive in T ∗.

The two nodes p and q such that T ∗(X) = πp,q are called the

endpoints of X . We denote by X the family of all the segments
in T ∗.

Definition 3 (Main cycle and function τ ): Consider an or-

dering s = p0, . . . , pn−1 of the nodes according to a preorder

traversal of T ∗ starting at s. We define the main cycle of T ∗,

denoted as MC(T ∗) or simply MC, the (non-simple) directed
cycle obtained by concatenating together, for i = 0, . . . , n−1,

all the paths πpi,pi+1 in T ∗ from the i-th to the (i+1)-th visited

node, oriented from pi to pi+1, starting from s and finally

coming back at s (summations on indexes i are considered

modulo n). Since for each edge {p, q} of T ∗ the two opposite

arcs (p, q) and (q, p) occur in MC, both the number of nodes

and arcs in MC is 2n − 2 and MC can be expressed as

MC = 〈τ(0), . . . , τ(2n− 3)〉, that is as the ordered sequence

of the nodes met along MC starting at s, with τ(0) ≡ s and

τ(j) being the node reached after the j-th hop along MC
starting at s.

Given an arc a in MC induced by an edge e of T ∗, let

wa = we and class(a) = class(e) be the weight and the

class of a, respectively. Then MC has total cost 2C(S∗).
Definition 4 (Function σ): For a given player/node p, let

σ(p) denote the first occurrence of p along MC, that is the

minimum index j such that τ(j) ≡ p. In the following,

similarly as for segments of T ∗, we provide some definitions

and notation for the subpaths of MC.

An interval I of cardinality j in MC, 0 ≤ j ≤ 2n − 2, is

any subsequence 〈τ(i), . . . , τ(i+j)〉 of MC (again operations

on indexes are considered modulo 2n − 2). Let mα,I be the

number of arcs of class α in the interval I , N(I) ⊆ V (resp.

A(I)) be the set of the nodes (resp. arcs) contained in I and

finally I be the set of all the intervals of MC.

Definition 5 (Oriented intervals of MC): Given any i such

that 0 ≤ i < 2n − 2 and y ≥ 0, the right MC-interval
with budget y at position i, denoted as IMC,+(i, y), is the

interval I = 〈τ(i), . . . , τ(i+ j)〉 ∈ I of maximum cardinality

(maximum j) such that
∑

α≥0 64
α+1H2

mα,I
≤ y. Similarly,

the left MC-interval with budget y at position i, denoted

as IMC,−(i, y), is the interval I = 〈τ(i − j), . . . , τ(i)〉 ∈ I
of maximum cardinality such that

∑
α≥0 64

α+1H2
mα,I

≤ y.

The full MC-interval with budget y at position i is the

interval IMC(i, y) = IMC,−(i, y)|IMC,+(i, y) obtained by

concatenating IMC,−(i, y) and IMC,+(i, y) if the sum of their

cardinalities is less than 2n−2, otherwise IMC(i, y) = MC =
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〈τ(0), . . . , τ(2n− 3)〉.
Definition 6 (MC-boundary): Given an interval I =

〈τ(i), . . . , τ(i + j)〉 ∈ I, the MC-boundary of I is defined

as the arc (τ(i+ j), τ(i+ j + 1)) of MC.

Definition 7 (Neighborhood): Given a player p ∈ V and

any y ≥ 0, the neighborhood of p with budget y, denoted as

V (p, y), is the set of all the nodes contained in the full MC-

interval with budget y at the first position in which p occurs

in MC, that is V (p, y) = N
(
IMC(σ(p), y)

)
.

Notice that T ∗(V (p, y)) is a subtree of T ∗.

Property 1: Since for any I ∈ I it holds that the set of

edges of T ∗(N(I)) coincides with the set {{p, q}|(p, q) ∈
A(I)}, it follows that, for any subset X ⊆ V (p, y), nα,x ≤
mα,I for every α ≥ 0 and

∑
α≥0 64

α+1H2
nα,X

≤ 2y.

Given a state S, let Δp,q(S) = cp(S) − cq(S) be the

difference between the costs of players p and q in S.

Definition 8 (Homogeneity): Given a segment X ∈ X with

endpoints p and q, a state S is X-homogeneous if

Δp,q(S) ≤ 2
∑
α≥0

64α+1H2
nα,X

.

S is homogeneous if it is X-homogeneous for every segment

X ∈ X .

Property 2: Given any player p and budget y ≥ 0, if S is

X-homogeneous for any X ∈ X such that X ⊆ V (p, y), then

Δq,r(S) ≤ 4y for every q, r ∈ V (p, y).

III. THE ALGORITHM

Before presenting the details of our algorithm, let us first

briefly discuss the main underlying idea.

One key ingredient used in [15] for reaching an equilibrium

with cost O(C(S∗) log log n) is that, when a player p performs

an improving deviation introducing (as first edge) a new edge

e of cost we not belonging to T ∗, since the other players would

pay at most we/2 for sharing such an edge, the state obtained

when e “absorbs” all the players at distance at most we/4
from p in T ∗, i.e., when such players select the concatenation

of the subpath connecting them to p along T ∗ and the path

going from p to s, has a lower potential. Then, if we partition

the edges in classes of exponentially increasing values as in

the previous section, since all the non-optimal edges of the

same class contained in the final equilibrium will have mutual

distances in T ∗ at least proportional to their values, the overall

contribution of all the edges of the same class to the cost of

the final state will be O(C(S∗)). This immediately gives a

price of stability at most proportional to the number of non-

empty classes, even if in [15] the authors could finally prove

an O(log log n) bound.

Our argument is that the insertion of a non-optimal edge

in the current state is able to absorb a more consistent part

of T ∗. In fact, assume for the sake of simplicity that all

the edges of T ∗ have unitary weights. Then, starting from

T ∗, since edges of strictly increasing congestion are traversed

when going towards s in T ∗, it holds Δp,q(S
∗) ≤ Hd for every

player q at distance at most d from p in T ∗. Therefore, if p
introduces a non-optimal edge e, a state with a lower potential

is obtained when all players within distance exponential in we,

moving in order of distance from p (in T ∗), select the strategy

going through p along T ∗ as described above. In this way, the

contribution of each class of edges in the final state would be

o(C(S∗)), so that the overall contribution of all the classes

remains constant.

The problem in the above process is that when more and

more deviations are performed, the current state S tends to

diverge from T ∗, so that the property that two players p and q
at distance d in T ∗ have cost difference at most Hd in general

is not true any more. However, a similar argument still holds if

the current state is homogeneous, that is if Δp,q(S) ≤ 2H2
d .

On the other hand, if S is not homogeneous, there is a way

of homogenizing it, getting a new state S′ with Φ(S′) <
Φ(S), by adding only edges of T ∗ (see Lemma 1). If cp(S) <
cq(S) − 2H2

d , this is roughly obtained letting players from p
to q in T ∗ follow p along T ∗.

The remaining technicalities are set to deal with the var-

ious details and specific cases that might occur during the

execution of the algorithm, like the occurrence of edges of

different weights in T ∗, the fact that during homogenization or

absorption the costs of the involved players might decrease due

to previously deviating ones, thus compromising the decrease

of potential, and so forth.

We remark that, in the intermediate steps of our algorithm,

states may be reached in which some players’ strategies are

non-simple paths. Even if they are not legal in the strict sense,

they make the pseudo-code simpler and however they are

removed before the end of the algorithm. Notice also that the

algorithm does not necessarily give in output a homogeneous

state, as it only aims at determining an equilibrium with low

social cost. Anyway, a simple modification can easily enforce

the final homogeneity.

Having in mind all the above arguments, we design Algo-

rithm 1 that, starting from the optimal state S∗, constructs a

sequence of states 〈S0 = S∗, S1, . . . , Sk〉 such that Sk is a

Nash equilibrium of G with C(Sk) = O(C(S∗)).
For any integer k, 0 ≤ k < k, the transition from Sk to

Sk+1 occurs by means of:

• A basic move: an improving deviation Sk+1 = Sk
−p � tp

such that either tp ⊆ E(Sk), or tp \ E(Sk) = {e} with

we ≤ C(S∗), i.e., a deviation introducing in the current

state at most a single new edge e as the first edge of

the deviating player p and having cost at most equal to

the social optimum. More precisely, we partition the basic

moves into critical and safe ones: a basic move is critical

if tp \ E(Sk) = {e} and e �∈ T ∗, otherwise it is safe.

As we will prove in Lemma 4, among all the moves

introducing multiple non-optimal edges, it is possible to

restrict to this type of critical ones without affecting the

global correctness. Namely, a state not admitting any

basic move is guaranteed to be a Nash equilibrium.

• An internal e-neutral move: an improving deviation

Sk+1 = Sk
−p � tp with tp ⊆ E(Sk) and ne(S

k) =
ne(S

k+1), that is, no new edges are added to the current
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Algorithm 1 Computes a cheap Nash equilibrium

1: k ← 0
2: S0 ← S∗

3: while there exists a basic move Sk
−p � tp for player p in Sk do

4: Sk+1 ← Sk
−p � tp

5: k ← k + 1
6: if Sk−1

−p � tp is a critical basic move then
7: let e = E(Sk) \ E(Sk−1)
8: while there exists a segment X not containing p such that Sk is not X-homogeneous

9: or there exists an internal e-neutral move do
10: if there exists an internal e-neutral move Sk

−p � tp then
11: Sk+1 ← Sk

−p � tp
12: else
13: Sk+1 ← Homogenize(X , Sk)

14: end if
15: k ← k + 1
16: end while
17: if there exists q ∈ V (p, 64class(e)/28) such that cq(S

k) < cp(S
k)− 2·64class(e)

7 then
18: Sk+1 ← Delete(p, q, e, Sk)

19: else
20: Sk+1 ← Absorbe(p, e, Sk)

21: end if
22: k ← k + 1
23: end if
24: end while
25: return Sk

state, and the number of players using edge e is not

modified by the transition from Sk to Sk+1.

As we will see, in the algorithm, after a critical move

inserting e, we homogenize along proper segments. Sub-

sequently, a sequence of these moves allows to reach a

profile Sk with a lower potential and such that E(Sk) \
{e} is a tree.

• A homogenization process: given a non-homogeneous

segment X of T ∗, it leads to a state Sk+1 with

Φ(Sk+1) < Φ(Sk), with Sk+1 satisfying some suitable

properties. See Subsection III-A for further details.

• A deleting move: it deals with the particular situation in

which, after a critical move of player p adding edge e to

the state and the subsequent homogenization and internal

e-neutral moves, edge e �∈ T ∗ can be removed from the

current state by only adding edges in E(Sk) ∪ T ∗. It is

described in Subsection III-B.

• An absorbing process: when, after a critical move of

player p adding edge e to the state and the subse-

quent homogenization and internal e-neutral moves, no

deleting move exists, a particular sequence of improving

deviations absorbing all the nodes in the neighborhood

V (p, 64class(e)/28) (and also their descendants in Sk)

can be performed. This process is described in Subsection

III-C and corresponds to the above mentioned idea of

absorbing a consistent part of T ∗ into the current state as

a consequence of the introduction of a non-optimal edge.

A. Homogenization Process

In this subsection, we show the fundamental process being

at the basis of our result: homogenization.

Notice that the states resulting from Algorithm 2 (and also

the intermediate states of Algorithm 2) may contain strategies

being non-simple paths. To this respect, if the strategy selected

by player p crosses a same edge e more than once, we do

not consider multisets of edges, but identify sp with a set

containing each edge of the non-simple path only once, and

the contribution of player p to ne(S) is always 1. We would

like to stress that, thanks to the internal e-neutral moves, at

line 16 of Algorithm 1 all non-simple paths are removed from

the state.

Lemma 1: Given a segment X ∈ X and a state Sk not

X-homogeneous, the homogenization process of Algorithm

2 (with parameters X and Sk) returns a state Sk+1 with

Φ(Sk+1) < Φ(Sk) such that (i) for every player p �∈ X ,

sk+1
p = skp and (ii)

⋃
p∈X sk+1

p ⊆ ⋃
p∈X skp ∪ T ∗.

Proof: Let q and r be the endpoints of X , with Δq,r(S) >
0. Since Sk is not X-homogeneous, it follows that Δq,r(S

k) >
2
∑

α≥0 64
α+1H2

nα,X
.

Consider the states S̄i built by Algorithm 2 when called

with parameters X and Sk. For any i = 1, . . . , |X| − 1, the

following conditions hold: (i) for every player p �∈ X , s̄ip = skp;

(ii)
⋃

p∈X s̄ip ⊆
⋃

p∈X skp ∪ T ∗.

Assume that there exists no integer i ∈ {1, . . . , |X| − 1}
such that Φ(S̄i) < Φ(Sk). We arrive to the contradiction that
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Algorithm 2 Homogenize(segment X , state S)

1: Let q and r be the endpoints of X , with Δq,r(S) > 0
2: Let q = p1, . . . , pX = r be the players in the order they appear in T ∗(X)
3: for i = 1→ |X| − 1 do
4: S̄i,0 ← S
5: for j = 1→ i do
6: S̄i,j ← S̄i,j−1

−pj
� (πj,i+1 ∪ spi+1

)
7: end for
8: S̄i ← S̄i,i

9: if Φ(S̄i) < Φ(S) then
10: return S̄i

11: end if
12: end for

X must be homogeneous.

For every i = 1, . . . , |X| − 1, let ei = {pi, pi+1}, wi be

the weight of ei, and δi = Δpi,pi+1
(Sk). Morever, consider

the sequence of the i + 1 states sequence(i) = 〈Sk =
S̄i,0, S̄i,1, . . . , S̄i,i = S̄i〉 determined by Algorithm 2 (with

parameters X and Sk). By Equation 1, it holds Φ(S̄i) =
Φ(Sk) +

∑i
j=1

(
cpj

(S̄i,j)− cpj
(S̄i,j−1)

)
.

Therefore, by the initial (contradicting) assumption,

i∑
j=1

(
cpj

(S̄i,j)− cpj
(S̄i,j−1)

) ≥ 0. (2)

In the following, Claim 1 will provide a lower bound

to
∑i

j=1 cpj
(S̄i,j−1) and Claim 2 an upper bound to∑i

j=1 cpj (S̄
i,j). To this aim, let us introduce some additional

definitions.

For any l such that 1 ≤ j ≤ l ≤ i + 1 ≤ |X|, let

decli,j = max{0; cpl
(S̄i,0) − cpl

(S̄i,j−1)} be an upper bound

on the decrease caused to cpl
(Sk) by the moves of players

p1, . . . , pj−1 in sequence(i). Notice that decli,j allows to upper

bound the cost of player pl just after the deviation of pj−1 as

cpl
(S̄i,j−1) ≥ cpl

(Sk)−decli,j . Moreover, for any e ∈ T ∗ and

any 1 ≤ j ≤ i ≤ |X| − 1, let

dec
e

i,j =
∑

p∈V \{j}
max

{
0; cep(S̄

i,j−1)− cep(S̄
i,j)

}

be an upper bound to the total decrease induced by player

pj in sequence(i) on the cost payed on edge e by the other

players.

Claim 1: For any i = 1, . . . , |X| − 1, it holds

i∑
j=1

cpj
(S̄i,j−1) ≥ i · cpi+1

(Sk) +
i∑

j=1

i∑
h=j

δh

−
i∑

j=1

⎛
⎝1

j

i∑
h=j

wh

⎞
⎠−

i∑
j=1

deci+1
i,j .

Proof: Given any i = 1, . . . , |X| − 1, for any j =
1, . . . , i, since cpj (S̄

i,0) = cpj (S
k) = cpi+1(S

k) +
∑i

h=j δh,

we obtain

cpj (S̄
i,j−1) ≥ cpi+1(S

k) +

i∑
h=j

δh − decji,j . (3)

Notice that decji,j > 0 only if new players use edges in skpj
.

Since all the players deviating in sequence(i) use edges in

πp1,pi+1
till they reach player pi+1, and then they use edges

in skpi+1
, it follows

i∑
j=1

decji,j ≤
i∑

j=1

i∑
h=j

dec
eh
i,j +

i∑
j=1

deci+1
i,j . (4)

Furthermore, for any integer i and j and any h ∈
{1, . . . , |X| − 1}, we can bound dec

eh
i,j by the cost paid by

player pj for eh in S̄i,j , i.e., dec
eh
i,j ≤ cehpj

(S̄i,j). Thus, since

cehpj
(S̄i,j) ≤ wh

j ,

i∑
h=j

dec
eh
i,j ≤

1

j

i∑
h=j

wh. (5)

By summing up inequality (3) over all j = 1, . . . , i, we obtain

i∑
j=1

cpj (S̄
i,j−1) ≥ i · cpi+1(S

k) +

i∑
j=1

i∑
h=j

δh −
i∑

j=1

decji,j

≥ i · cpi+1
(Sk) +

i∑
j=1

i∑
h=j

δh (6)

−
i∑

j=1

i∑
h=j

dec
eh
i,j −

i∑
j=1

deci+1
i,j

≥ i · cpi+1
(Sk) +

i∑
j=1

i∑
h=j

δh (7)

−
i∑

j=1

⎛
⎝1

j

i∑
h=j

wh

⎞
⎠−

i∑
j=1

deci+1
i,j ,

where (6) holds by inequality (4), and (7) by inequality (5).
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Claim 2: For any i = 1, . . . , |X| − 1, it holds

i∑
j=1

cpj (S̄
i,j) ≤

i∑
j=1

⎛
⎝1

j

i∑
h=j

wh

⎞
⎠+ i ·cpi+1(S

k)−
i∑

j=1

deci+1
i,j .

Proof: Given any i = 1, . . . , |X| − 1, for any j =
1, . . . , i, since players sequentially select the edges of T ∗

connecting them to pi+1, we obtain

cpj
(S̄i,j) ≤ 1

j

i∑
h=j

wh + cpi+1
(Sk)− deci+1

i,j . (8)

By summing up inequality (8) over all j = 1, . . . , i, we obtain

the claim.
We now prove the final claim, according to which, under the

assumption that there exists no integer i ∈ {1, . . . , |X| − 1}
such that Φ(S̄i) < Φ(Sk), Sk must be X-homogeneous: a

contradiction.
Claim 3: Δq,r(S

k) ≤ 2
∑

α≥0 64
α+1H2

nα,X
.

Proof: By combining inequality (2) with Claims 1 and 2,

we obtain

0 ≤
i∑

j=1

(
cpj (S̄

i,j)− cpj (S̄
i,j−1)

)

≤
i∑

j=1

⎛
⎝1

j

i∑
h=j

wh

⎞
⎠+ i · cpi+1

(Sk)−
i∑

j=1

deci+1
i,j (9)

−i · cpi+1
(Sk)−

i∑
j=1

i∑
h=j

δh

+
i∑

j=1

⎛
⎝1

j

i∑
h=j

wh

⎞
⎠+

i∑
j=1

deci+1
i,j

= 2

i∑
j=1

⎛
⎝1

j

i∑
h=j

wh

⎞
⎠−

i∑
j=1

i∑
h=j

δh.

By easy counting arguments, the inequality

2
∑i

j=1

(
1
j

∑i
h=j wh

)
− ∑i

j=1

∑i
h=j δh ≥ 0 can be

rewritten as
i∑

j=1

j · δj ≤ 2
i∑

j=1

Hj · wj , (10)

for any i = 1, . . . , |X| − 1.
Let xi =

1
i(i+1) for any i = 1, . . . , |X| − 2 and x|X|−1 =

1
|X|−1 . It is easy to check that, for any i = 1, . . . , |X| − 1, it

holds
∑|X|−1

j=i xj =
1
i .

Consider the following inequalities, obtained by multiplying

inequalities (10) by the coefficients xi’s.

xi

i∑
j=1

j · δj ≤ 2xi

i∑
j=1

Hj · wj , ∀i = 1, . . . , |X| − 1.

By summing up over all i = 1, . . . , |X| − 1, we obtain

|X|−1∑
i=1

⎛
⎝xi

i∑
j=1

j · δj
⎞
⎠ ≤ 2

|X|−1∑
i=1

⎛
⎝xi

i∑
j=1

Hj · wj

⎞
⎠ .

Since, by rearranging summations, it holds

|X|−1∑
i=1

⎛
⎝xi

i∑
j=1

j · δj
⎞
⎠ =

|X|−1∑
j=1

⎛
⎝j · δj

|X|−1∑
i=j

xi

⎞
⎠

=

|X|−1∑
j=1

δj = Δq,r(S
k),

and

|X|−1∑
i=1

⎛
⎝xi

i∑
j=1

Hj · wj

⎞
⎠ =

|X|−1∑
j=1

⎛
⎝Hj · wj

|X|−1∑
i=j

xi

⎞
⎠

=

|X|−1∑
j=1

Hj

j
wj ,

we finally obtain

Δq,r(S
k) ≤ 2

|X|−1∑
j=1

Hj

j
wj

≤ 2

|X|−1∑
j=1

Hj

j
64class(ej)+1

= 2
∑
α≥0

⎛
⎝64α+1

nα,X∑
j=1

Hj

j

⎞
⎠

≤ 2
∑
α≥0

64α+1H2
nα,X

.

Therefore, the proof of Lemma 1 is completed.

B. Deleting Move

When, after a critical move of player p adding edge e to

the state and the subsequent homogenization and internal e-

neutral moves, a player q in a suitable neighborhood of p is

paying a cost significantly smaller than the one paid by p,

there exists an improving deviation Sk+1 = Sk
−p � tp with

tp ⊆ E(Sk) ∪ T ∗ \ {e} and e ∈ sp(S
k) \ T ∗. We call such

a deviation a deleting move, as it removes edge e �∈ T ∗ from

the current state.

Algorithm 3 Delete(players p and q, edge e, state S)
1: Let r be the closest node to p in πp,q

2: return S−p � ({p, r} ∪ sr)

Lemma 2: Consider a state Sk such that p is the only player

using e (as her first edge) in Sk and Sk is X-homogeneous

for any segment in X not containing p. Moreover, assume

that there exists a node q belonging to the neighborhood

V (p, 64class(e)/28) such that cq(S
k) < cp(S

k) − 2·64class(e)

7 .

Starting from state Sk, the deleting move performed by

Algorithm 3 (with parameters p, q, e and Sk) returns a state

Sk+1 with Φ(Sk+1) < Φ(Sk) and such that E(Sk+1) ⊆
E(Sk) ∪ T ∗ \ {e}.

644



Proof: For the sake of brevity let us denote

V (p, 64class(e)/28) simply as Vp.

First of all, notice that all edges in T ∗(Vp) are of class at

most class(e)− 2, because otherwise
∑

α≥0 64
α+1H2

nα,Vp
≥

64class(e): by Property 1 a contradiction to the definition of

neighborhood.

Let X be the segment with endpoints q and r.

By hypothesis cp(S
k) > cq(S

k) + 2·64class(e)

7 and Sk is

X-homogeneous. Therefore, as X ⊆ Vp, by Property 2

cr(S
k) ≤ cq(S

k) +
64class(e)

7
.

If p selects the strategy composed by the edge {p, r} and

then by skr , she pays at most

64class(e)−1 + cr(S
k) ≤ 64class(e)−1 + cq(S

k) +
64class(e)

7
.

Since 64class(e)−1 + 64class(e)

7 < 2·64class(e)

7 , it results

Φ(Sk+1) < Φ(Sk).

C. Absorbing Process

Starting from a state Sk such that E(Sk)\{e} is a tree and

p is the only player using e as first edge, this process is a se-

quence of improving deviations absorbing all the nodes in the

neighborhood V (p, 64class(e)/28) (and also their descendants

in Sk) into the current state, adding only edges of T ∗ and

finally reaching a state Sk+1 such that Φ(Sk+1) < Φ(Sk).
Lemma 3: Given a player p, an edge e and a state Sk

satisfying the following conditions: (i) E(Sk) \ {e} is a

tree, (ii) p is the only player using e (as her first edge)

in Sk and (iii) any node q belonging to the neighborhood

V (p, 64class(e)/28) is such that cq(S
k) ≥ cp(S

k)− 2·64class(e)

7 ,

the absorbing process of Algorithm 4 (with parameters p, e
and Sk) returns a state Sk+1 with Φ(Sk+1) < Φ(Sk) such

that E(Sk+1) ⊆ (E(Sk) \ Ef ) ∪ T ∗, where Ef is the set of

the first edges of players in V (p, 64class(e)/28) \ {p}.
Proof: Again for the sake of brevity let us denote

V (p, 64class(e)/28) simply as Vp. First of all notice that no

node q ∈ Vp is an endpoint of some edge in skp , because

otherwise cq(S
k) ≤ cp(S

k)−64class(e) < cp(S
k)− 2·64class(e)

7 ,

thus contradicting the hypothesis. Therefore, in state S̄|Vp| no

edge in Ef \ T ∗ is used by some player.

We now show that all the moves of Algorithm 4 are

improving deviations, and therefore Φ(S̄i) < Φ(S̄i−1) for any

i = 1, . . . , |Vp|.
Let deci = max{0; cpi(S̄

0)−cpi(S̄
i−1)} be an upper bound

on the decrease caused to cpi
(Sk) by the moves of players

p1, . . . , pi−1 and of their moving descendants in E(Sk)\{e}.
Moreover, let

deci =
∑

e′∈skp\{e}
max

{
0; ce

′
p (S̄

0)− ce
′

p (S̄
i−1)

}

be an upper bound to the decrease induced by the moves

of players p1, . . . , pi−1 and of their moving descendants in

E(Sk) \ {e} to the cost p incurs in all edges she uses in skp
except for e.

On the one hand, for any i = 1, . . . , |Vp|, it holds

cpi(S̄
i−1) = cpi(S̄

0)− (cpi(S̄
0)− cpi(S̄

i−1)) ≥

≥ cp(S
k)− 2 · 64class(e)

7
− deci. (11)

Notice that deci > 0 only if new players use edges in

skpi
. Since e �∈ skpi

, such edges can only belong either to(
skpi
\ skp

) ∩ T ∗(Vp) or to skp \ {e}. We can bound the contri-

bution to deci due to the edges in
(
skpi
\ skp

) ∩ T ∗(Vp) as the

total cost player pi pays in Sk on such edges. More precisely,

since we are considering broadcast games and E(Sk) \ {e}
is a tree, it can be upper bounded by

∑
α≥0 64

α+1Hnα,Vp
≤

64class(e)/14 (see Property 1). Clearly, the contribution to deci
due to edges in skp \ {e} is at most deci. We therefore obtain

deci ≤ deci +
64class(e)

14
. (12)

From inequalities (11) and (12) we obtain

cpi
(S̄i−1) ≥ cp(S

k)− 2 · 64class(e)
7

−deci− 64class(e)

14
. (13)

On the other hand, for any i = 1, . . . , |Vp|, since players

are sorted with respect to a breadth-first order and they

sequentially select the edges of T ∗ connecting them to p, and

also considering that edge e is paid in Sk only by player p,

we obtain

cpi
(S̄i) ≤ cp(S

k)− deci − 64class(e)

2
+

∑
α≥0

64α+1Hnα,Vp

≤ cp(S
k)− 64class(e)

2
− deci +

64class(e)

14
. (14)

By combining inequalities (13) and (14) we obtain

cpi
(S̄i−1) ≥ cpi

(S̄i), i.e., the move of player pi, as well as

the ones of her moving descendants in E(Sk)\{e}, decreases

the potential function Φ.

D. Proof of Theorem 1

We are now able to prove that Algorithm 1 returns a Nash

equilibrium of cost proportional to the social optimum, thus

implying Theorem 1. Lemma 4 (whose proof is omitted due to

space constraints) focuses on the correctness of Algorithm 1,

while Lemma 5 on its performance.

Lemma 4: Algorithm 1 always returns a Nash equilibrium

for game G.

Lemma 5: Let Sk be the state returned by Algorithm 1.

Then C(Sk) = O(C(S∗)).
Proof: The cost of the edges of E(Sk̄) belonging to T ∗ is

at most C(S∗), thus in order to prove the claim it is sufficient

to bound the contribution to C(Sk̄) due to the edges in E(Sk̄\
T ∗). To this aim, we observe that any such an edge e ∈ E(Sk̄\
T ∗) is added by a critical move (line 7 of Algorithm 1) and

remains into the final profile only if it is not removed by a

deleting move (line 18), consequently generating an absorbing

process (line 20).
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Algorithm 4 Absorbe(player p, edge e, state S)
1: Vp ← V (p, 64class(e)/28)
2: Let p = p1, . . . , p|Vp| be the nodes of T ∗(Vp) sorted with respect to a breadth-first traversal of T ∗(Vp) rooted at p.

3: S̄0 ← S
4: for i = 1→ |Vp| do
5: S̄i ← S̄i−1

−pi
� (πpi,p ∪ sp)

6: for all players q belonging to the subtree of E(Sk) \ {e} rooted at pi and not belonging to its subtrees rooted at

{p1, . . . , p|Vp|} do
7: Let F be the set of edges connecting q to pi in S
8: S̄i ← S̄i

−q � (F ∪ πpi,p ∪ sp)
9: end for

10: end for
11: return S̄|Vp|

Let α = class(e), I+ (resp. I) denote the right MC-

interval IMC,+(σ(p), 64α/28) (resp. the full MC-interval

IMC(σ(p), 64α/28)).

Let us first consider the case I+ �= MC. First of all, notice

that all the arcs in I+ are of class at most α − 2, because

otherwise
∑

γ≥0 64
γ+1H2

mγ,I+
≥ 64α: a contradiction to the

definition of neighborhood. Let arc a be the MC-boundary of

I+ and μ = class(a). We charge we either to a or to some

arcs belonging to I+, according to the following cases:

• μ ≥ α − 1. We charge we to a. Notice that if another

edge e′ of class α has been already accounted to a in the

same way due a critical move involving another player

q, then a is the MC-boundary also of the right MC-

interval IMC,+(σ(q), 64α/28). Therefore, since I+ and

IMC,+(σ(q), 64α/28) intersect, e′ is the first edge of a

player occurring in I . Thus, by Lemma 2, it is removed

from the solution after the absorbing process generated

by p.

As a consequence, the cost of at most one edge belonging

to a class not being greater than β + 1 can be charged

in this manner to every arc a of class β belonging to

MC, that is at most
∑β+1

γ=0 64
γ+1 < 64β+2 ≤ 642wa.

By summing over all edges in MC, since MC has

cost 2C(S∗), the total contribution to the cost of the

final profile due to the edges subject to this boundary

accounting is at most 2 · 642C(S∗) = O(C(S∗)).
• μ ≤ α− 2. We charge we to some arcs in I+ as follows.

By the maximality of the neighborhood,

α−2∑
γ=0

64γ+1H2
mγ,I+

+ (64μ+1H2
mμ,I++1 − 64μ+1H2

mμ,I+
)

=

α−2∑
γ=0,γ �=μ

64γ+1H2
mγ,I+

+ 64μ+1H2
mμ,I++1 ≥

64α

28
,

and since μ ≤ α− 2 and H2
i+1 −H2

i ≤ 5
4 for any i ≥ 0,

it follows that

α−2∑
γ=0

64γ+1H2
mγ,I+

≥ 64α

28
− 64μ+1(H2

mμ,I++1 −H2
mμ,I+

)

>
64α

28
− 5

4
64α−1 > 64α−1.

For every γ = 1, . . . , α − 2, let rγ =
64γ+1H2

m
γ,I+

64α−1 . We

call a class γ heavy if rγ ≥ 1

64
α−γ

2

and light otherwise.

We now show that there exists a heavy class β. Assume

by contradiction that for every γ = 0, . . . , α − 2, rγ <
1

64
α−γ

2

. Then, by summing over all classes, we obtain

α−2∑
γ=0

64γ+1H2
mγ,I+

=
α−2∑
γ=0

rγ64
α−1

≤ 64α−1
α−2∑
γ=1

1

64
α−γ

2

< 64α−1 :

a contradiction.

Now, consider a heavy class β. Since Hi ≤ 1 + ln i for

i ≥ 1, it follows that

mβ,I+ ≥ e

√
64

α−β−4
2 −1.

We equally share the cost we < 64α+1 among all the

mβ,I+ arcs of class β in the considered right MC-

interval, by charging to each of them at most

64α+1 · 1

e

√
64

α−β−4
2 −1

= 64β · 64α−β+1

e

√
64

α−β−4
2 −1

.

Let a be an arc of class β to which we have charged the

above quantity.

Notice that if another edge e′ of class α has been

already accounted to a in the same way (that is, with

a also being in a heavy class with respect to some right

MC-interval IMC,+(σ(q), 64α/28)), then again I+ and

IMC,+(σ(q), 64α/28) intersect and thus e′ is the first

edge of a player q occurring in I . Therefore, by Lemma
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2, e′ is removed from the solution after the absorbing

process of p. As a consequence, in this way every arc a
of class β in MC can be partially charged for at most

one edge of every class greater than β+1, that is, for at

most

∑
γ≥β+2

64β · 64γ−β+1

e

√
64

γ−β−4
2 −1

= 64β
∑
z≥0

64z+3

e

√
64

z−2
2 −1

= O(64β) = O(wa).

Therefore, by summing over all arcs in MC, recalling

that MC has cost 2C(S∗), also the total contribution to

the cost of the final state of the edges subject to this type

of accounting is O(C(S∗)).
It remains to analyze the case in which I+ = MC. Since in

this case also I = MC and thus the absorbing process removes

from the state all the edges not belonging to T ∗ (except e), in

the final equilibrium it can exist only a unique critical edge

introduced by a player p such that I+ = MC. Therefore, as

by definition a basic move can introduce only edges of cost

at most C(S∗), the total contribution to the cost of the final

state due to such a unique edge is at most C(S∗).

IV. CONCLUSIONS

In this paper, we have shown that the price of stability

of broadcast games with fair cost allocations in undirected

networks is O(1), thus closing the problem from an asymptotic

point of view. However, the constant hidden inside the big-O
notation is high compared to the currently best-known lower

bound of 1.818. Hence, further effort is still required to achieve

an exact characterization of the price of stability for these

games.

An intriguing open problem is that of trying to exploit

homogenization for improving the upper bounds also for mul-

ticast and unrestricted network design games. However, at the

moment our technique does not seem to directly apply to these

more general communication patterns, so that its extension

remains a worth investigating issue, possibly capturing future

research attention.
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