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Abstract—We provide a computationally efficient black-
box reduction from mechanism design to algorithm de-
sign in very general settings. Specifically, we give an
approximation-preserving reduction from truthfully maxi-
mizing any objective under arbitrary feasibility constraints
with arbitrary bidder types to (not necessarily truthfully)
maximizing the same objective plus virtual welfare (under
the same feasibility constraints). Our reduction is based on
a fundamentally new approach: we describe a mechanism’s
behavior indirectly only in terms of the expected value it
awards bidders for certain behavior, and never directly
access the allocation rule at all.

Applying our new approach to revenue, we exhibit
settings where our reduction holds both ways. That is,
we also provide an approximation-sensitive reduction from
(non-truthfully) maximizing virtual welfare to (truthfully)
maximizing revenue, and therefore the two problems are
computationally equivalent. With this equivalence in hand,
we show that both problems are NP-hard to approximate
within any polynomial factor, even for a single monotone
submodular bidder.

We further demonstrate the applicability of our re-
duction by providing a truthful mechanism maximizing
fractional max-min fairness.

I. INTRODUCTION

Mechanism design is the problem of optimizing an

objective subject to “rational inputs.” The difference to

algorithm design is that the inputs to the objective are not

known, but are owned by rational agents who need to be

provided incentives in order to share enough information

about their inputs such that the desired objective can

be optimized. The question that arises is how much

this added complexity degrades our ability to optimize

objectives, namely

How much more computationally difficult is mechanism
design for a certain objective compared to algorithm
design for the same objective?
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This question has been at the forefront of algorithmic

mechanism design, starting already with the seminal

work of Nisan and Ronen [27]. In a non-Bayesian

setting, i.e. when no prior distributional information is

known about the inputs, we now have strong separa-

tion results between algorithm and mechanism design.

Indeed, a sequence of recent breakthroughs [28], [8],

[21], [23] has culminated in combinatorial auction set-

tings where welfare can be optimized computationally

efficiently to within a constant factor for “honest inputs,”

but it cannot be computationally efficiently optimized to

within a polynomial factor for “rational inputs,” subject

to well-believed complexity theoretic assumptions. Be-

sides, the work of Nisan and Ronen studied the prob-

lem of minimizing makespan on unrelated machines,

which can be well-approximated for honest machines,

but whose approximability for rational machines still

remains unknown.

In a Bayesian world, where every input is drawn from

some known distribution, algorithm and mechanism de-

sign appear more tightly connected. Indeed, a sequence

of surprising works [26], [25], [4] have established that

mechanism design for welfare optimization in an arbi-

trary environment1 can be computationally efficiently re-

duced to algorithm design in the same environment, in an

approximation-preserving way. A similar reduction has

been recently discovered for the revenue objective [11],

[12] in the case of additive bidders.2 Here, mechanism

design for revenue optimization in an arbitrary additive

environment (computationally efficiently) reduces to al-

gorithm design for virtual welfare optimization in the

same environment, in an approximation-preserving man-

ner. The natural question is whether such mechanism-

to algorithm-design reduction is achievable for general

bidder types (i.e. beyond additive) and general objectives

(i.e. beyond revenue and welfare). This is what we

achieve in this paper.

1An environment constrains the feasible outcomes of the mechanism
as well as the allowable bidder types, or valuations. The latter map
outcomes to value units.

2A bidder is additive if her value for a bundle of items is just the
sum of her values for each item in the bundle.
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Informal Theorem 1. There is a generic, computation-
ally efficient, approximation-preserving reduction from
mechanism design for an arbitrary concave objective
O, under arbitrary feasibility constraints and arbitrary
allowable bidder types, to algorithm design, under the
same feasibility constraints and allowable bidder types,
and objective:

• O plus virtual welfare, if O is an allocation-only
objective (i.e. O depends only on the allocation
chosen and not on payments made).;

• O plus virtual welfare plus virtual revenue, if O
is a general objective (i.e. O may depend on the
allocation chosen as well as payments made);

• virtual welfare, if O is the revenue objective.

A formal statement of our result is provided as

Theorem 4 in Section C.2 of the full version of the

paper [13]. Specifically, we provide a Turing reduction

from the Multi-Dimensional Mechanism Design Prob-
lem (MDMDP) to the Solve Any-Differences Problem
(SADP). MDMDP and SADP are formally defined in

Section 5.1 of the full version, and informally below.

They are both parameterized by a set F , specifying

feasibility constraints on outcomes,3 a set V of functions,

specifying allowable types of bidders,4 and an objective

function O, mapping a profile �t ∈ Vm of bidder types

(m is the number of bidders), a distribution X ∈ Δ(F)
over feasible outcomes, and a randomized price vector

P , to the reals.5 In terms of these parameters:

• MDMDP is the problem of designing a mechanism

M that maximizes O in expectation over the types

t1, . . . , tm of the bidders, given a product distri-

bution over Vm for t1, . . . , tm, and assuming that

the bidders play M truthfully. M is restricted to

choose outcomes in F with probability 1, it must

be Bayesian Incentive Compatible, and Individually

Rational.
• SADP is input a type vector t1, . . . , tm ∈ V ,

a list of hyper-types t1, . . . , tk ∈ V∗, where V∗
is the closure of V under addition and positive

scalar multiplication, and weights c0 ∈ R≥0 and

c1, . . . , cm ∈ R. The goal is to choose a distribution

X over outcomes and a randomized price vector P

3These could encode, e.g., matching constraints of a collection of
items to the bidders, or locations to build a public project, etc.

4A type t of a bidder is a function mapping F to the reals, specifying
how much the bidder values every outcome in F . If a set V of functions
parameterizes one of our problems, then all bidders are restricted to
have types in V . E.g., F may be R

� and V may contain all additive
functions over F .

5E.g. O could be revenue (in this case, O(�t,X, P ) = E[
∑

i Pi]),
or it could be welfare (in this case, O(�t,X, P ) =

∑
i ti(X), where

ti(X) = Ex←X [t(x)] is the expected value of type ti for the
distribution over outcomes X), or it could be some fairness objective
such as O(�t,X, P ) = mini ti(X).

so that

c0O(�t,X, P ) +
∑
i

ciE[Pi] + (tj(X)− tj+1(X)).

is maximized for at least one j ∈ {1, . . . , k − 1}.
The first term in the above expression is a scaled

version of O, the second is a “virtual revenue” term

(where ci is the virtual currency that bidder i uses),

and the last term is a “virtual welfare” term (of

a pair of adjacent hyper-types the first of which is

scaled by 1 and the other by −1). The name “Solve

Any-Differences Problem” alludes to the freedom

of choosing any value of j and then optimizing.

Notice that MDMDP is a mechanism design problem,

where our task is to optimize objective O given dis-

tributional information about the bidder types. On the

other hand, SADP is an algorithm design problem, where

types and hyper-types are perfectly known and the task

is to optimize the sum of the same objective O plus a

virtual revenue and welfare term. In this terminology,

Theorem 4 of the full version (stated above as Informal

Theorem 1) establishes that there is a computationally

efficient reduction from α-approximating MDMDP to α-

approximating SADP, for any value α of the approxima-

tion, as long as O is concave in X and P .6

It is worth stating a few caveats of our reduction:

1) First, it is known from [18] that it is not possible

to have a general reduction from mechanism design

to algorithm design with the exact same objective.

This motivates the need to include the extra terms of

virtual revenue and virtual welfare in the objective

of SADP.
2) If O is allocation-only, i.e. it does not depend on

the price vector P , then all coefficients c1, . . . , cm
can be taken 0 in the reduction from MDMDP

to SADP. Hence, to α-approximate MDMDP it

suffices to be able to α-optimize O plus virtual

welfare. In Sections I-B, we discuss fractional max-
min fairness as an example of such an objective,

providing optimal mechanisms for it through our

reduction.
3) If O is price-only, i.e. it does not depend on

the outcome X , then the objective in SADP is

separable into a price-dependent component (O
plus virtual revenue) and an outcome-dependent

component (virtual welfare). Hence, our reduction

implies that to α-approximate MDMPD it suffices

to be able to α-optimize each of these components

separately.

6Formally O is concave in X and P if for any (X1, P1) and
(X2, P2) and any c ∈ [0, 1] and �t, O(�t, cX1+(1−c)X2, cP1+(1−
c)P2) ≥ cO(�t,X1, P1) + (1− c)O(�t,X2, P2), where cX1 + (1−
c)X2 is the mixture of distributions X1 and X2 over outcomes, with
mixing weights c and 1− c respectively. All objectives mentioned or
studied in this paper are concave.
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4) If O is the revenue objective (this is a special case

of 3), the price-dependent component in SADP is

trivial to optimize. In this case, to α-approximate

MDMPD it suffices to be able to α-optimize virtual

welfare (i.e. we can take c0 = c1 = · · · = cm = 0
in the SADP instance output by the reduction). See

Theorem 3. Additionally we note the following.

a) This special case of our reduction already gen-

eralizes the results of [11] to arbitrary types.

Recall that the reduction of [11] from MDMDP

to virtual-welfare optimization could only accom-

modate additive types.
b) For a special family V of functions, we provide a

reduction in the other direction, i.e. from SADP

to MDMDP. As a corollary of this reduction we

obtain strong inapproximability results for opti-

mal multi-dimensional mechanism design with

submodular bidders. We discuss this in more

detail in Section I-A.

5) Our generic reduction from MDMDP to SADP can

take the number k of hyper-types input to SADP to

be 2. We define SADP for general k for flexibility.

In particular, general k enables our inapproxima-

bility result for optimal mechanism design via a

reduction from SADP (general k) to MDMDP.
6) Finally, it is worth noting that our reduction follows

a similar outline to that of previous work on revenue

maximization [11]: we first come up with a way to

describe a mechanism’s behavior succinctly, via a

description that we call the implicit form. Next, we

write a LP to find the implicit form of theO-optimal

truthful mechanism. Solving this LP will require a

separation oracle for the space of implicit forms

that correspond to feasible (not necessarily truth-

ful) mechanisms. Such a separation oracle can be

obtained with black-box access to an (approximate)

algorithm for SADP with k = 2.

A. Revenue

Our framework described above provides reductions

from mechanism design for some arbitrary objective O
to algorithm design for the same objective O plus a

virtual revenue and a virtual welfare term. As pointed out

earlier in this section, we can’t avoid some modification

of O in the algorithm design problem sitting at the

output of a general reduction such as ours, due to the

impossibility result of [18]. Nevertheless, there could

very well be other modified objectives that a general

reduction could be reducing to, with better or worse

algorithmic properties. The question that arises is this:

Could we be hurting ourselves focusing on SADP as
an algorithmic vehicle to solve MDMDP? Our previous

work on revenue maximization for additive bidders [11]

exhibits very general F’s where the answer is “no,” mo-

tivating our generalization here to non-additive bidders

and general objectives. Indeed, we illustrate the reach of

our new framework in Section I-B by providing optimal

mechanisms for non-linear objectives, an admittedly dif-

ficult and under-developed topic in Bayesian mechanism

design [18], [15].

Here we provide a different type of evidence for

the tightness of our approach via reductions going the

other way, i.e. from SADP to MDMDP. Recall that

MDMDP(F ,V,Revenue) reduces to solving SADP in-

stances, which satisfy c0 = c1 = · · · = cm = 0 and

therefore only have a virtual welfare component depend-

ing on some t1, . . . , tk ∈ V∗. In Section IV, we identify

conditions for a collection of functions t1, . . . , tk ∈ V∗
under which SADP reduces to MDMDP, showing that

for such instances solving SADP is unavoidable for

solving MDMDP. Indeed, our reduction is strong enough

that we obtain very strong inapproximability results for

revenue optimization, even when there is a single mono-

tone submodular bidder. To the best of our knowledge

our result is the first inapproximability result for optimal

mechanism design.

Informal Theorem 2. MDMDP(2[n], monotone sub-

modular functions, revenue) cannot be approximated to
within any polynomial factor in polynomial time, if we
are given value or demand oracle access to the submodu-
lar functions in the support of the bidders distributions,7

even if there is only one bidder. The same is true if we
are given explicit access to these functions (as Turing
machines) unless NP ⊆ RP .

B. Fractional Max-Min Fairness

Certainly revenue and welfare are the most widely

studied objectives in mechanism design. Nevertheless,

resource allocation often requires optimizing non-linear

objectives such as the fairness of an allocation, or the

makespan of some scheduling of jobs to machines.

Already the seminal paper of Nisan and Ronen studies

minimizing makespan when scheduling jobs to selfish

machines, in a non-Bayesian setting. Following this

work, a lot of algorithmic mechanism design research

has focused on non-linear objectives in non-Bayesian

settings (see, e.g., [19], [3] and their references), but

positive results have been scarce. More recently, re-

search has studied non-linear objectives in Bayesian set-

tings [18], [15]. While [18] provide impossibility results,

the results of [15] give hope that non-linear objectives

might be better behaved in Bayesian settings. In part, this

is our motivation for providing an algorithmic framework

for general objectives in this work.

7We explain the difference between value and demand oracle access
in Section IV.
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As a concrete example of the reach of our techniques,

we provide optimal mechanisms for a (non-linear) max-

min fairness objective in Section 6 of the full version.

The setting we solve is this: There are n items that

can be allocated to m additive bidders, subject to some

constraints F . F could be matching constraints, ma-

troid constraints, downwards-closed constraints, or more

general constraints. Now, given a distribution X over

allocations in F , how fair is it? E.g., if there is one

item and two bidders with value 1 for the item, what

is the fairness of a randomized allocation that gives the

item to each bidder with probability 1
2? Should it be 0,

because with probability 1, exactly one bidder gets value

0 from the allocation? Or, should it be 1/2 because each

bidder gets an expected value of 1/2? Clearly, both are

reasonable objectives, but we study the latter. Namely,

we define the fractional max-min fairness objective as:

O(�t,X) = min
i

ti(X).

We obtain the following result, which is stated formally

as Corollary 6 in Section 6 of the full version.

Informal Theorem 3. Let G be a polynomial-time
α-approximation algorithm for

Max-Weight(F): Given weights (wij)ij , find S ∈ F
maximizing

∑
(i,j)∈S wij .

With black-box access to G, we can α-approximate
MDMDP(F , additive functions,O) in polynomial time.
For instance, if F are matching constraints, matroid
constraints, or the intersection of two matroids, we can
optimally solve MDMDP(F , additive functions,O) in
polynomial-time.

C. Related Work

a) Revenue Maximization.: There has been much

work in recent years on revenue maximization in multi-

dimensional settings [1], [2], [6], [9], [10], [14], [16],

[17], [22], [24]. Our approach is most similar to that

of [11], [12], which was recently extended in [5]. These

works solved the revenue maximization problem for

additive bidders via a black-box reduction to welfare

maximization. In [5], numerous extensions are shown

that accommodate risk-averse buyers, ex-post budget

constraints, and more. But both approaches are in-

herently limited to revenue maximization and additive

bidders. Even just within the framework of revenue

maximization, our work breaks through a major barrier,

as every single previous result studies only additive

bidders.

b) Hardness of Revenue Maximization.: Three dif-

ferent types of results regarding the computational hard-

ness of revenue maximization are known. It is shown

in [7] that (under standard complexity theoretic assump-

tions) no efficient algorithm can find a deterministic

mechanism whose revenue is within any polynomial

factor of the optimal (for deterministic mechanisms),

even for very simple single bidder settings. However, the

optimal randomized mechanism in those same settings

can be found in polynomial time [6]. Hardness results

for randomized mechanisms are comparatively scarce.

Very recently, a new type of hardness was shown

in [20]. There, they show that it is #P-hard to find

(any description of) an optimal randomized mechanism

even in very simple single bidder settings. Specifically,

the problem they study is of a single additive bidder

whose value for each of n items is drawn independently

from a distribution of support 2. The natural description

complexity of this problem is O(n) (just list the values

for each item and their probabilities), but they show that

the optimal randomized mechanism cannot be found or

even executed in time poly(n) (unless ZPP = #P). This

is a completely different type of hardness than what is

shown in this paper. Specifically, we show that certain

instances are hard to solve even when the support of the

input distribution is small (whereas it is 2n in the hard

examples of [20]), but the instances are necessarily more

involved (we use submodular bidders), as the optimal

randomized mechanism can be found in time polynomial

in the support of the input distribution for additive

bidders [6].

The existing result that is most similar to ours appears

in [22]. There, they show that it is NP-hard to maximize

revenue exactly when there is a single bidder whose

value for subsets of n items is an OXS function.8 Our

approaches are even somewhat similar: we both aim to

understand the necessary structure on a type space in

order for the optimal revenue to satisfy a simple formula.

The big difference between their result and ours is that

their results are inherently limited to settings with a

single bidder who has two possible types. While this

suffices to show hardness of exact maximization, there

is no hope of extending this to get hardness of approx-

imation.9 Our stronger results are enabled by a deeper

understanding of the optimal revenue for single bidder

settings with many possible types, which is significantly

more involved than the special case of two types.

c) General Objectives.: Following the seminal pa-

per of Nisan and Ronen, much work in algorithmic

mechanism design has been devoted to maximizing non-

linear objectives in a truthful manner. Recently, more

attention has been given to Bayesian settings, as there

are numerous strong hardness results in non-Bayesian

8OXS functions are a subclass of submodular functions
9The seller always has the option of completely ignoring one type

and charging the other their maximum value for their favorite set. This
mechanism achieves a 1

2
-approximation in every setting.
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settings. Still, it is shown in [18] that no polynomial-time

black-box reduction from truthfully maximizing a non-

linear objective to non-truthfully maximizing the same

non-linear objective exists without losing a polynomial

factor in the approximation ratio, even in Bayesian

settings. Even more recently, a non-black box approach

was developed in [15] to minimize makespan in certain

Bayesian settings. Our black-box approach sidesteps

the hardness result of [18] by reducing the problem

of truthfully maximizing an objective to non-truthfully

maximizing a modified objective.

D. Paper Structure

To make our framework easier to understand, we

separate the paper as follows. In Sections II through IV,

we provide the necessary details of our framework to

show how it applies to revenue maximization. We defer

a formal discussion of the full generality of our approach

to Section 5 of the full version, and show how it

applies to the fractional max-min fairness objective in

Section 6 of the full version. To ease notation we initially

define restricted versions of the MDMDP and SADP

problems in Section II as they apply to revenue, using

these restricted definitions through Section IV. These

definitions are expanded in Section 5 of the full version

to accommodate general objectives.

II. PRELIMINARIES

Mechanism Design Setting. The mechanism designer

has a set of feasible outcomes F to choose from,

which depending on the application could be feasible

allocations of items to bidders, locations to build a public

project, etc. Each bidder participating in the mechanism

may have several possible types. A bidder’s type consists

of a value for each possible outcome in F . Specifically,

a bidder’s type is a function t mapping F to R+. Ti

denotes the set of all possible types of bidder i, which we

assume to be finite. The designer has a prior distribution

Di over Ti for bidder i’s type. Bidders are quasi-linear
and risk-neutral. That is, the utility of a bidder of type t
for a randomized outcome (distribution over outcomes)

X ∈ Δ(F), when he is charged (a possibly random

price with expectation) p, is Ex←X [t(x)]−p. Therefore,

we may extend t to take as input distributions over

outcomes as well, with t(X) = Ex←X [t(x)]. A type
profile �t = (t1, . . . , tm) is a collection of types for each

bidder. We assume that the types of the bidders are

independent so that D = ×iDi is the designer’s prior

distribution over the complete type profile.

Mechanisms. A (direct) mechanism consists of two

functions, a (possibly randomized) allocation rule and

a (possibly randomized) price rule, and we allow these

rules to be correlated. The allocation rule takes as input

a type profile �t and (possibly randomly) outputs an

allocation A(�t) ∈ F . The price rule takes as input a

profile �t and (possibly randomly) outputs a price vector

P (�t). When the bid profile �t is reported to the mechanism

M = (A,P ), the (possibly random) allocation A(�t) is

selected and bidder i is charged the (possibly random)

price Pi(�t). We will sometimes discuss the interim
allocation rule of a mechanism, which is a function that

takes as input a bidder i and a type ti ∈ Ti and outputs

the distribution of allocations that bidder i sees when

reporting type ti over the randomness of the mechanism

and the other bidders’ types. Specifically, if the interim

allocation rule of M = (A,P ) is X , then Xi(ti) is a

distribution satisfying

Pr[x← Xi(ti)] = E�t−i←D−i

[
Pr[A(ti;�t−i) = x | �t−i]

]
,

where t−i is the vector of types of all bidders but bidder

i in �t, and D−i is the distribution of t−i. Sometimes we

write �t−i instead of t−i to emphasize that it’s a vector

of types.

A mechanism is said to be Bayesian Incentive Com-
patible (BIC) if it is in every bidder’s best interest

to report truthfully their type, conditioned on the fact

that the other bidders report truthfully their type. A

mechanism is said to be Individually Rational (IR) if

it is in every bidder’s best interest to participate in the

mechanism, no matter their type. Formal definitions can

be found in Appendix A of the full version.

Goal of the designer. In Section III we present our

mechanism- to algorithm-design reduction for the rev-

enue objective. The problem we reduce from is designing

a BIC, IR mechanism that maximizes expected revenue,

when encountering a bidder profile sampled from some

given distribution D. Our reduction is described in terms

of the problems MDMDP and SADP defined next. In

Section 5 of the full version we generalize our reduction

to general objectives and accordingly generalize both

problems to accommodate general objectives. But our

approach is easier to understand for the revenue objec-

tive, so we give that here separately.

Formal Problem Statements. We present black-

box reductions between two problems: the Multi-

Dimensional Mechanism Design Problem (MDMDP)

and the Solve-Any Differences Problem (SADP). MD-

MDP is a well-studied mechanism design problem [10],

[11], [12]. SADP is a new algorithmic problem that we

show has strong connections to MDMDP. In order to dis-

cuss our reductions appropriately, we will parameterize

the problems by two parameters F and V . Parameter F
denotes the feasibility constraints of the setting; e.g., F
might be “each item is awarded to at most one bidder”

or “a bridge may be built in location A or B”, etc.

Parameter V denotes the allowable valuation functions,

mapping F to the reals; e.g., if F = R
�, then V may

be “all additive functions over F” or “all submodular
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functions”, etc. Informally, MDMDP asks for a BIC,

IR mechanism that maximizes expected revenue for

certain feasibility constraints F and a restricted class of

valuation functions V . SADP asks for an element in F
maximizing the difference of two functions in V , but

the algorithm is allowed to choose any two adjacent

functions in an ordered list of size k. Throughout the

paper will use V∗ to denote the closure of V under

addition and positive scalar multiplication, and the term

“α-approximation” (α ≤ 1) to denote a (possibly ran-

domized) algorithm whose expected value for the desired

objective is an α-fraction of the optimal.

MDMDP(F , V): INPUT: For each bidder i ∈ [m], a

finite set of types Ti ⊆ V and a distribution Di over Ti.

GOAL: Find a feasible (outputs an outcome in F with

probability 1) BIC, IR mechanism M , that maximizes

expected revenue, when n bidders with types sampled

from D = ×iDi play M truthfully (with respect to

all feasible, BIC, IR mechanisms). M is said to be an

α-approximation to MDMDP if its expected revenue is

at least a α-fraction of the optimal obtainable expected

revenue.

SADP(F , V): Given as input functions fj ∈ V∗ (1 ≤
j ≤ k), find a feasible outcome X ∈ F such that there

exists an index j∗ ∈ [k − 1] such that:

fj∗(X)− fj∗+1(X) = max
X′∈F

{fj∗(X ′)− fj∗+1(X
′)}.

X is said to be an α-approximation to SADP if there

exists an index j∗ ∈ [k − 1] such that:

fj∗(X)− fj∗+1(X) ≥ α max
X′∈F

{fj∗(X ′)− fj∗+1(X
′)}.

Representation Questions. Notice that both MDMDP

and SADP are parameterized by F and V . As we aim

to leave these sets unrestricted, we assume that their

elements are represented in a computationally meaning-

ful way. That is, we assume that elements of F can be

indexed using O(log |F|) bits and are input to functions

that evaluate them via this representation. We assume

elements f ∈ V are input either via a turing machine

that evaluates f (and the size of this turing machine

counts towards the size of the input), or as a black box.

Moreover, all of our reductions apply whether or not the

input functions are given explicitly or as a black box
10. Finally, whenever we evaluate the running time of an

algorithm for either MDMDP or SADP, or of a reduction

from one problem to the other, we count the time spent

in an oracle call to functions input to these problems

10When we claim that we can solve problem P1 given black-box
access to a solution to problem P2, we mean that the functions input
to problem P1 may be given either explicitly or as a black box, and
that they are input in the same form to P2.

as one. Similarly, whenever we show a computational

hardness result for either MDMDP or SADP, the time

spent in one oracle call is considered as one.

Linear Programming. Our results require the ability

to solve linear programs with separation oracles as

well as “weird” separation oracles, a concept recently

introduced in [12]. Throughout the paper we will use

the notation αP to denote the polytope P shrunk by a

factor of α ≤ 1. That is, αP = {α�x|�x ∈ P}. We make

use of the following Theorem from [12], as well as other

theorems regarding solving linear programs which are all

stated below. Theorem 1 comes from recent work [12].

Theorem 2 states well-known properties of the ellipsoid

algorithm. Corollary 1 is an obvious corollary of part 1

of Theorem 1. In addition, a complete discussion of this

can be found in [12].

Theorem 1. ([12]) Let P be a d-dimensional bounded
convex polytope containing the origin, and let A be an
algorithm that takes any direction �w ∈ [−1, 1]d as input
and outputs a point A(�w) ∈ P such that A(�w) · �w ≥
α · max�x∈P {�x · �w} for some absolute constant α ≤ 1.
Then there is a weird separation oracle WSO for αP
such that,

1) Every halfspace output by the WSO will contain
αP .

2) Whenever WSO(�x) = “yes,” the execution of
WSO explicitly finds directions �w1, . . . , �wl such
that �x ∈ Conv{A(�w1), . . . ,A(�wl)}.

3) Let b be the bit complexity of the input vector �x,
and � be an upper bound of the bit complexity
of A(�w) for all �w ∈ [−1, 1]d, rtA(y) be the
running time of algorithm A on some input with bit
complexity y. Then on input �x, WSO terminates in
time poly (d, b, �, rtA(poly(d, b, �))) and makes at
most poly(d, b, �) many queries to A.

Corollary 1. ([12]) Let Q be an arbitrary intersection of
halfspaces. Let SO be a separation oracle for αP , where
P is a bounded convex polytope containing the origin
and α ≤ 1 some constant. Let c1 be the solution output
by the Ellipsoid algorithm that maximizes some linear
objective �c · �x subject to �x ∈ Q and SO(�x) = “yes′′.
Let also c2 be the solution output by the exact same
algorithm, but replacing SO with WSO, a “weird”
separation oracle for αP as in Theorem 1—i.e. run the
Ellipsoid algorithm with the exact same parameters as
if WSO was a valid separation oracle for αP . Then
c2 ≥ c1.

Theorem 2. [Ellipsoid Algorithm for Linear Program-
ming] Let P be a bounded convex polytope in R

d

specified via a separation oracle SO, and let �c · �x be
a linear function. Suppose that � is an upper bound
on the bit complexity of the coordinates of �c as well
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as the extreme points of P ,11 and also that we are
given a ball B(x0, R) containing P such that x0 and
R have bit complexity poly(d, �). Then we can run the
ellipsoid algorithm to optimize �c ·�x over P , maintaining
the following properties:

1) The algorithm will only query SO on rational
points with bit complexity poly(d, �).

2) The ellipsoid algorithm will solve the Linear Pro-
gram in time polynomial in d, � and the runtime of
SO when the input query is a rational point of bit
complexity poly(d, �).

3) The output optimal solution is a corner of P .

A. Implicit Forms

Here, we give the necessary preliminaries to under-

stand a mechanism’s implicit form. The implicit form is

oblivious to what allocation rule the mechanism actually

uses; it just stores directly the necessary information to

decide if a mechanism is BIC and IR. For a mechanism

M = (A,P ) and bidder distribution D, the implicit form

of M with respect to D consists of two parts. The first

is a function that takes as input a bidder i and a pair of

types ti, t
′
i, and outputs the expected value of a bidder

with type ti for reporting t′i instead. Formally, we may

store this function as an mk2-dimensional vector �π(M)
with:

πi(ti, t
′
i) = E�t−i←D−i

[ti(A(t
′
i;�t−i))].

The second is just a function that takes as input a

bidder i and a type ti and outputs the expected price paid

by bidder i when reporting type ti. Formally, we may

store this function as a mk-dimensional vector �P (M)
with:

Pi(ti) = E�t−i←D−i
[Pi(ti;�t−i)].

We will denote the implicit form of M as �πI(M) =
(�π(M), �P (M)), and may drop the parameter M where

appropriate. We call �π the allocation component of the

implicit form and �P the price component. Sometimes,

we will just refer to �π as the implicit form if the context

is appropriate.

We say that (the allocation component of) an implicit

form, �π, is feasible with respect to F ,D if there exists

a (possibly randomized) mechanism M that chooses an

allocation in F with probability 1 such that �π(M) = �π.

We denote by F (F ,D) the set of all feasible (allocation

components of) implicit forms. We say that an implicit

form �πI is feasible if its allocation component �π is

feasible. We say that �πI is BIC if every mechanism with

11If a d-dimensional convex region with extreme points of bit
complexity � is non-empty, then it certainly has volume at least
2−poly(d,�).

implicit form �πI is BIC. It is easy to see that �πI is BIC

if and only if for all i, and ti, t
′
i ∈ Ti, we have:

πi(ti, ti)− Pi(ti) ≥ πi(ti, t
′
i)− Pi(t

′
i).

Similarly, we say that �πI is IR if every mechanism

with implicit form �πI is IR. It is also easy to see that

�πI is IR if and only if for all i and ti ∈ Ti we have:

πi(ti, ti)− Pi(ti) ≥ 0.

III. REVENUE MAXIMIZATION

In this section, we describe and prove correctness

of our reduction when the objective is revenue. Every

result in this section is a special case of our general

reduction (that applies to any concave objective) from

Section 5 of the full version, and could be obtained as

an immediate corollary. We present revenue separately as

a special case with the hope that this will help the reader

understand the general reduction. Here is an outline of

our approach: In Section III-A, we show that F (F ,D) is

a convex polytope and write a poly-size linear program

that finds the revenue-optimal implicit form provided

that we have a separation oracle for F (F ,D). In Sec-

tion III-B we show that any poly-time α-approximation

algorithm for SADP(F ,V) implies a poly-time weird

separation oracle for αF (F ,D), and therefore a poly-

time α-approximation algorithm for MDMDP(F , V).

A. Linear Programming Formulation

We now show how to write a poly-size linear program

to find the implicit form of a mechanism that solves the

MDMDP. The idea is that we will search over all feasi-

ble, BIC, IR implicit forms for the one that maximizes

expected revenue. We first show that F (F ,D) is always

a convex polytope, then state the linear program and

prove that it solves MDMDP. For ease of exposition,

most proofs can be found in Appendix D of the full

version.

Lemma 1. F (F ,D) is a convex polytope.

Observation 1. Any α-approximate solution to the lin-
ear program of Figure 1 corresponds to a feasible, BIC,
IR implicit form whose revenue is at least a α-fraction
of the optimal obtainable expected revenue by a feasible,
BIC, IR mechanism.

Corollary 2. The program in Figure 1 is a linear
program with

∑
i∈[m](|Ti|2 + |Ti|) variables. If b is an

upper bound on the bit complexity of Pr[ti] and ti(X)
for all i, ti and X ∈ F , then with black-box access to
a weird separation oracle, WSO, for αF (F ,D), the
implicit form of an α-approximate solution to MDMDP
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Variables:
• πi(ti, t

′
i), for all bidders i and types ti, t

′
i ∈ Ti,

denoting the expected value obtained by bidder

i when their true type is ti but they report t′i
instead.

• Pi(ti), for all bidders i and types ti ∈ Ti,

denoting the expected price paid by bidder i
when they report type ti.

Constraints:
• πi(ti, ti) − Pi(ti) ≥ πi(ti, t

′
i) − Pi(t

′
i), for all

bidders i, and types ti, t
′
i ∈ Ti, guaranteeing that

the implicit form (�π, �P ) is BIC.
• πi(ti, ti) − Pi(ti) ≥ 0, for all bidders i, and

types ti ∈ Ti, guaranteeing that the implicit form

(�π, �P ) is individually rational.
• �π ∈ F (F ,D), guaranteeing that the implicit

form (�π, �P ) is feasible.

Maximizing:
•
∑

i

∑
ti
Pr[ti ← Di] · Pi(ti), the expected

revenue when played truthfully by bidders

sampled from D.

Fig. 1. A linear programming formulation for MDMDP.

can be found in time polynomial in
∑

i∈[m] |Ti|, b, and
the runtime of WSO on inputs with bit complexity
polynomial in

∑
i∈[m] |Ti|, b.

B. A Reduction from MDMDP to SADP

Based on Corollary 2, the only obstacle to solving the

MDMDP is obtaining a separation oracle for F (F ,D)
(or “weird” separation oracle for αF (F ,D)). In this

section, we use Theorem 1 to obtain a weird separation

oracle for αF (F ,D) using only black box access to

an α-approximation algorithm for SADP. For ease of

exposition, most proofs can be found in Appendix E of

the full version.

In order to apply Theorem 1, we must first under-

stand what it means to compute �x · �w in our setting.

Proposition 1 below accomplishes this. In reading the

proposition, recall that �x is some implicit form �π,

so the direction �w has components wi(ti, t
′
i) for all

i, ti, t
′
i. Also note that a type ti is a function that maps

allocations to values. So
∑

ti∈Ti
Citi is also a function

that maps allocations to values (and therefore could be

interpreted as a type or virtual type). Namely, it maps

X to
∑

ti∈Ti
Citi(X)

Proposition 1. Let �π ∈ F (F ,D) and let �w be a
direction in [−1, 1]

∑
i |Ti|2 . Then �π · �w is exactly the

expected virtual welfare of a mechanism with implicit
form �π when the virtual type of bidder i with real type
t′i is

∑
ti∈Ti

wi(ti,t
′
i)

Pr[t′i]
· ti.

Now that we know how to interpret �w · �π, recall

that Theorem 1 requires an algorithm A that takes as

input a direction �w and outputs a �π with �w · �π ≥
α ·max�x∈F (F,D){�w · �x}. With Proposition 1, we know

that this is exactly asking for a feasible implicit form

whose virtual welfare (computed with respect to �w) is

at least an α-fraction of the virtual welfare obtained by

the optimal feasible implicit form. The optimal feasible

implicit form corresponds to a mechanism that, on every

profile, chooses the allocation in F that maximizes

virtual welfare. One way to obtain an α-approximate im-

plicit form is to use a mechanism that, on every profile,

chooses an α-approximate outcome in F . Corollary 3

below states this formally.

Corollary 3. Let M be a mechanism that on profile
(t′1, . . . , t

′
m) chooses a (possibly randomized) allocation

X ∈ F such that

∑
i∈[m]

∑
ti∈Ti

wi(ti, t
′
i)

Pr[t′i]
· ti(X)

≥ α · max
X′∈F

⎧⎨
⎩

∑
i∈[m]

∑
ti∈Ti

wi(ti, t
′
i)

Pr[t′i]
· ti(X ′)

⎫⎬
⎭ .

Then the implicit form, �π(M) satisfies:

�π(M) · �w ≥ α · max
�x∈F (F,D)

{�x · �w}.

With Corollary 3, we now want to study the problem

of maximizing virtual welfare on a given profile. This

turns out to be exactly an instance of SADP.

Proposition 2. Let ti ∈ V for all i, ti. Let also
Ci(ti) be any real numbers, and

∑
ti∈Ti

Ci(ti)ti(·)
be the virtual type of bidder i. Then any X ∈ F
that is an α-approximation to SADP(F ,V) on
input (f1 =

∑
i

∑
ti|Ci(ti)>0 Ci(ti)ti(·), f2 =∑

i

∑
ti|Ci(ti)<0−Ci(ti)ti(·)) is also an α-

approximation for maximizing virtual welfare. That
is:

∑
i

∑
ti

Ci(ti)ti(X) ≥ α ·max
X′∈F

{∑
i

∑
ti

Ci(ti)ti(X
′)

}

Combining Corollary 3 and Proposition 2 yields

Corollary 4 below.

Corollary 4. Let G be any α-approximation algorithm
for SADP(F ,V). Let also M be the mechanism that, on
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profile (t′1, . . . , t
′
m) chooses the allocation

G({
∑
i

∑
ti|wi(ti,t′i)>0

(wi(ti, t
′
i)/Pr[t

′
i])ti(·) ,

∑
i

∑
ti|wi(ti,t′i)<0

−(wi(ti, t
′
i)/Pr[t

′
i])ti(·)}).

Then the interim form �π(M) satisfies:

�π(M) · �w ≥ α · max
�x∈F (F,D)

{�x · �w}.

At this point, we would like to just let A be the

algorithm that takes as input a direction �w and computes

the implicit form prescribed by Corollary 4. Corollary 4

shows that this algorithm satisfies the hypotheses of

Theorem 1, so we would get a weird separation oracle

for αF (F ,D). Unfortunately, this requires some care,

as computing the implicit form of a mechanism exactly

would require enumerating every profile in the support

of D, and also enumerating the randomness used on each

profile. Luckily, however, both of these issues arose in

previous work and were solved [11], [12]. We overview

the necessary approach in Appendix E of the full version,

and refer the reader to [11], [12] for complete details.

After these modifications, the only remaining step is to

turn the implicit form output by the LP of Figure 1 into

an actual mechanism. This process is simple and made

possible by guarantee 2) of Theorem 1. We overview

the process in Section E of the full version, as well

as give a formal description of our algorithm to solve

MDMDP as Algorithm 3 in the full version. We conclude

this section with a theorem describing the performance

of this algorithm. In the following theorem, G denotes

a (possibly randomized) α-approximation algorithm for

SADP(F ,V).

Theorem 3. Let b be an upper bound on the bit
complexity of ti(X) and Pr[ti] for any i ∈ [m],
ti ∈ Ti, and X ∈ F . Then our algorithm (for-
mally defined as Algorithm 3 in the full version)
makes poly(

∑
i |Ti|, 1/ε, b) calls to G, and terminates

in time poly(
∑

i |Ti|, 1/ε, b, rtG(poly(
∑

i |Ti|, 1/ε, b))),
where rtG(x) is the running time of G on input with
bit complexity x. If the types are normalized so that
ti(X) ∈ [0, 1] for all i, ti ∈ Ti, and X ∈ F ,
and OPT is the optimal obtainable expected revenue
for the given MDMDP instance, then the mechanism
output by our algorithm obtains expected revenue at
least αOPT − ε, and is ε-BIC with probability at least
1− exp(poly(

∑
i |Ti|, 1/ε, b)).

IV. REDUCTION FROM SADP TO MDMDP

In this section we overview our reduction from SADP

to MDMDP that holds for a certain subclass of SADP

instances (a much longer exposition of the complete ap-

proach can be found in Appendix B of the full version).

The subclass is general enough for us to conclude that

revenue maximization, even for a single submodular bid-

der, is impossible to approximate within any polynomial

factor unless NP = RP . For this section, we will restrict

ourselves to single-bidder settings, as our reduction will

always output a single-bidder instance of MDMDP.

Here is an outline of our approach: In Appendix B.1

of the full version, we start by defining two properties

of allocation rules. The first of these properties is the

well-known cyclic monotonicity. The second is a new

property we define called compatibility. Compatibility

is a slightly (and strictly) stronger condition than cyclic

monotonicity. The main result of this section is a simple

formula (of the form of the objective function that

appears in SADP) that upper bounds the maximum

obtainable revenue using a given allocation rule, as

well as a proof that this bound is attainable when the

allocation rule is compatible. Both definitions and results

can be found in Appendix B.1 of the full version.

Next, we relate SADP to MDMDP using the results of

Appendix B.1 of the full version, showing how to view

any (possibly suboptimal) solution to a SADP instance

as one for a corresponding MDMDP instance and vice

versa. We show that for compatible SADP instances, any

optimal solution is also optimal in the corresponding

MDMDP instance. Furthermore, we show (using the

work of Appendix B.1 of the full version) that, for any

α-approximate MDMDP solution X , the corresponding

SADP solution Y is necessarily an approximate solution

to SADP as well, and a lower bound on its approximation

ratio as a function of α. Therefore, this constitutes

a black-box reduction from approximating compatible

instances of SADP to approximating MDMDP. This is

presented in Appendix B.2 of the full version.

Finally, in Appendix B.3 of the full version, we

give a class of compatible SADP instances, where V
is the class of submodular functions and F is trivial,

for which SADP is impossible to approximate within

any polynomial factor unless NP = RP . Using the

reduction of Appendix B.2 we may immediately con-

clude that unless NP = RP , revenue maximization

for a single monotone submodular bidder under trivial

feasibility constraints (the seller has one copy of each

of n goods and can award any subset to the bidder)

is impossible to approximate within any polynomial

factor. Note that, on the other hand, welfare is trivial

to maximize in this setting: simply give the bidder every

item. This section is concluded with the proof of the

following theorem. Formal definitions of submodularity,

value oracle, demand oracle, and explicit access can be

found at the start of Appendix B.3 of the full version.

Theorem 4. The problems SADP(2[n],monotone
submodular functions) (for k = poly(n)) and
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MDMDP(2[n],monotone submodular functions) (for
k = |T1| = poly(n)) are:

1) Impossible to approximate within any 1/poly(n)-
factor with only poly(k, n) value oracle queries.

2) Impossible to approximate within any 1/poly(n)-
factor with only poly(k, n) demand oracle queries.

3) Impossible to approximate within any 1/poly(n)-
factor given explicit access to the input functions
in time poly(k, n), unless NP = RP .

V. CONCLUSIONS AND FUTURE WORK

This work provides a poly-time approximation-

preserving reduction from truthfully optimizing any ob-

jective to algorithmically optimizing that same objective

plus virtual welfare. In addition, we show that this reduc-

tion is essentially tight when applied to revenue: for ap-

propriately structured instances, any truthful mechanism

that approximately optimizes revenue can be converted

(in poly-time and a black box way) to an algorithm

that approximately optimizes virtual welfare. Using this,

we show that no computationally efficient algorithm can

maximize revenue for a single monotone submodular

bidder within any polynomial factor. Finally, we apply

our new reduction to obtain optimal truthful mechanisms

for the specific non-linear objective of fractional max-

min fairness.

Two important questions motivated by our work are:

1) Is our reduction essentially tight for any objective

besides revenue? In other words, are there reductions

from SADP to MDMDP for other objectives?

2) For what other objectives can we (approximately)

solve SADP? Optimization is a rich area of study with

numerous interesting objectives. Designing algorithms to

(approximately) optimize any of these objectives plus

virtual welfare would imply new truthful mechanisms

via our reduction.
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