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Abstract—A subspace design is a collection
{H1, H2, . . . , HM} of subspaces of F

m
q with the property that

no low-dimensional subspace W of F
m
q intersects too many

subspaces of the collection. Subspace designs were introduced
by Guruswami and Xing (STOC 2013) who used them to
give a randomized construction of optimal rate list-decodable
codes over constant-sized large alphabets and sub-logarithmic
(and even smaller) list size. Subspace designs are the only
non-explicit part of their construction. In this paper, we give
explicit constructions of subspace designs with parameters
close to the probabilistic construction, and this implies the first
deterministic polynomial time construction of list-decodable
codes achieving the above parameters.

Our constructions of subspace designs are natural and easily
described, and are based on univariate polynomials over finite
fields. Curiously, the constructions are very closely related
to certain good list-decodable codes (folded RS codes and
univariate multiplicity codes). The proof of the subspace design
property uses the polynomial method (with multiplicities):
Given a target low-dimensional subspace W , we construct
a nonzero low-degree polynomial PW that has several roots
for each Hi that non-trivially intersects W . The construction
of PW is based on the classical Wronskian determinant and
the folded Wronskian determinant, the latter being a recently
studied notion that we make explicit in this paper. Our analysis
reveals some new phenomena about the zeroes of univariate
polynomials, namely that polynomials with many structured
roots or many high multiplicity roots tend to be linearly
independent.

Keywords-Algebraic coding, List-decoding, Polynomial
Method, Pseudorandomness, Reed-Solomon codes

I. INTRODUCTION

This paper gives explicit constructions of certain pseu-

dorandom objects known as subspace designs. A collection

of linear subspaces H1, . . . , HM of the vector space F
m
q is

called an (s,A)-subspace design if for every s-dimensional

space W ⊆ F
m
q , at most A of the Hi intersect W non-

trivially. Being a subspace design is a kind of “well-

spread-out” property, and so a random collection of linear

spaces turns out to be a good subspace design with high

Venkatesan Guruswami’s research was supported in part by a Packard
Fellowship and NSF CCF-0963975. Swastik Kopparty’s research was
supported in part by NSF CCF-1253886. The full version of this paper
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probability. Like in the case of many other such design-

like objects (error-correcting codes, combinatorial designs,

expander graphs, dimension expanders, subspace-evasive

sets), the main challenge is to develop techniques that can

analyze this “well-spread-out” phenomenon, and to use this

to give explicit constructions of such objects.
Subspace designs were defined in a recent paper of Gu-

ruswami and Xing [2], who gave a randomized polynomial

time (or a deterministic quasipolynomial time) construction

of efficiently list-decodable error-correcting codes of opti-

mal rate over constant size alphabets with nearly-constant
list-size (the exact parameters are discussed below). The

only step of their construction which required random-

ness/quasipolynomial time was in constructing appropriate

subspace designs to pick a subcode of the underlying

algebraic-geometric code. Using explicit subspace designs,

we can make this construction deterministic polynomial

time. This implies the first explicit construction for optimal

rate list decoding over constant-sized (large) alphabets and

a near-constant list size.
Starting with the constructions of Parvaresh-Vardy [3],

and Guruswami-Rudra [4], there have been several recent

works [2], [5]–[8] constructing successively improved list-

decodable error-correcting codes with rate R which can

correct (1− R − ε) fraction errors in polynomial time. We

do not survey the parameters of all these constructions here,

and instead point the interested reader to the introductions of

[2] or [9]. Below we mention the “maximal” results which

are not dominated in terms of parameters, and then discuss

the impact of this work on them. (The results are for list

decoding up to error fraction 1−R− ε with rate R in time

a(ε)nb, where the exponent b in the runtime is a constant

independent of ε, and n refers to the block length of the

code.)

1) For randomized (Monte Carlo) constructions that work

with high probability, subcodes based on hierarchi-

cal subspace evasive (h.s.e) sets of folded algebraic-

geometric codes [8] or AG codes with evaluation

points with coordinates in a subfield [2], achieve

constant alphabet size (of exp(Õ(1/ε2))) and constant

list size (of O(1/ε)). The alphabet size is nearly best
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possible (exp(1/ε) being a lower bound), and the

list size matches the bound achieved by pure random

codes.

2) For explicit (deterministic polynomial time) construc-

tions, subcodes based on subspace-evasive sets of

folded Reed-Solomon or multiplicity codes [6], [10],

achieve constant list size of (1/ε)O(1/ε) and an alpha-

bet size nO(1/ε2). 1

3) With a quasi-polynomial time construction, sub-

codes based on cascaded subspace designs of cer-

tain AG codes [2], achieve constant alphabet size

(of exp(Õ(1/ε2))) and a near-constant list size of

exp1/ε

(
exp

(
O((log∗ n)2

))
. (Here expa(x) denotes

ax.)

Plugging in our explicit subspace design into [2], we obtain a

deterministic polynomial time construction of the subcodes

mentioned in Part 3 above (we lose another exponent in

the list size bound, but it remains a very slowly growing

function):

Theorem 1: For every R ∈ (0, 1) and ε > 0, there

is a deterministic polynomial time constructible family of

error-correcting codes of rate R over an alphabet of size

(1/ε)O(1/ε2) that can be list decoded in nO(1) time from a

fraction (1−R−ε) of errors, outputting a list of size at most

exp1/ε

(
exp1/ε

(
exp(O(log∗ n))

))
where n is block length

of the code.

The above yields the first deterministic polynomial time

construction of codes of rate R over constant-sized alphabets

that can be list decoded in nO(1) time up to an error fraction

(1 − R − ε) with a list size that is nearly a constant (say,

sub-logarithmic in the code length). We note that this result

blends the better aspects of the parameters mentioned in

Parts 1 and 2 above: it achieves constant alphabet size like

1, and a deterministic construction like 2, with a list size

that only slightly super-constant.

Using our subspace designs in the Reed-Solomon based

construction of [2], we can also get explicit subcodes of

Reed-Solomon codes that can be list decoded up to a radius

1 − R − ε. This result is stated in Section VI where the

applications of subspace designs to list decoding from [2]

are described.

We conclude this discussion by noting that an explicit
construction of codes for list decoding up to error fraction

1−R− ε with rate R in nO(1) time, that achieve alphabet

size and list size both constants depending on ε, remains an

open problem.

1One can bring down the alphabet size to exp(Õ(1/ε4)) using expanders
and code concatenation [4], but this would make the construction and

decoding complexity nΩ(1/ε2), whereas we would like the complexity to
be Oε(nb) for a fixed exponent b independent of ε.

A. Techniques behind our subspace design construction and
analysis

Suppose we are looking for an (s,A) subspace design

H1, . . . , HM ⊆ F
m
q where each Hi has codimension εm.

The probabilistic method guarantees the existence of such

a subspace design with M = qΩ(εm) and A = O( sε )
(and in fact these parameters are essentially optimal). Our

main result gives explicit (s,A) subspace designs, with each

subspace in the design having codimension εm, with A = s
ε

and M = qΩ(εm/s). Crucially, these constructions also work

when q = O(1), and this is what enables the application to

list-decoding via [2].

We now give a brief overview of our constructions. The

motivating example comes from the s = 1 case. Here the

problem is to find a collection of subspaces such that no

nonzero point of Fm
q is in too many of them. One well known

construction for this problem is based on the moment curve:

let α1, . . . , αM be distinct elements of Fq , and define

Hi = {x ∈ F
m
q | 〈x, vαi

〉 = 0},
where vα ∈ F

m
q equals (1, α, . . . , αm−1). Then using the

fact that a nonzero polynomial cannot have more roots than

its degree, no nonzero point of F
m
q will lie � m of these

subspaces. Equivalently, this can be viewed as follows: we

identify F
m
q with the space of all univariate Fq polynomials

of degree < m; then Hi equals the space of all polynomials

that vanish at the point αi. Our constructions will be natural

generalizations of this.

We present two algebraic constructions of subspace de-

signs, both using only elementary properties of polynomials

and finite fields. The constructions are closely related to cer-

tain algebraic error-correcting codes: folded Reed-Solomon

codes, and multiplicity codes. Curiously enough, both these

codes have very good list-decoding properties, but this seems

to be a coincidence; as far as we know their list-decodability

does not have any formal relation with the fact that subspace

designs eventually get used in the construction of good (in

fact, even better) list-decodable codes.

We describe the simplest special cases of our construc-

tions below. The first of these constructions requires the

underlying field to be large, while the second requires

the field to have large characteristic. Later we will use a

concatenation-like trick to transform constructions from big

fields to small fields.

1) Construction based on folded Reed-Solomon codes:
Identify F

m
q with the space of all polynomials P (X)

of degree < m. Let γ ∈ F
∗
q be a generator. Define

t = εm. For i ∈ {0, 1, . . . , q
t − 1}, define:

Hi = {P (X) | P (γit+j) = 0 for each 0 � j < t }.
2) Construction based on multiplicity codes: Identify

F
m
q with the space of all polynomial P (X) of degree
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< m. Define t = εm. For α ∈ Fq , define:

Hα = {P (X) | P vanishes with multiplicity � t at α} .
These construction both have the property that for every

subspace W ⊆ F
m
q of dimension s, the number of subspaces

Hi or Hα which intersect W is at most O( sε ). While the

above constructions have � q spaces in them, both of them

admit generalizations using extension fields of Fq , and this

gives exponentially large subspace designs.
The analysis of these constructions is based on the poly-

nomial method, and specifically the method of multiplic-

ities. For every subspace W ⊆ F
m
q of dimension s we

define a nonzero low-degree polynomial PW . In the first

construction, PW which has the property that for every Hi

in the subspace design that intersects W , PW vanishes at

all points in a large set Si (where the Si are all pairwise

disjoint). This implies that there cannot be too many Hi

in the first construction which intersect W . In fact, a more

refined statement holds — PW must vanish with multiplicity

at least dim(W ∩ Hi) at each point in Si, yielding a

“strong” subspace design (defined in Section II). In the

second construction, PW has the property that for every

Hα in the subspace design that intersects W , PW vanishes

at α with high multiplicity (here too, the multiplicity is

proportional to dim(W ∩ Hα), giving a strong subspace

design). This implies that there cannot be too many Hα in

the second construction which intersect W .
The definition of the relevant PW in the second con-

struction uses a classical linear independence criterion for

polynomials based on the Wronskian determinant. For the

first construction, we use a different linear independence

criterion, based on something which we call the folded

Wronskian determinant.
We also would like to point out an interesting algebraic

consequence of our results (in particular, the analysis of

the second construction). Let F be a field (possibly infinite)

with characteristic > m. Suppose we have a collection of

polynomials P1(X), . . . , Ps(X) ∈ F[X] of degree at most

m. For each i ∈ [s], the number of points α ∈ F at which

Pi(X) vanishes with multiplicity at least t is at most m
t . By

a union bound, the number of points α ∈ F at which some

Pi(X) vanishes with multiplicity at least t is at most m
t · s.

It is easy to see that this bound is tight. Now suppose we

ask how many points α can there be such that some element

of the span of P1(X), . . . , Ps(X) vanishes with multiplicity

at least t at α. A naive union bound would suggest that the

answer is |F|s · m
t . Our results imply that the number of

such α is at most m
t−s+1 · s. Thus for t � s, the number

of such points almost does not change when we include

the full span of the polynomials P1(X), . . . , Ps(X). This

expresses some kind of linear independence of polynomials

which have many disjoint high-multiplicity zeroes.

Remark: Our constructions are both of the following form:

Fix a collection R1(X), . . . , RM (X) of pairwise relatively

prime polynomials of degree εm. Define Hi = {P (X) |
Ri(X) divides P (X)}. One may be tempted to conjecture

that any such collection is a (s,Os,ε(1)) subspace design.

This turns out to be false, and we give a counterexample in

Appendix A. Note that any such collection of Hi is slightly

design-like: no nonzero point of F
m
q is in more than 1

ε of

these spaces. But the property of being a subspace design

for s � 2 seems to lie deeper.

II. SUBSPACE DESIGNS: DEFINITIONS AND RESULT

STATEMENTS

We being by formally defining weak and strong sub-

space designs. Both notions are very natural, and our basic

constructions will be strong subspace designs. En route

to constructing strong subspace designs over small fields

(which is what is needed for the list-decoding application),

our arguments will deal with weak subspace designs too.

Definition 2 (Weak subspace designs): A collection H of

Fq-subspaces H1, . . . , HM ⊆ F
m
q is called a (s,A) weak

subspace design over Fq , if for every Fq-linear space W ⊂
F
m
q of dimension s, the number of i ∈ {1, 2, . . . ,M} for

which dimFq
(Hi ∩W ) > 0 is at most A.

Definition 3 (Strong subspace designs): A collection H
of Fq-subspaces H1, . . . , HM ⊆ F

m
q is called a (s,A)

strong subspace design over Fq , if for every Fq-linear space

W ⊂ F
m
q of dimension s, we have

M∑
i=1

dimFq
(Hi ∩W ) � A .

Strong and weak subspace designs have following (trivial)

relations:

• Every (s,A) strong subspace design over Fq is also an

(s,A) weak subspace design over Fq .

• Every (s,A) weak subspace design over Fq is also an

(s, sA) strong subspace design over Fq .

We will be focusing on subspace designs consisting of

subspaces of codimension εm for some constant ε > 0.

Using the probabilistic method one can show the existence

of exponentially large strong (and hence weak) subspace

designs consisting of subspaces of codimension εm.

Lemma 4 (Probabilistic construction [2]): Let ε > 0 and

q be a prime power. Let s,m be integers such that m � 8/ε
and s � εm/2. Consider a collection H of subspaces of

F
m
q obtained by picking, independently at random, qεm/8

subspaces of F
m
q of dimension (1 − ε)m each. Then, with

probability at least 1 − q−ms, H is an (s, 8s/ε) strong

subspace design.

We will be interested in explicit constructions of sub-

space designs. For this we need to talk about sequences

(qj ,mj ,Hj), where Hj is a collection of Mj subspaces

of F
mj
qj which forms a (sj , Aj) subspace design. We say

a sequence of subspace designs is explicit if there is an
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algorithm which given j, produces bases for all spaces in

Hj in time poly(qj ,mj ,Mj).
We now state our main theorems on the explicit con-

struction of subspace designs. The first theorem gives an

explicit construction (over growing fields) of exponentially-

large strong subspace designs. The second theorem gives

an explicit construction (over significantly smaller fields)

of exponentially-large weak subspace designs. In particular,

the second theorem is interesting even for fields of size

2 or O(1), and will be useful for the main list-decoding

application.

Theorem 5 (Explicit strong subspace designs): For every

ε ∈ (0, 1), positive integers s,m with s � εm/4, and a

prime power q > m, there exists an explicit collection of

M = qΩ(εm/s) subspaces in F
m
q , each of codimension at

most εm, which form a (s, 2s
ε ) strong subspace design.

Theorem 6 (Explicit weak subspace designs): For every

ε ∈ (0, 1), positive integers s,m with s � εm/4, and a

prime power q satisfying 2s
ε < qεm/(2s) , there exists an

explicit collection of M � qΩ(εm/s)/(2s) subspaces in F
m
q ,

each of codimension at most εm, which form a (s, s
ε ) weak

subspace design.

These theorems will all be based on our main technical

theorem, stated below.

Theorem 7 (Main): For all positive integers s, r, t,m and

prime powers q satisfying s � t � m < q, there is an

explicit collection of M = Ω( q
r

rt ) spaces H1, . . . , HM ⊆
F
m
q , each of codimension rt, which forms a

(
s, (m−1)s

r(t−s+1)

)

strong subspace design.

Proof of Theorem 5: Using t = 2s and r = 	 εm2s 
, we get an

explicit collection of M � qΩ(εm/s)/(εm) subspaces, each

of codimension at most εm, which forms a (s, 2s
ε ) strong

subspace design.

To get our weak subspace design, we use the following

lemma which shows that subspace designs over an extension

field can be used to construct a weak subspace design

over the base field. Unfortunately this conversion need not

preserve the strong subspace design property.

Lemma 8: Suppose G1, . . . , GM ⊆ F
m
qr are Fqr -linear

spaces, each of codimension t, which form an (s,A) weak

subspace design over Fqr .

Pick any Fq-linear isomorphism ϕ : Fm
qr → F

rm
q . Via this

isomorphism, we get a collection of Fq-linear spaces H1 =
ϕ(G1), . . . , HM = ϕ(GM ) ⊆ F

rm
q , each of codimension rt.

This collection forms an (s,A) weak subspace design over

Fq .

Due to lack of space, we omit the proof.

Proof of Theorem 6: The plan is as follows. We will first

construct a strong subspace design over a large field Fqa via

Theorem 7. This is automatically a weak subspace design

over Fqa . Then via the above lemma, we will get a weak

subspace design over Fq .

Let a = 	 εm2s 
. Let q′ = qa, r′ = 1, m′ = 	 2sε 
, t′ = 2s,

s′ = s. Note that m′ < q′. By Theorem 7 (applied with

parameters q′, ε′, r′,m′, s′, t′), we get a collection of M =
Ω(q′/t′) many Fq′ -subspaces G1, . . . , GM ⊆ F

m′
q′ , each of

codimension t′, which forms a (s, m′s′
r′(t′−s′+1) = m′) strong,

and hence weak, subspace design over Fq′ .

By the above lemma, this gives us a collection of M �
qΩ(εm/s)/(2s) many Fq-subspaces H1, . . . , HM ⊆ F

m′a
q ⊆

F
m
q , each of codimension � εm, which forms a (s, 2s

ε ) weak

subspace design. This completes the proof of Theorem 6.

Organization of this paper: Towards the task of

proving Theorem 7, we present two families of related

constructions, one based on Folded Reed-Solomon codes,

and another based on Multiplicity codes. The multiplicity

code constructions are strictly weaker; they can only prove

Theorem 7 when the field size condition |Fq| > m is

replaced by the characteristic condition char(Fq) > m.

Theorem 7 as stated follows from Theorem 14 in Section

IV-B.

The next section discusses some preliminaries on polyno-

mials, derivatives, multiplicities and Wronskians. We then

describe our constructions in Sections IV and V. The conse-

quence of our constructions for list decoding of subcodes of

Reed-Solomon and algebraic-geometric codes is described

in Section VI.

III. PRELIMINARIES

For a field F, let F[X] denote the ring of polynomials in

the variable X over F, and let F[X]<m denote the F-linear

space of polynomials of degree < m.

We will use some simple properties of derivatives and

multiplicities of univariate polynomials. For a polyno-

mial P (X) ∈ F[X], we define its ith (Hasse) derivative

P (i)(X) ∈ F[X] by the equation:

P (X + Z) =
∞∑
i=0

P (i)(X)Zi.

This notion of derivative is closely related to the ith iterated

usual formal derivative, but behaves better over fields of

small characteristic.

We define the multiplicity of vanishing of P at a point α ∈
F, mult(P, α) to be the smallest i � 0 such that P (i)(α) �= 0.

The key fact that we need about multiplicities is that low

degree polynomials cannot have too many zeroes, counting

multiplicity:
∑
α∈F

mult(P, α) � deg(P ).

For a discussion of the basic properties of the Hasse deriva-

tive, see [11, Section 2].

Our proofs will use the fact that linear independence

of polynomials can be captured by a polynomial. We now

describe two such linear independence criteria.
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Definition 9 (Classical Wronskian): Let

P1(X), . . . , Ps(X) ∈ F[X].
We define their Wronskian, W (P1, . . . , Ps)(X) ∈ F[X], by:

W (P1, . . . , Ps)(X)
def
=

⎛
⎜⎜⎜⎝

P1(X) · · · Ps(X)

P
(1)
1 (X) · · · P

(1)
s (X)

...
. . .

...

P
(s−1)
1 (X) · · · P

(s−1)
s (X)

⎞
⎟⎟⎟⎠

Lemma 10 (Wronskian criterion for independence): Let

m < char(F), and let P1(X), . . . , Ps(X) ∈ F[X]<m.

Then P1(X), . . . , Ps(X) are linearly independent

over F if and only if the Wronskian determinant

det(W (P1, . . . , Ps)(X)) �= 0.

This dates back to the 19th century [12]. See [13], [14] for

some recent variations and proofs. The switch between usual

derivatives and Hasse derivatives multiplies the Wronskian

determinant by a constant, which is nonzero as long as m <
char(F), and thus this criterion works with both notions.

We will actually require a linear independence criterion

over fields of small characteristic. The following definition

is an analogue of the classical Wronskian which serves this

purpose.

Definition 11 (Folded Wronskian): Let

P1(X), . . . , Ps(X) ∈ F[X]. Let γ ∈ F
∗. We define

their γ-folded Wronskian, Wγ(P1, . . . , Ps)(X) ∈ F[X], by:

Wγ(P1, . . . , Ps)(X)
def
=

⎛
⎜⎜⎜⎝

P1(X) · · · Ps(X)
P1(γX) · · · Ps(γX)

...
. . .

...

P1(γ
s−1X) · · · Ps(γ

s−1X)

⎞
⎟⎟⎟⎠

Lemma 12 (Folded Wronskian criterion for independence):
Let m < |F| = q, let γ ∈ F

∗ be a generator, and let

P1(X), . . . , Ps(X) ∈ Fq[X]<m. Then P1(X), . . . , Ps(X)
are linearly independent over Fq if and only if the Folded

Wronskian determinant detWγ(P1, . . . , Ps)(X) �= 0.

This lemma is implicit in the work of Guruswami-Wang [6]

and Forbes-Shpilka [15]. We include a proof in the full

version of this paper [1].

The above linear independence criteria are in terms of

the determinant of a matrix of univariate polynomials. Let

M(X) be an s × s matrix with each entry Mjk(X) being

a polynomial in the variable X . Let L(X) = det(M(X)).
We will be using the following formula for the derivatives

of L(X):

L(�)(X) =
∑

i1,...,is�0|∑s
c=1 ic=�

det(M (i1,...,is)(X)),

where M (i1,...,is)(X) is the matrix whose j, k entry equals

M
(ij)
jk (X) (in words: M (i1,...,is)(X) is the matrix obtained

from M(X) by taking ithj derivative of the j’th row, for

each j).

IV. CONSTRUCTIONS BASED ON FOLDED

REED-SOLOMON CODES

In this section we describe our constructions based on

folded Reed-Solomon codes.

A. The basic construction

To illustrate the main ideas in a simple setting, we begin

with a basic construction that corresponds to the r = 1
case of Theorem 7 (and further we will only show the weak

subspace design property even though the strong property

also holds, see Section IV-B). Let s � t � m < q be integer

parameters, with q being a prime power. Let V = F
m
q =

Fq[X]<m be the Fq-vector space of polynomials of degree

< m. Let γ be a generator of F∗q .

Let F = {γjt | j ∈ {0, 1, . . . , 	q/t
}. For each α ∈ F ,

consider the subspace

Hα = {P (X) ∈ V | P (α · γi) = 0 ∀i ∈ {0, 1, . . . , t− 1}} .

Note that Hα has codimension exactly t in V .

The final construction in the next subsection will work by

picking α from an extension field Fqr .

Theorem 13: The collection of subspace (Hα)α∈F is a(
s, (m−1)s

t−s+1

)
weak subspace design.

Proof: Let W ⊆ F
m
q be a subspace of dimension s. Let

P1, . . . , Ps ∈ Fq[X] be a basis for W .

Define the t× s matrix of polynomials

M(X)
def
=

⎛
⎜⎜⎜⎝

P1(X) · · · Ps(X)
P1(γX) · · · Ps(γX)

...
. . .

...

P1(γ
t−1X) · · · Ps(γ

t−1X)

⎞
⎟⎟⎟⎠ (1)

Let A(X) be the top s×s submatrix of M(X). Notice that

this is precisely the folded Wronskian Wγ(P1, . . . , Ps)(X).
Now let L(X) ∈ Fq[X] be the determinant of A(X), which

we know to be a nonzero polynomial by Lemma 12 (here

we use that q > m).

Suppose α ∈ F is such that dimFq (W ∩Hα) > 0. This

means that the columns of M(α) are linearly dependent over

Fq . Therefore, rank(A(α)) � rank(M(α)) < s, implying

that L(α) = 0. Further, for 0 � i � t − s, A(α · γi) is a

submatrix of M(α) for i < t − s + 1, so that rank(A(α ·
γi)) � rank(M(α)) < s. Thus L(α · γi) = 0 for 0 �
i � t − s. Thus each α such that dimFq

(W ∩ Hα) > 0
gives t− s+ 1 distinct roots in Fq for L ∈ Fq[X] which is

a nonzero polynomial of degree at most (m − 1)s. Hence

there can be at most
(m−1)s
t−s+1 choices of α ∈ F for which

W ∩Hα is non-trivial.

B. An improved construction

Let s, t, r, q,m be parameters. Let s � t � m < q. Let

V = F
m
q = Fq[X]<m.
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Let γ ∈ Fq be a generator of F
∗
q . For α ∈ Fqr , let Sα ⊆

Fqr be given by:

Sα = {αqjγi | 0 � j < r, 0 � i < t}.
Also define

S′α = {αqjγi | 0 � j < r, 0 � i < t− s+ 1}.
Let F ⊆ Fqr be a large set such that:

• Each α ∈ F is such that Fq(α) = Fqr .

• For distinct α, β ∈ F , the sets Sα and Sβ are disjoint.

• Each Sα has cardinality rt.

We may take F to be of size Ω( q
r

rt ). (In the next subsection

IV-C we discuss how to choose such an F efficiently.) Note

that for α ∈ F , each S′α has cardinality r(t − s + 1), and

the S′α are all pairwise disjoint.

For each α ∈ F , consider the subspace

Hα = {P (X) ∈ V | P (α · γj) = 0 for each 0 � j < t} .

Note that Hα has codimension exactly rt in V . Therefore,

Theorem 7 follows from the result below.

Theorem 14: The collection of subspaces (Hα)α∈F is a(
s, (m−1)s

r(t−s+1)

)
strong subspace design.

Proof: Let W ⊆ F
m
q be a subspace of dimension s. Let

P1, . . . , Ps ∈ Fq[X] be a basis for W . Recall the matrix of

polynomials M(X) defined in (1). We have the following

claim relating the Fq-dimension of W ∩Hα to the rank of

the matrix M(α).
Claim 15: The matrix M(α) ∈ F

t×s
qr satisfies

rank(M(α)) � s− dimFq
(W ∩Hα).

Proof: This follows easily from the equalities:

dimFq
(W ∩Hα)

= dimFq ({(a1, . . . , as) ∈ F
s
q | ∀i < t,

s∑
j=1

ajPj(αγ
i) = 0})

= dimFq ({(a1, . . . , as) ∈ F
s
q |M(α) · a = 0})

= dimFq
(kerFqr

(M(α)) ∩ F
s
q)

� dimFqr
(ker(M(α)))

= s− rank(M(α)).

Above, in the last but one step we used the fact that for

any Fqr -linear space S ⊆ F
s
qr , we have dimFq (S ∩ F

s
q) �

dimFqr
(S); this fact follows easily after putting a basis for

S in echelon form.

As before, let A(X) be the top s× s submatrix of M(X),
and L ∈ Fq[X] be the determinant of A(X). We know that

L �= 0 (by virtue of Lemma 12 and the assumption q > m)

and deg(L) � (m− 1) · s.

Next we show that L vanishes with multiplicity propor-

tional to dim(W ∩Hα) at each β ∈ S′α.

Claim 16: For each β ∈ S′α,

mult(L, β) � dim(W ∩Hα).

Proof: Since L ∈ Fq[X], we have mult(L, β) =
mult(L, βq). Therefore, it suffices to prove the claim for β
of the form αγi for i < t−s+1. For each � < dim(W∩Hα),
we will show that the �’th derivative L(�) of L vanishes at

β. This will prove the claim.

Note that rank(A(β)) = rank(A(αγi)) � rank(M(α))
since A(αγi) is a submatrix of M(α) when i < t− s+ 1.

Furthermore, rank(M(α)) � s− dim(W ∩Hα) (by Claim

15). Any matrix which has at least s − � rows in common

with A(β) has rank � s − dim(W ∩ Hα) + � < s, and

therefore has determinant 0.

Now L(�)(X) is a sum of determinants, each of which

has at least s−� rows in common with A(X). By the above

discussion, each determinant in the expansion of L(�)(β)
equals 0, and so L(�)(β) = 0, as desired.

Putting everything together, we get that:

(m− 1)s �
∑

β∈⋃α∈F S′α

mult(L, β)

�
∑
α∈F

∑
β∈S′α

dim(W ∩Hα)

= r · (t− s+ 1) ·
∑
α∈F

dim(W ∩Hα),

which completes the proof of Theorem 14.

C. Explicitness

We defer the discussion of explicitness of this construction

to the full version [1].

V. CONSTRUCTIONS BASED ON MULTIPLICITY CODES

In this section we describe our constructions based on

univariate multiplicity codes. As mentioned earlier, these

constructions work only in fields of large characteristic.

A. The basic construction

Let s, t, q,m be parameters. Let s � t � m < char(Fq).
Let V = F

m
q = Fq[X]<m.

For each α ∈ Fq consider the subspace Hα = {P (X) ∈
V | mult(P, α) � t}. Note that Hα has codimension exactly

t in V .

Theorem 17: For every Fq-subspace W ⊆ V with

dim(W ) = s, we have

∑
α∈Fq

dim(Hα ∩W ) � (m− 1)s

(t− s+ 1)
.

Proof: Let P1, . . . , Ps ∈ Fq[X] be a basis for W .

For a nonnegative integer i, vi(X) be the row vec-

tor (P
(i)
1 (X), P

(i)
2 (X), . . . , P

(i)
s (X)) consisting of the i’th

derivations of P1, . . . , Ps. For a tuple (i1, . . . , ik) of nonneg-

ative integers, let M(i1,...,ik)(X) be the k × s matrix with
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whose jth row equals vij (X). Finally, let M(X) be the t×s
matrix M(0,1,...,t−1)(X), i.e.,

M(X)
def
=

⎛
⎜⎜⎜⎝

P1(X) · · · Ps(X)
P ′1(X) · · · P ′s(X)

...
. . .

...

P
(t−1)
1 (X) · · · P

(t−1)
s (X)

⎞
⎟⎟⎟⎠ (2)

If W ∩Hα is nontrivial, then there exists a nonzero linear

combination of the columns of M(X) that vanishes at α.

In other words, the matrix M(α) ∈ F
t×s
q is singular. The

following claim shows that dimFq
(W∩Hα) precisely equals

the dimension of the null space of M(α) over Fq .

Claim 18: rank(M(α)) = s− dimFq
(W ∩Hα).

Proof: This follows easily from the equalities:

dimFq (W ∩Hα)

= dimFq
({(a1, . . . , as) ∈ F

s
q | mult(

∑
j

ajPj , α) � t})

= dimFq
({(a1, . . . , as) ∈ F

s
q | ∀i < t,

s∑
j=1

ajP
(i)
j (α) = 0})

= dimFq
({(a1, . . . , as) ∈ F

s
q |M(α) · a = 0})

= dim(kerFq
(M(α)))

= s− rank(M(α)) .

Now let L(X) ∈ Fq[X] be the determinant of the top

s × s submatrix of M(X). Notice that this submatrix is in

fact the Wronskian of P1, . . . , Ps. Since the characteristic

of Fq is larger than m, the Wronskian criterion for linear

independence implies that L(X) is a nonzero polynomial.

Also, clearly deg(L) � (m− 1) · s.

Next we show that L vanishes with multiplicity propor-

tional to dim(Hα ∩W ) at each α ∈ Fq .

Claim 19:

mult(L, α) � (t− s+ 1) · dim(W ∩Hα).

Proof: For each � < (t − s + 1) · dim(W ∩ Hα), we

will show that L(�)(α) = 0. This will prove the claim. We

have that L(�)(X) equals:

=
∑

i0+i1+...+is−1=�

det(M(i0,1+i1,2+i2,...,(s−1)+is−1)(X)).

(3)

Since � < (t−s+1)·dim(W∩Hα), we know that for every

i0, . . . , is−1 with
∑

ij = �, there are less than dim(W∩Hα)
values of j ∈ {0, 1, . . . , s− 1} such that j + ij � t. Hence,

the matrix M(i0,1+i1,2+i2,...,(s−1)+is−1)(α) has more than

s− dim(W ∩Hα) rows in common with M(α), and so by

Claim 18 it does not have full rank. It follows that each term

in the expansion (3) of L(�)(α) equals 0, and so L(�)(α) = 0.

Putting everything together, we get that:

(m− 1)s � deg(L) �
∑
α∈Fq

mult(L, α)

� (t− s+ 1) ·
∑
α∈F

dim(W ∩Hα),

as desired.

B. An improved construction

Let s, t, q,m, r be parameters as in the previous section.

We assume s � t � m < char(Fq). Let V = F
m
q =

Fq[X]<m.

We now obtain a collection of many more subspaces

compared to Section V-A by picking α from an extension

field Fqr .

Let F0 be the subset of Fqr consisting of elements α
such that Fq(α) = Fqr . Note that |F0| ≈ qr(1− o(1)). The

elements of F0 can be partitioned into sets of cardinality r,

each set consisting of mutual conjugates over Fq . Let F be

a set formed by choosing exactly one element from each of

these sets. Thus |F| ≈ qr

r . The construction of F here is

simpler than in Section IV-B and discussed in Section V-C.

For each α ∈ F consider the subspace Hα = {P (X) ∈ V |
mult(P, α) � t}. Note that Hα has codimension exactly tr
in V .

Theorem 20: For every Fq-subspace W ⊆ V with

dim(W ) = s, we have

∑
α∈F

dim(Hα ∩W ) � (m− 1)s

r(t− s+ 1)
.

Proof: Let P1, . . . , Ps ∈ Fq[X] be a basis for W . We

define the matrix M(X) as in (2).

Similarly to Claim 18, we show that the dimension of

W ∩ Hα is upper bounded by the dimension of the null

space of M(α).
Claim 21: For each α ∈ F ,

rank(M(α)) � s− dimFq
(W ∩Hα) .

Proof: This follows easily from the equalities:

dimFq (W ∩Hα)

= dimFq
({(a1, . . . , as) ∈ F

s
q | ∀i < t,

s∑
j=1

ajP
(i)
j (α) = 0})

= dimFq ({(a1, . . . , as) ∈ F
s
q |M(α) · a = 0})

= dimFq
(kerFqr

(M(α)) ∩ F
s
q)

� dimFqr
(ker(M(α)))

= s− rank(M(α)).

(Here we used the fact that for any Fqr -linear space S ⊆ F
s
qr ,

we have dimFq
(S∩Fs

q) � dimFqr
(S); this fact follows easily

after putting a basis for S in echelon form).

Defining L ∈ Fq[X] be the determinant of the top s × s
submatrix of M(X), i.e., the Wronskian of P1, . . . , Ps, we

614



have that L is a nonzero polynomial of degree at most (m−
1)s.

The following claim is exactly similar to Claim 19.

Claim 22: For α ∈ F , we have

mult(L, α) � (t− s+ 1) · dim(W ∩Hα) .

Finally, we notice that as L ∈ Fq[X], L vanishes with the

same multiplicity at all the other r− 1 conjugates of α too.

Putting everything together, we get that:

(m− 1)s �
∑
α∈F0

mult(L, α) =
∑
α∈F

r ·mult(L, α)

� r · (t− s+ 1) ·
∑
α∈F

dim(W ∩Hα),

which completes the proof of Theorem 20.

C. Explicitness

We defer the discussion of explicitness of this construction

to the full version [1].

VI. CONSEQUENCES FOR LIST DECODING VIA [2]

In this section, we briefly recall the connection of sub-

space designs to algebraic list decoding from [2]. There

are two such results in [2], one for Reed-Solomon codes

and another for algebraic-geometric codes. In each case,

subspace designs are used to pick subcodes of these codes

that enable reducing the size of the list output by the decoder.

Reed-Solomon subcodes: Let us discuss the simpler

application to Reed-Solomon (RS) codes. Consider the RS

code of length q over Fqm consisting of evaluations of

polynomials f(X) = f0+f1X+· · ·+fk−1X
k−1 ∈ Fqm [X]

of degree < k � q at points in Fq . Thus the encoding only

consists of evaluations of the polynomial on a subfield. The

construction in [2] picks a subcode where the coefficients of

the polynomials are restricted to subspaces from a subspace

design. Formally, they show that if fi ∈ Hi for Fq-

subspaces H0, H1, . . . , Hk−1 that form an (s,A) strong

subspace design, then the subcode can be list decoded by

a linear-algebraic algorithm from up to s
s+1 (q − k) errors,

pinning down messages to an Fq-subspace of dimension A.

If dim(Hi) = (1 − ε)m for each i, then the rate of the

subcode is (1− ε)k/q. So the error fraction list decoded is
s

s+1

(
1− R

1−ε

)
which is at least 1−R−O(ε) if one picks

s = O(1/ε).
If we pick m = Ω(s/ε), then we can apply Theorem

5 and find explicit subspaces H0, H1, . . . , Hk−1 (note that

k � q) which form an (s,O(s/ε)) strong subspace design.

When combined with the above-mentioned reslt from [2],

we will get the following:

Theorem 23: For all R ∈ (0, 1), ε > 0, and all prime

powers q � Ω(1/ε2), there are explicit Fq-linear subcodes

of RS codes over FqO(1/ε2) that have rate R and block

length q, and that are list decodable from error fraction

(1 − R − ε) pinning down messages to a Fq-subspace of

dimension O(1/ε2). Here explicit means that the code can

be constructed in (q/ε)O(1) time.

In [2] this subcode was constructed probabilistically via a

random subspace design, or deterministically via a deran-

domization using conditional expectations, which led to a

large construction time of qpoly(1/ε).
Algebraic-geometric subcodes: The algebraic-

geometric codes considered in [2] consist of the evaluations

of functions from a Riemann-Roch vector space over Fqm

at a set of N Fq-rational points of an algebraic curve. The

connection to subspace designs can be described modularly,

by abstracting away the specifics of the construction. As in

the Reed-Solomon case, the messages can be specified by a

k-tuple (f0, f1, . . . , fk−1) ∈ (Fm
q )k, and subspace designs

are used to pick an Fq-subspace of these tuples. However,

in the AG case, the code dimension k will be much bigger

than qm (this is in fact the big draw of AG codes, that they

can be much longer than the alphabet size). Due to this,

one cannot have a non-trivial subspace design that has k
subspaces of Fm

q .

The idea in [2] is to employ a multilevel construction

of cascaded subspace designs where one restricts blocks

of coefficients, of rapidly increasing sizes, to belong to

subspace designs over correspondingly larger dimensions.

Let us explain the construction more formally. Assume that

k = n1n2 . . . nl for positive integers n1 � n2 � . . . � nl

(this is only for notational convenience below; a general

value of k can be handled by padding with a small proportion

of 0’s). This means that for each i = 1, 2, . . . , l, the coeffi-

cients f0, f1, . . . , fk−1 can be broken into successive blocks

of size Ni
Δ
= n1n2 · · ·ni. We restrict the coefficients in each

such block to belong to subspaces from a subspace design

with ni subspaces of F
mNi−1
q (we define N0 = 1). Formally,

let m1 = m, and for 2 � i � l, define mi = mi−1ni−1.

For i = 1, 2, . . . , l, let H
(i)
0 , H

(i)
1 , . . . , H

(i)
ni−1 ⊂ F

mi
q be Fq-

subspaces of dimension (1− ζi)mi that form an (ri−1, ri)-
strong subspace design (for some sequence of positive

integers r0 � r1 � . . . � rl).
Given these subspace designs, the coefficients are re-

stricted as follows. At the first level, fj ∈ H
(1)
j mod n1

for

0 � j < k. At the next level,we will impose the linear

constraints

(fjn1
, fjn1+1, . . . , f(j+1)n1−1) ∈ H

(2)
j mod n2

for 0 � j <
k/n1.

In general, for 1 � i � l, we will restrict

(fjNi−1 , fjNi−1+1, . . . , f(j+1)Ni−1−1) ∈ H
(i)
j mod ni

for 0 � j < k/Ni−1.

These pose a total of at most
(∑l

i=1 ζi

)
mk Fq-linear

constraints, so the dimension of the Fq-subspace U con-

sisting of those (f0, f1, . . . , fk−1) ∈ F
mk
q satisfying these

constraints is at least
(
1−∑l

i=1 ζi

)
mk.
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In [2], a linear-algebraic list decoding algorithm is given

for subcodes of the AG codes formed by restricting the

coefficients to this subspace U . This algorithm corrects an

error fraction τ ≈ s
s+1 (1−(k+3g)/N) where g is the genus

of the function field, and outputs a subspace of dimension

rl that contains all candidate messages, when r0 = s − 1.

(Recall that the i’th subspace design above was a (ri−1, ri)-
strong subspace design.) If we pick a function field so that

g/N � ε, and pick ζi = ε/2i, the dimension of the

subspace U is at least (1 − ε)mk, and the error fraction

τ ≈ s
s+1 (1 − R − ε) where R is rate of the subcode.

Taking s ≈ 1/ε, the list decodable error fraction is at least

1−R−O(ε).
In [2], by using a probabilistic construction the authors

achieved (ri−1, ri)-strong subspace designs at the i’th level

(consisting of subspaces of F
mi
q ) of size ni � q

√
mi and

ri = O(ri−1/ζi). Plugging in ζi = ε/2i and r0 < s, leads

to the bound

rl � s · (1/ε)O(log∗(km)) · 2O((log∗(km))2) . (4)

This is because the lengths ni grow exponentially in each

step, and therefore we will reach a length exceeding mk in

at most log∗(mk) iterations. The construction can also be

derandomized in quasi-polynomial time.

Using our explicit construction from Theorem 6, we can

explicitly construct a subspace design of size ni � q
√
mi

at the i’th level as in [2], and achieve a slightly weaker

guarantee ri � O(r2i−1/ζi) (the quadratic dependence on

ri−1 is due to the conversion from a weak subspace design

guaranteed by Theorem 6 to a strong subspace design).

Recalling r0 � s and ζi = ε/2i, this recurrence yields the

upper bound rl � O(s/ε)2
l

. As l � log∗(mk), and s ≈ 1/ε
for list decoding up to error fraction (1 − R − O(ε)), the

bound on the dimension of the space of solutions output

by the list decoding algorithm is at most (1/ε)O(2log
∗(mk)).

This is exponentially worse than the bound (4) achieved via

random constructions in [2], but as log∗ is a very slowly

growing function, the list size is “almost” constant. The

trade-offs achieved by these codes were formally stated as

Theorem 1 in the introduction.

Thus the combination of our subspace design construc-

tions with the methods of [2] yields the first determinis-

tic polynomial time construction of codes of rate R over

constant-sized alphabets that can be list decoded up to an

error fraction (1 − R − ε) with a list size that is nearly a

constant (say, sub-logarithmic in the code length).

VII. OPEN QUESTIONS

We conclude with some open questions.

1) Construct (s,O(s/ε)) subspace designs of size qΩ(εm)

to match the probabilistic construction of Lemma 4.

2) Over small fields, we only get weak (s, s/ε) subspace

designs, which translate into strong (s, s2

ε ) subspace

designs. It would be interesting to get strong (s, s
ε )

subspace designs over small fields (the probabilistic

construction achieves this).

3) Spreads are a collection of subspaces H1, H2, . . . , HM

of Fm
q which cover every nonzero point of Fm

q exactly

once. Spreads are classic objects that have found sev-

eral applications, with recent ones in random network

coding [16] and self-repairing codes [17]. Subspace

designs are a natural relaxation of the notion of spreads

and it will be interesting to find other applications of

the concept.

4) Finally, we mention again the question of getting

deterministic constructions of codes over constant size

alphabet, with rate R, which are list-decodable from

1−R−ε fraction errors with constant list size in nO(1)

time.
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APPENDIX

A. A counterexample

In this appendix we give an example of a collection

of subspaces, very closely related to our constructions of

subspace designs, that is not a good subspace design.

As in our constructions, identify F
m+1
q with Fq[X]�m.

Let t = εm. Let R1(X), . . . , RM (X) be all the irreducible

polynomials of degree t. Define

Hi = {P (X) ∈ Fq[X]�m | Ri(X) divides P (X)} . (5)

Note that each Hi has codimension εm.

Note that our constructions have this general form, though

the Ri’s are not irreducible. In our basic construction using

folded RS codes (Section IV-A), we had Rα =
∏t−1

i=0(X −
αγi). In the basic construction using multiplicity codes

(Section V-A), we had Rα = (X − α)t.
We will now show that the above construction (5) need

not even be a (2, cε) weak subspace design.

Let us choose the integer m and the prime power q, such

that:

1) (m, q − 1) = 1,
2) m < q,
3) ordm(q) = d ≈ εm.

Such m, q can be chosen arbitrarily large using Dirichlet’s

theorem on primes in arithmetic progressions (see the full

version [1]).

Now let W = span{Xm, 1}, which has dimension 2. We

will show that there exist at least q spaces Hi which intersect

W nontrivially.

For each α ∈ Fq , the polynomial Xm − α is in W . We

will find an i ∈ [M ] for which Hi contains Xm − α. Since

the Xm−α are pairwise relatively prime, this will complete

the proof.

Let β ∈ Fq be such that βm = α (such a β exists and is

unique since (m, q − 1) = 1, and so the map x → xm is a

permutation of Fq).

Let ω be a primitive mth-root of unity in the algebraic

closure of Fq . Since ordm(q) = d, we have that ω lies in

Fqd .

Now consider the d elements β ·ω, β ·ωq, β ·ωq2 , . . . , β ·
ωqd−1

. They are a complete set of conjugates over Fq , and

distinct, and so there is an irreducible polynomial of degree

d which has exactly these d elements as roots. Let Ri(X)
be that irreducible polynomial. All the d roots of Ri(X) are

mth roots of α, and so Ri(X) divides Xm − α, and thus

Hi contains Xm − α, as desired.
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