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Abstract—An approximate computation of a Boolean func-
tion by a circuit or switching network is a computation in
which the function is computed correctly on the majority of
the inputs (rather than on all inputs). Besides being interesting
in their own right, lower bounds for approximate computation
have proved useful in many subareas of complexity theory,
such as cryptography and derandomization. Lower bounds
for approximate computation are also known as correlation
bounds or average case hardness. In this paper, we obtain the
first average case monotone depth lower bounds for a function
in monotone P. We tolerate errors that are asymptotically
the best possible for monotone circuits. Specifically, we prove
average case exponential lower bounds on the size of monotone
switching networks for the GEN function. As a corollary, we
separate the monotone NC hierarchy in the case of errors — a
result which was previously only known for exact computations.
Our proof extends and simplifies the Fourier analytic technique
due to Potechin [21], and further developed by Chan and
Potechin [8]. As a corollary of our main lower bound, we prove
that the communication complexity approach for monotone
depth lower bounds does not naturally generalize to the average
case setting.
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I. INTRODUCTION

In this paper, we study the average case hardness of

monotone circuits and monotone switching networks. The

first superpolynomial lower bounds on monotone circuit size

is the celebrated result due to Razborov [24], who showed

that the clique function requires exponential-size monotone

circuits, and thus also requires large monotone depth. His

result was improved and generalized by many authors to

obtain other exponential lower bounds for monotone circuits

(for example [1], [2], [4], [14], [15]). All of these bounds

are average case lower bounds for functions that lie outside

of monotone P. The best known average case lower bound

for an explicit function is for Andreev’s polynomial problem,

which is (1/2−1/n1/6)-hard for subexponential-size circuits

(follows from [4]); that means that there is a subexponential

function f(n) such that every circuit of size at most f(n)
differs from Andreev’s polynomial problem on at least a

(1/2 − 1/n1/6)-fraction of the inputs. For an excellent

survey on the applications of lower bounds on approximate

computations, see [5].

This research was supported by NSERC

Beginning in 1990, lower bound research was aimed at

proving monotone size/depth tradeoffs for efficient functions

that lie inside monotone P. The first such result, due to

Karchmer and Wigderson [18], established a beautiful equiv-

alence between (monotone) circuit depth and the (mono-

tone) communication complexity of a related communication

game. They used this framework to prove that the NL-

complete directed connectivity problem requires Ω(log2 n)
monotone circuit depth, thus proving that monotone NL
(and thus also monotone NC2) is not contained in mono-

tone NC1. Subsequently Grigni and Sipser [13] used the

communication complexity framework to separate monotone

logarithmic depth from monotone logarithmic space. Raz

and McKenzie [22] generalized and improved these lower

bounds by defining an important problem called the GEN

problem, and proved tight lower bounds on the monotone

circuit depth of this problem. As corollaries, they separated

monotone NCi from monotone NCi+1 for all i, and also

proved that monotone NC is a strict subset of monotone P.

Unlike the earlier results (for functions lying outside of P),

the communication-complexity-based method developed in

these papers seems to work only for exact computations.

Departing from the communication game methodology

from the 1990’s, Potechin [21] recently introduced a new

Fourier-analytic framework for proving lower bounds for

monotone switching networks. Potechin was able to prove

using his framework a nΩ(logn) size lower bound for

monotone switching networks for the directed connectivity

problem. (A lower bound of 2Ω(t) on the size of mono-

tone switching networks implies a lower bound of Ω(t)
on the depth of monotone circuits, and thus the result on

monotone switching networks is stronger.) Recently, Chan

and Potechin [8] improved on [21] by establishing a nΩ(h)

size lower bound for monotone switching networks for

the GEN function, and also for the clique function. Thus,

they generalized most of the lower bounds due to Raz

and McKenzie to monotone switching networks. However,

again their lower bounds apply only for monotone switching

networks that compute the function correctly on every input.

In this paper we obtain the first average case lower bounds

on the size of monotone switching networks (and thus also

the first such lower bounds on the depth of monotone

circuits) for functions inside monotone P. We prove our
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lower bounds by generalizing the Fourier-analytic technique

due to Chan and Potechin. In the process we first give a new

presentation of the original method, which is simplified and

more intuitive. Then we show how to generalize the method

in the presence of errors, which involves handling several

nontrivial obstacles.

We show that GEN is (1/2 − 1/n1/3−ε)-hard for

subexponential-size circuits (under a specific distribution),

and that directed connectivity is (1/2− 1/n1/2−ε)-hard for

nO(logn)-size circuits (also under a specific distribution).

In comparison, it is known that under the uniform distri-
bution, no monotone function is (1/2 − log n/

√
n)-hard

even for O(n log n)-size circuits [20]. A related result shows

that for every ε there is a (non-explicit) function that is

(1/2−1/n1/2−ε)-hard for subexponential-size circuits under

the uniform distribution [17].

As a corollary to the above theorem, we separate the levels

of the NC hierarchy, as well as monotone NC from monotone

P, in the average case setting. That is, we prove that for all i,
there are monotone functions that can be computed exactly

in monotone NCi+1 but such that any NCi circuit computing

the same function must have large error. And similarly, there

are functions in monotone P but such that any monotone NC
circuit must have large error.

This leaves open the question of whether or not the

original communication-complexity-based approach due to

Karchmer and Wigderson can also be generalized to handle

errors. This is a very interesting question, since if this is the

case, then average case monotone depth lower bounds would

translate to probabilistic communication complexity lower

bounds for search problems. Developing communication

complexity lower bound techniques for search problems is

an important open problem because such lower bounds have

applications in proof complexity, and imply integrality gaps

for matrix-cut algorithms (See [3], [16].) We show as a

corollary of our main lower bound that the communication

complexity approach does not generalize to the case of

circuits that make mistakes.

The outline for the rest of the paper is as follows. In

Section II we give background information on switching

networks, the GEN function, and Fourier analysis. Section

III is a summary of our main lower bound, and corollaries,

including a strong separation of the monotone NC hierarchy

and of monotone NC from monotone P. Section IV gives

an overview of the proof of our lower bound. Technical

results are left to Sections V and VI: the lower bound for

exact computations is presented in Section V, and Section VI

extends it to average case lower bounds. This paper is an

extended abstract of [11].

II. PRELIMINARIES

In this section we give definitions that will be useful

throughout the entire course of the paper. If n is a positive

integer then we define the set [n] = {1, 2, . . . , n}. If N and

m are positive integers, we denote by
(
[N ]
m

)
the collection

of all subsets of [N ] of size m. The notation 1 denotes the

vector all of whose entries are 1 (the length of the vector will

always be clear from the context). For an input x ∈ {0, 1}n,

we denote the ith index of x by xi. For a pair of inputs

x, y ∈ {0, 1}n, we write x ≤ y if xi ≤ yi for all i. A

boolean function f is monotone if f(x) ≤ f(y) whenever

x ≤ y.

Assume f is a monotone boolean function. An input x is

called a maxterm of f if f(x) = 0 and f(x′) = 1 for the

input x′ obtained by flipping any 0 in x to a 1. Similarly, x
is called a minterm if f(x) = 1 and f(x′) = 0 for the input

x′ obtained by flipping any 1 in x to a 0. If f is a boolean

function and f(x) = 1 we will call x an accepting instance

of f , otherwise it is a rejecting instance.

If P (x) is a boolean condition depending on an input

x, then we write [P (x)] to denote the boolean function

associated with that condition. For example, if V is a fixed

set, we denote by [U ⊆ V ] the function P (U) which is 1 if

U ⊆ V and 0 otherwise.

Monotone circuits are circuits in which only AND gates

and OR gates are allowed (unrestricted circuits can also

use NOT gates). Such circuits always compute monotone

boolean functions. Monotone P is the class of languages

computed by uniform polynomial size monotone circuits.

Monotone NC is the class of languages computed by uniform

polynomial size monotone circuits of polylogarithmic depth.

Monotone NCi is the class of languages computed by uni-

form polynomial size monotone circuits of depth O(logi n).

A. The GEN problem

We will prove lower bounds for the GEN function, origi-

nally defined by Raz and McKenzie [22].

Definition II.1. Let N ∈ N, and let L ⊆ [N ]3 be a collection

of triples on [N ] called variables. For a subset S ⊆ [N ], the

set of points generated from S by L is defined recursively

as follows: every point in S is generated from S, and if

i, j are generated from S and (i, j, k) ∈ L, then k is also

generated from S. (If L were a collection of pairs instead

of a collection of triples, then we could interpret L as a

directed graph, and then the set of points generated from S
is simply the set of points reachable from S.)

The GEN problem is as follows: given a collection of

variables L and two distinguished points s, t ∈ [N ], is t
generated from {s}?

Formally, an instance of GEN is given by a number N ,

two numbers s, t ∈ [N ], and N3 boolean values coding the

set L ⊆ [N ]3. For definiteness, in the remainder of the paper

we fix (arbitrarily) s = 1 and t = N .

We assume that every instance of GEN throughout the rest

of the paper is defined on the set [N ], and we use s and t to

denote the start and target points of the instance. Sometimes

we want to distinguish a particular variable in instances of
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GEN, so, if � is a variable appearing in an instance I then

we call (I, �) a pointed instance.

Every DAG with in-degree at most 2 naturally defines a

minterm of GEN which we call a graph instance.

Definition II.2. Let G be a DAG with in-degree at most

2 and a single sink t, and suppose the vertex set of G
is a subset of [N ] not containing s. The GEN instance

corresponding to G contains the following triples: for each

source x, the triple (s, s, x); for each vertex z with inbound

neighborhood {x}, the triple (x, x, z); for each vertex z with

inbound neighborhood {x, y}, the triple (x, y, z). Such an

instance is called a graph instance isomorphic to G. The

underlying vertex set consists of the vertex set of G with

the vertex t removed.

For a graph G, the function G-GEN is the monotone

function whose minterms are all graph instances isomorphic

to G.

If G does not have a unique source or a unique sink then

we can simply add one and connect it to all of the sources

or sinks, which is illustrated in Figure 1.

Figure 1. A pyramid graph and the corresponding GEN instance

The problem GEN is monotone: if we have an instance

of GEN given by a set of variables L, and L is an accepting

input for GEN, then adding any variable l �∈ L to L will not

make L a rejecting input. Moreover, it can be computed in

monotone P (we leave the proof as an easy exercise).

Theorem II.3. GEN is in monotone P.

Let (C,C) be a partition of [N ]\{s, t} into two sets. We

call such a set C a cut in the point set [N ]. We think of the

cut C as always containing s and never containing t, and so

we define Cs = C ∪ {s}. Then we can define an instance

I(C) of GEN, called a cut instance, as

I(C) = [N ]3 \ {(x, y, z) ∈ N3 | x, y ∈ Cs, z ∈ Cs}.
The set of points generated in I(C) from {s} is precisely

Cs. If I(C) is a cut instance and � = (x, y, z) is a variable

with x, y ∈ Cs and z ∈ Cs then we say that � crosses C.

It might seem more natural to define C as a subset of [N ]
containing s and not containing t. However, from the point

of view of Fourier analysis, it is more convenient to remove

both “constant” vertices s, t from the equations.

The set of cut instances is exactly the set of maxterms of

GEN.

Proposition II.4. Let L be an instance of GEN. Then L is
rejecting if and only if there exists a cut C ⊆ [N ] such that
L ⊆ I(C).

Let C be the collection of subsets of [N ] \ {s, t}, and

note that every set C ∈ C can be identified with a cut (and

therefore a cut instance). We also note that |C| = 2N−2.

B. Vectors and Vector Spaces

In this section we recall some definitions from linear

algebra. Consider the set of all cuts C on the point set [N ]
of GEN. A cut vector is a function f : C → R, which we

think of as a real-valued vector indexed by cuts C ∈ C. We

define an inner product on the space of cut vectors by

〈f, g〉 = 1

|C|
∑
C∈C

f(C)g(C)

for any two cut vectors f, g. Two cut vectors f, g are

orthogonal if 〈f, g〉 = 0, and a set of vectors V is orthogonal

if every pair of vectors in V is orthogonal. Using this inner

product, we define the magnitude of a cut vector f to be

||f || = √〈f, f〉.
We will also need some tools from Fourier analysis. Given

a cut U ∈ C, define the cut vector χU : C → R by

χU (C) = (−1)|U∩C|.
These vectors form an orthonormal basis for the space of cut

vectors called the Fourier basis. It follows that we can write

any cut vector f : C → R as f =
∑

C∈C〈f, χC〉χC , where

〈f, χC〉 is called the Fourier coefficient at C. Following

convention, we will denote 〈f, χC〉 by f̂(C).
We need some useful properties of the Fourier transform.

First recall Parseval’s Theorem: let f be any cut vector, then

〈f, f〉 =
∑
C∈C

f̂(C)2, (1)

Parseval’s theorem also holds in a more general setting: If

B is an orthonormal set of cut vectors then

〈f, f〉 ≥
∑
φ∈B

|〈f, φ〉|2. (2)

C. Switching Networks

In this section we introduce switching networks, which

are a computation model used to capture space-bounded

computation.

Definition II.5. Let X = {x1, . . . , xn} be a set of input

variables. A monotone switching network M on the variables

X is specified as follows. There is an underlying graph

undirected G = (V,E) whose nodes are called states and
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whose edges are called wires, with a distinguished start state
s and a distinguished target state t. The wires of M are

labelled with variables from X .

Given an input x : X → {0, 1} (or an assignment of the

variables), the switching network responds as follows. Let e
be a wire in the switching network, and let xi be the variable

labelling e. The edge e is alive if xi = 1, and it is dead if

xi = 0.

We say that M accepts an input x if there exists a path

from s to t using only wires which are alive under x. If no

such path exists, then M rejects x. The boolean function

computed by M is f(x) = [M accepts x].

Throughout the paper we follow the convention used in

the previous definition and use bold face to denote objects

in switching networks.

Monotone switching networks and monotone circuits are

connected by the following result essentially proved by

Borodin [6]: a monotone circuit of depth d can be simu-

lated by a monotone switching network of size 2d, and a

monotone switching network of size s can be simulated by

a monotone circuit of depth O(log2 s). (The result holds also

for non-monotone switching networks and non-monotone

circuits.)

A switching network for GEN is a switching network

whose input is an instance of GEN. Such a switching

network is complete if it accepts all yes instances of GEN.

It is sound if it rejects all no instances of GEN. A switching

network which is both complete and sound computes the

GEN function.

Let M be a switching network for GEN. We can naturally

identify each state u in the switching network M with a

reachability vector Ru : C → {0, 1} for cut instances I(C)
defined by

Ru(C) :=

{
1 if u is reachable on input I(C),

0 otherwise.

Here are some basic properties of the reachability vectors.

Theorem II.6. Let M be a switching network with start
state s and target state t.

1) Rs ≡ 1.
2) If M is sound then Rt ≡ 0.
3) If u and v are two states connected by a wire labelled

� and C is a cut with � ∈ I(C) then Ru(C) = Rv(C).

D. Reversible Pebbling for GEN

Next we discuss the reversible pebbling game on graphs,

which is a space-efficient way to perform reachability tests

on graphs. The particular form of this test gives an algorithm

for GEN by applying it to the underlying graph of a GEN
instance.

Definition II.7. Let G = (V,E) be a directed acyclic graph

(DAG) with a unique source s and a unique sink t. For a

node v ∈ V , let P (v) = {u ∈ V : (u, v) ∈ E} be the

set of all incoming neighbors of v. We define the reversible
pebbling game as follows. A pebble configuration is a subset

S ⊆ V of “pebbled” vertices. For every x ∈ V such that

P (x) ⊆ S, a legal pebbling move consists of either pebbling

or unpebbling x, see Figure 2. Since s is a source, P (s) = ∅,
and so we can always pebble or unpebble it.

Figure 2. Legal pebbling moves involving x; the corresponding pebbling
configurations are u and v

The goal of the reversible pebbling game is to place a

pebble on t, using only legal pebbling moves, starting with

the empty configuration, while minimizing the total number

of pebbles used simultaneously. Formally, we want to find

a sequence of pebbling configurations S0 = ∅, S1, . . . , Sn

such that t ∈ Sn, and for each i ∈ {0, . . . , n − 1}, the

configuration Si+1 is reachable from configuration Si by

a legal pebbling move. We call such a sequence a valid
pebbling sequence for G. The pebbling cost of the sequence

is max(|S0|, . . . , |Sn|). The reversible pebbling number of

a DAG G is the minimal pebbling cost of a valid reversible

pebbling sequence for G.

The more common black pebbling game has the same

rules for pebbling a node x ∈ V , but always allows

unpebbling a node. The black pebbling number of a dag

G is the minimal pebbling cost of a valid black pebbling

sequence for G. Every valid pebbling sequence is also a

valid black pebbling sequence, and so the black pebbling

number is upper-bounded by the reversible pebbling number.

We will need the following classes of directed graphs. A

pyramid graph with h levels has a vertex set V which can

be partitioned into h subsets, V1, V2, . . . , Vh (called levels),

where Vi has i vertices. Let Vi = {vi1, vi2, . . . , vii}. For

each i ∈ [h − 1], if vij and vi,j+1 are a pair of adjacent

vertices in layer Vi, then there are edges (vij , vi+1,j−i−1)
and (vi,j+1, vi+1,j−i−1). (For example, the graph in Fig-

ure 2 is a pyramid with 3 levels.) A directed path of
length n has vertices V = {v1, . . . , vn} and edges E =
{(v1, v2), . . . , (vn−1, vn)}.

Dymond and Tompa [10] showed that the reversible

pebbling number of any graph with n vertices and in-degree

2 is O(n/ log n). We have the following theorem regarding

pebbling numbers of different classes of graphs.
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Theorem II.8.
1) If P is pyramid graph with h levels then the reversible

pebbling number of P is Θ(h) [9]
2) If P is a directed path of length n then the reversible

pebbling number of P is Θ(log n) [21]
3) There is an explicit family of DAGs Gn with in-degree

2 such that Gn has n vertices and reversible pebbling
number Ω(n/ log n) [12]

For more information on (non-reversible) pebbling games

see the excellent survey of Nordström [19]. For more on

reversible pebbling and its applications, see [7].

Raz and McKenzie [22] proved the following result.

Theorem II.9. For each DAG G there is a polynomial size
monotone circuit of depth Θ(h logN) for G-GEN, where h
is the reversible pebbling number of G.

III. STATEMENT OF RESULTS

In this paper we prove lower bounds for monotone switch-

ing networks computing GEN. Our first contribution is a

simplified proof of the following theorem [8] which gives an

exponential lower bound for monotone switching networks.

Theorem III.1. Let N,m, h be positive integers satisfying
m ≥ h ≥ 3, and let G be a DAG on m vertices with in-
degree at most 2 and reversible pebbling number at least
h. Any sound monotone switching network for GEN which
accepts all graph instances isomorphic to G must have at
least Ω(hN/m3)(h−2)/3/O(m) states.

Corollary III.2. For any ε > 0, any monotone switching
network which computes GEN must have at least 2Ω(εN1/2−ε)

states.

We also consider monotone switching networks which

are allowed to make errors. Let D be any distribution

on instances of GEN. We say that a monotone switching

network M computes GEN with error ε if the function

computed by M differs from GEN on an ε-fraction of inputs

(with respect to D).

The distributions D we use are parametrized by DAGs.

For any DAG G with in-degree at most 2 we define DG to be

the distribution on instances of GEN which with probability

1/2 chooses I(C) for a uniformly random cut C ∈ C,

and with probability 1/2 chooses a uniformly random graph

instance isomorphic to G.

Our major result in this paper is a strong extension of

Theorem III.1 for switching networks computing GEN with

error close to 1/2.

Theorem III.3. Let α be a real number in the range 0 <
α < 1. Let m,h,N be positive integers satisfying 324m2 ≤
Nα and 3 ≤ h ≤ m. Let G be a DAG with m vertices,
in-degree 2 and reversible pebbling number at least h.

Any monotone switching network which computes GEN
on [N +2] with error ε ≤ 1/2−1/N1−α must have at least
Ω(hN/m3)(h−2)/3/O(mN) states.

Corollary III.4. For any α in the range 0 < α < 1, any
monotone switching network computing GEN with error at
most 1/2−1/N1−α must have at least 2Ω((1−α)Nα/2) states.

Using this theorem, we get the following corollary sep-

arating NCi and NCi+1 in the presence of errors. Recall

from Theorem II.8 that the pyramid graph with height h
has reversible pebbling number Θ(h) and m = h(h+ 1)/2
nodes.

Theorem III.5. Let 0 < δ < 1/3 be any real constant. For
each positive integer i there exists a language L which is
computable in monotone NCi+1, but there is no sequence
of circuits in monotone NCi which computes L on inputs of
length k with error ε ≤ 1/2− 1/k1/3−δ .

Similarly, we can separate monotone NC from monotone

P.

Theorem III.6. Let 0 < δ < 1/3 be any real constant. There
exists a language L which is computable in monotone P,
but there is no sequence of circuits in monotone NC which
computes L on inputs of length k with error ε ≤ 1/2 −
1/k1/3−δ .

We also get the following result for directed connectiv-

ity which approaches the optimal result mentioned in the

introduction (albeit with a different input distribution).

Theorem III.7. Let 0 < δ < 1/2 be any real constant.
For k = N2, let f be the function whose input is a
directed graph on N vertices, and f(G) = 1 if in the
graph G, the vertex N is reachable from the vertex 1.
There exists a distribution D on directed graphs such that
any monotone switching network computing f with error
ε < 1/2 − 1/k1/2−δ (with respect to D) contains at least
NΩ(logN) states.

Another corollary of our result concerns random-

ized Karchmer-Wigderson games. For a boolean function

f : {0, 1}n → {0, 1} let Rf ⊆ {0, 1}2n × [n] be the

following relation associated with f . If α ∈ f−1(1) and

β ∈ f−1(0), then Rf (α, β, i) holds if and only if α(xi) �=
β(xi). Intuitively, if α is a 1-input of the function and β is

a 0-input of the function, then i is an index where α and β
differ. Similarly, if f is a monotone boolean function, then

for α ∈ f−1(1) and β ∈ f−1(0) we define Rm
f (α, β, i) if

and only if α(xi) = 1 and β(xi) = 0.

Karchmer and Wigderson [18] proved that for any boolean

function, the minimum depth of any circuit computing f
is equivalent to the communication complexity of Rf , and

similarly for any monotone boolean function, the minimum

monotone circuit depth for f is equivalent to the commu-

nication complexity of Rm
f . We are interested in whether
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there is an analog of the Karchmer-Wigderson result in the

case of circuits and communication complexity protocols

that make errors, as an analog of Karchmer-Wigderson in

the average case setting, together with our new lower bounds

for monotone circuits, would imply a new technique for

obtaining average case communication complexity lower

bounds for search problems.

It is not hard to see that the Karchmer-Wigderson pro-

tocol still works correctly for circuits with errors. For non-

monotone functions, the reverse direction does not hold as

Rf has an efficient randomized protocol for all functions f
[23], contradicting the fact that almost all boolean functions

require exponential-size circuits even to approximate.

Using Theorem III.3 we can show the following (see [11,

Section 7] for a proof).

Theorem III.8. The monotone Karchmer-Wigderson reduc-
tion does not hold in the average-case setting. That is, there
is a monotone function f : {0, 1}n → {0, 1}, a distribution
D and an ε satisfying 0 < ε < 1/2, such that there is an
efficient protocol for Rm

f with error at most ε with respect
to D but such that any subexponential-size monotone circuit
for f of depth nε has error greater than ε with respect to
D.

IV. OVERVIEW OF PROOF

In this section we give an intuitive overview of our proof.

We focus on a set of minterms and maxterm over a ground

set of size N . The minterms are height h, size m pyramids1,

where m = O(N1/3), and the maxterms are cuts, given by

a subset C of the vertices containing s and not containing

t. The instance I(C) corresponding to C contains all triples

except for (i, j, k) where i and j are in C and k is not

in C. Our minterms will consist of a special exponential-

sized family of pyramid instances, P , with the property that

their pairwise intersection is at most h, and our maxterms, C,

will consist of all cuts. Given a monotone switching network

(M, s, t) solving GEN over [N ], for each state v we let Rv

be it’s reachability function.

At the highest level, the proof is a bottleneck counting

argument. For each pyramid P ∈ P , we will construct a

function gP from the set C of all cuts to the reals. This

function will satisfy three properties.

(1) For every P ∈ P there is a “complex” state vP in the

switching network such that 〈gP , RvP
〉 = Ω(1/|M|).

(2) gP only depends on coordinates from P , and gP has

zero correlation with any function which depends on at

most h coordinates.

(3) Finally, ‖gP ‖ is upper-bounded by mO(h).

The first property tells us that for every pyramid P ∈ P ,

there is a complex state vP in the network that is specialized

1Our theorem is presented more generally for any fixed graph of size
roughly Nε but for simplicity of the proof overview, we will restrict
attention to pyramid yes instances.

for P . The second property, together with the fact that the

P ’s in P are pairwise disjoint, will imply that the functions

{gP : P ∈ P} are orthogonal, and thus we have

1 = 〈Rv, Rv〉 ≥
∑
P∈P

|〈Rv,
gP
‖gP ‖〉|

2 =
1

mO(h)

∑
P∈P

〈gP , Rv〉2.

By the third property, ‖gP ‖ is small, and thus it follows

that no state v cannot be complex for more than N2mO(h)

different P ’s (since otherwise, the quantity on the right side

of the above equation would be greater than 1.) This together

with the fact that |P| is very large, so that |P|/(N2mO(h))
is still exponentially large, imply our lower bound.

It remains to come up with the magical functions gP . For

the rest of this overview, fix a particular pyramid P . How can

we show that some state in the switching network is highly

specific to P ? We will use the original Karchmer-Wigderson

intuition which tells us that in order for a monotone circuit

to compute GEN correctly (specifically, to output “1” on

P and “0” on all cuts), it must for every cut C produce a

witness variable l ∈ P that is not in I(C). And (intuitively)

because different variables must be used as witnesses for

different cuts, this should imply that a non-trivial amount

of information must be remembered in order to output a

good witness. This intuition also occurs in many information

complexity lower bounds.

The above discussion motivates studying progress (with

respect to our fixed pyramid P , and all cuts), by studying

progress of the associated search problem. To this end, for

each pyramid P ∈ P and variable � ∈ P , we will consider

�-nice functions gP,l, where �-nice means that gP,�(C) = 0
whenever I(C)(�) = 1. We will think of an �-nice function

gP,� as a “pseudo” probability distribution over no instances

(cuts) that puts zero mass on all cuts C such that I(C)(�) =
1. (gP,� is not an actual distribution since it attains both

positive and negative values.) For a state u in the switching

network, the inner product 〈Ru, gP,�〉 will be our measure

of progress of the GEN function with respect to the pyramid

P , on no instances where the witness cannot be �. In order

for gP,� to behave like a distribution, we will require that

〈gP,�, 1〉 = 1
Because Rs accepts all cuts, it follows that 〈Rs, gP,�〉 =

1, which we interpret as saying that at the start state, we

have made no progress on rejecting the pseudo-distribution

defined by gP,�. Similarly, because Rt rejects all cuts, it

follows that 〈Rt, gP,�〉 = 0, which we interpret as saying that

at the final state, we have made full progress since we have

successfully rejected the entire pseudo-distribution defined

by gP,�.

For our yes instance P and some variable � ∈ P , let

p = s,u1,u2, . . . ,uq, t be an accepting computation path

on P . If we trace the corresponding inner products along

the path, 〈Rs, gP,�〉, 〈Ru1
, gP,�〉, . . . , 〈Rt, gP,�〉, they will

start with value 1 and go down to 0. Now if u and v are

adjacent states in the switching network connected by the
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variable �, then progress at u with respect to gP,� is the

same as progress at v with respect to gP,�. This is because

the pseudo-distribution defined by gP,� ignores inputs where

� crosses the cut (they have zero “probability”), and all other

cuts reach u iff they reach v.

This allows us to invoke a crucial lemma that we call

the gap lemma, which states the following. Fix an accepting

path p for the yes instance P . Then since for every � ∈ P ,

〈gP,�, Rs〉 = 1 and 〈gP,�, Rt〉 = 0, and for every pair of

adjacent states ui and ui+1 along the path, one of these

inner products doesn’t change, then there must exist some

node v on the path and two variables �1, �2 ∈ P such

that |〈gP,�1 , Rv〉 − 〈gP,�2 , Rv〉| ≥ 1/|M |. Thus the gap

lemma for P implies that this state v behaves significantly

differently on the two pseudo-distributions gP,�1 and gP,�2 of

cuts, and therefore this node can distinguish between these

two pseudo-distributions. We will let gP = gP,�1 − gP,�2

be the pseudo-distribution associated with P . In summary,

the gap lemma implies that for every yes instance P , we

have a pseudo-distribution gP and a “complex state” in the

switching network which is highly specific to gP . Thus we

have shown property (1) above.

In order to boost the “complex state” argument and get an

exponential size lower bound, as explained earlier, we still

need to establish properties (2) and (3). The construction

proceeds in two steps: first we construct functions gP,�

satisfying properties (2) but whose norm is too large, and

then we fix the norm. Our construction is the same as in

earlier papers, and this is the essential place in the proof

where the pebbling number of the graph comes into play.

(For pyramid graphs, the pebbling number is Θ(h), where

h is the height of the pyramid.) The construction, while

natural, is technical and so we defer it to the extended

version of this paper [11].

Now we want to generalize the above argument to

switching networks that are allowed to make errors. Several

important things go wrong in the above argument. First, the

set P of pyramids that we start with above may not be

accepted by the network, and in fact it might even be that

none of them are accepted by the network. Secondly, it is

no longer true that 〈gP,�, Rt〉 = 0 as required in order to

apply the gap lemma, because now there may be many cuts

which are incorrectly accepted by the switching network.

The first problem can be easily fixed since if a random

pyramid is accepted by the network, then we can still find

a large design consisting of good pyramids, by taking a

random permutation of a fixed design. Solving the second

problem is more difficult. In the worst case, it may be that

〈gP,�, Rt〉 �= 0 for all gP,�, and so the gap lemma cannot

be applied at all. To address this issue, we will say that

a pyramid is good for a network if it is both accepted by

the network, and if 〈gP,�, Rt〉 is small (say less than 1/2)

for some � ∈ P . We are able to prove (by estimating the

second moment) a good upper bound on the probability that

〈gP,�, Rt〉 is large, and thus we show that with constant

probability, a random pyramid is good. Then we generalize

our gap lemma to obtain an “approximate” gap lemma

which essentially states that as long as the inner products

with Rt are not too close to 1, then we can still find a

complex state for P in the network; in fact, it is enough

that one inner product is not too close to 1. Using these two

new ingredients, we obtain average case exponential lower

bounds for monotone switching networks for GEN.

V. LOWER BOUNDS FOR EXACT COMPUTATION

In this section we give a proof of Theorem III.1, which

is the main result2 of [8]. As discussed in the overview,

the proof makes use of �-nice vectors, which we proceed to

define.

Definition V.1. Let g : C → R be a cut vector and � ∈ [N ]3.

Recall that for each cut C in GEN we associate a cut instance

I(C). We say that g is �-nice if 〈g,1〉 = 1 and g(C) = 0
whenever � �∈ I(C).

In a sense, vectors which are �-nice are “ignorant” of cuts

which are crossed by the variable �. This has the following

implication.

Lemma V.2. Let � ∈ [N ]3 and let M be a monotone
switching network for GEN. If a cut vector g is �-nice then
for any pair of states u,v ∈M connected by a wire labelled
� we have 〈Ru, g〉 = 〈Rv, g〉.

Proof: Suppose u,v ∈ M are connected by a wire

labelled �. Theorem II.6 shows that Ru(C) = Rv(C)
whenever � ∈ I(C). Since g(C) = 0 whenever � /∈ I(C) it

follows that Ru(C)g(C) = Rv(C)g(C) for all C ∈ C and

so it must be that 〈Ru, g〉 = 〈Rv, g〉.

For each graph instance P of GEN we will come up with

�-nice functions gP,� for each � ∈ P . By tracing out the inner

products of gP,� with reachability vectors along an accepting

path for P , we will be able to come up with a complex state

specific to P . To find the complex state, we make use of the

following arithmetic lemma.

Lemma V.3. Let �,m be integers, and let xt,i be real
numbers, where 0 ≤ t ≤ � and 1 ≤ i ≤ m. Suppose that for
all t < � there exists i such that xt,i = xt+1,i. Then

max
t,i,j

|xt,i − xt,j | ≥ 1

2�
max

i
|x�,i − x0,i|.

The next lemma is a generalization of the gap lemma from

[8]; it produces states in any switching network computing

GEN which are highly specific to the vectors gP,�.

2The result proved in [8] is stated only for pyramids, but as noted in [7],
the proof works for any DAG with in-degree at most 2 once we replace h
with the reversible pebbling number of the graph.
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Lemma V.4 (Generalized Gap Lemma). Let P be an
accepting instance of GEN, and let {g�}�∈P be a collection
of vectors indexed by variables in P such that for each � ∈ P
the corresponding vector g� is �-nice. Let M be a monotone
switching network for GEN with n states. Let {Ru}u∈M be
the set of reachability vectors for M, and let W be an s to
t path in M which accepts P . Suppose that for some � ∈ P
we have 〈Rt, g�〉 ≤ β, where t is the target state of M.
Then there is a node u on W and two variables �1, �2 ∈ P
for which

|〈Ru, g�1 − g�2〉| ≥
|1− β|
2n

.

Proof: Denote the nodes on W by {u1,u2, . . . ,um},
where u1 = s and um = t. Apply Lemma V.3 with

xt,� = 〈Rut , g�〉 to obtain a node u and two variables

�1, �2 such that

|〈Ru, g�1 − g�2〉| = |〈Ru, g�1〉 − 〈Ru, g�2〉|
≥ 1

2m
max

�
|〈Rs, g�〉 − 〈Rt, g�〉| ≥ |1− β|

2n
.

The following theorem from [8] gives the desired col-

lection of nice vectors satisfying the required constraints in

order to carry out the argument that we outlined earlier.

We leave a simplified proof of this theorem to the extended

version of this paper [11].

Theorem V.5. Let m and h be positive integers. Let P be
a graph instance of GEN with vertex set VP isomorphic to
a graph G with m vertices and reversible pebbling number
at least h. There exist cut vectors gP,� for each � ∈ P with
the following properties:

1) For any � ∈ P , 〈gP,�,1〉 = 1.
2) For any � ∈ P , gP,� is �-nice.
3) For any � ∈ P , gP,� depends only on vertices in VP .
4) For any � ∈ P , ‖gP,�‖2 ≤ (9m)h+1.
5) For any �1, �2 ∈ P and S ∈ C of size |S| ≤ h − 2,

ĝP,�1(S) = ĝP,�2(S).

The third property implies that the function constructed by

the gap lemma is specific to P . The final property shows that

all the small Fourier coefficients of gP,�1 − gP,�2 vanish. To

take advantage of this property, we employ a combinatorial

design in which any two sets intersect in fewer than h points.

Lemma V.6 (Trevisan [25]). For any positive integers
q,m, h with h ≤ m, there exist q sets Q1, Q2, . . . , Qq ⊆
[N ], where N = m2e1+ln(q)/h/h, such that |Qi| = m for
each i and |Qi ∩Qj | ≤ h for each i �= j.

We are now ready to put the pieces together to prove an

exponential lower bound on the size of monotone switching

networks for GEN that are correct on all inputs.

Proof of Theorem III.1: Lemma V.6 gives a design

{Q1, . . . , Qq} of size q = ((h − 2)N/e(m − 1)2)h−2 in

which |Qi| = m − 1 and |Qi ∩ Qj | ≤ h − 2 for all i �= j.

For each Qi, choose some graph instance Pi isomorphic to

G whose underlying vertex set is Qi. Apply Theorem V.5 to

each instance Pi to get a collection {gPi,�}�∈Pi of cut vec-

tors. Note that m ≥ h ≥ 3 implies that q ≥ (hN/4em2)h−2.

Let M be a sound monotone switching network for GEN
of size n which accepts all graph instances isomorphic to

G. We apply the gap lemma (Lemma V.4) to each collection

of vectors, which gives a set of vectors {gPi
}qi=1 and a

collection of states {ui}qi=1 such that 〈gPi ,ui〉 ≥ 1/2n and

gPi = gPi,�1 − gPi,�2 for some pair of variables �1, �2 ∈ Pi.

The third property in Theorem V.5 shows that gPi depends

only on vertices in Qi, and the final property guarantees that

ĝP,i(C) = 0 for all |C| ≤ h − 2. It follows that for i �= j,

the functions gPi
, gPj

are orthogonal: if ĝPi
(C), ĝPj

(C) �= 0
then |C| ≥ h−1 and C ⊆ Qi, Qj , contradicting the fact that

|Qi∩Qj | ≤ h−2. Finally, since ‖gPi,�‖ ≤
√
(9(m− 1))h+1

we get ‖gPi
‖ ≤ 2

√
(9m)h+1.

Since the set {gPi
/‖gPi

‖ : 1 ≤ i ≤ q} is orthonormal,

Parseval’s theorem implies that

n =
∑
u∈M

1 ≥
∑
u∈M

‖Ru‖2 ≥
∑
u∈M

q∑
i=1

( 〈Ru, gPi
〉

‖gPi
‖

)2

≥ q · 1

4n2

1

4(9m)h+1
.

We deduce that

n3 ≥ q

16 · (9m)h+1
≥

(
hN

36em3

)h−2

(27m)−3.

VI. AVERAGE CASE LOWER BOUNDS

In this section we extend the above exponential lower

bound to deterministic monotone switching networks which

are allowed to make errors on some distribution of inputs3.

We begin by defining how we measure the error rates of

switching networks.

If x is an instance of GEN, then we will write GEN(x) = 1
to denote that x is an accepting instance, and GEN(x) = 0
to denote that x is a rejecting instance.

Definition VI.1. Let D be a distribution on GEN inputs, and

let 0 ≤ ε < 1/2 be a real number. We say that a monotone

switching network M computes GEN with ε error on D if

Prx∼D[M(x) �= GEN(x)] = ε.

The error ε results from a combination of two errors: the

error ε1 on yes instances, and the error ε2 on no instances.

According to the definition of D, we have ε = (ε1 + ε2)/2.

For the rest of the section fix a DAG G on m vertices with

a unique sink t, in-degree at most 2, and reversible pebbling

number at least h. We will use the following distribution

D over instances of GEN: with probability 1/2, choose a

3By Yao’s Minimax Theorem [26] this is equivalent to a lower bound
for randomized monotone switching networks.
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random graph instance isomorphic to G, and with probability

1/2 choose I(C) for a random cut C.

If M is a monotone switching network computing GEN
with errors on some distribution, say that a instance P is

good for M if P is accepted by the network and 〈Rt, gP,�〉 ≤
1− 1/N , where Rt is reachability vector of the target state

t in M, � ∈ P is any variable, and gP,� is the �-nice vector

given by Theorem V.5.

The probabilistic method can be used to prove the next

lemma, which shows that if a uniformly random instance is

good with high probability, then we can find a block design

with “many” good instances.

Lemma VI.2. Let N,m, h, q be positive integers. Suppose
that there are q sets S1, S2, . . . Sq ⊆ [N ] such that the
following holds:

1) |Si| = m for all i ∈ [q], and
2) |Si ∩ Sj | ≤ h for all i �= j.

Additionally, suppose that at most a fraction ε of the sets(
[N ]
m

)
have some property P . Then there exists a collection

of q′ = (1 − ε)q sets S′1, S
′
2, . . . , S

′
q′ ⊆ [N ] for which both

properties stated above hold, and additionally none of the
sets S′i has property P .

For the rest of this section, let N be an integer and let M
be a monotone switching network of size n computing GEN
on [N + 2] with error ε. For convenience we assume that

s = N +1 and t = N +2. Recall that Rt is the reachability

vector for the target state of M. For a pointed instance (P, �),
gP,� is the vector constructed using Theorem V.5.

We prove an upper bound on Pr(P,�)[〈Rt, gP,�〉 ≥ δ] by

estimating the second moment E(P,�)[〈Rt, gP,�〉2] and ap-

plying Markov’s inequality. However, for technical reasons,

instead of estimating the second moment directly we will

rather estimate a particular sum of tensor squares. The sum

we are going to consider includes a pointed instance (P, �)
for each subset Q of [N ] of size m (recall s, t /∈ [N ] in this

section).

Definition VI.3. A pointed instance function ℘ associates

with each set Q ∈ (
[N ]
m

)
a graph instance P isomorphic to

G and a variable � ∈ P .

The tensor product of two cut vectors u and v is the vector

u ⊗ v : C2 → R defined by (u ⊗ v)(C,D) = u(C)v(D).
It is well known that tensor products satisfy 〈u ⊗ u, v ⊗
v〉 = 〈u, v〉2 and f̂ ⊗ g(C,D) = f̂(C)ĝ(D). This makes

tensor products a useful tool to estimate the second moment

while keeping the assumption of linearity, as the next lemma

shows.

Lemma VI.4. Let ℘ be a pointed instance function chosen
uniformly at random, and let (P, �) be a random pointed

instance. We have

E
℘
[〈Rt⊗Rt,

∑
D∈([N]

m )

g℘(D)⊗g℘(D)〉] =
(
N

m

)
E

(P,�)
[〈Rt, gP,�〉2].

We are able to directly upper bound this expectation,

although we must leave the proof to the extended version

[11] due to space considerations. Then applying Markov’s

inequality yields an immediate corollary.

Lemma VI.5. Suppose N ≥ 162m2. For a random pointed
instance (P, �),

E
(P,�)

[〈Rt, gP,�〉2] ≤ ε2

(
1 +

324m2

N

)
.

Corollary VI.6. Suppose N ≥ 162m2. Let (P, �) be a
random pointed instance. For any δ > 0,

Pr
(P,�)

[〈Rt, gP,�〉 ≥ δ] ≤ δ−2

(
1 +

324m2

N

)
ε2.

A. Exponential Lower Bounds

We are now ready to prove our main theorem (Theorem

III.3), which gives an exponential lower bound on the size

of monotone switching networks computing GEN with error

close to 1/2.

Proof of Theorem III.3: Lemma V.6 gives a design

{Q1, . . . , Qq} of size q = ((h − 2)N/e(m − 1)2)h−2 in

which |Qi| = m − 1 and |Qi ∩ Qj | ≤ h − 2 for all i �=
j. Since m ≥ h ≥ 3 we note that q ≥ (hN/4em2)h−2.

Let π be a random permutation on [N ], and let ℘ be a

random pointed instance function. For each Qi, ℘(π(Qi))
is a random pointed instance, and hence for any δ in the

range 0 < δ < 1,

Pr
π,℘

[〈Rt, g℘(π(Qi))〉 ≥ δ] ≤ δ−2

(
1 +

324m2

N

)
ε2.

Moreover, the probability that ℘(π(Qi)) is rejected by M
is ε1. The probability that either of these bad events happen

is at most

τ := ε1 + δ−2

(
1 +

324m2

N

)
ε2 ≤ δ−2

(
1 +

324m2

N

)
2ε,

since 2ε = ε1 + ε2. The technique of Lemma VI.2 shows

that for some π and ℘, the number of Qi for which either

〈Rt, g℘(π(Qi))〉 ≥ δ or ℘(π(Qi)) is rejected by M is at most

τq. In other words, there exists a set (P1, �1), . . . , (Pq∗ , �q∗)
of q∗ := (1 − τ)q pointed instances with underlying sets

Q∗1, . . . , Q
∗
q∗ such that |Q∗i ∩Q∗j | ≤ h− 2 for all i �= j.

Apply Theorem V.5 to each instance Pi to get a collection

of vectors {gPi,�}�∈Pi , and then apply the generalized gap

lemma (Lemma V.4) to each such collection of vectors,

which yields a set of vectors {gPi
}q∗i=1 and a set of states

{ui}q
∗

i=1 in M satisfying 〈gPi
, Rui

〉 ≥ (1− δ)/2n (recall n
is the size of M). This collection of vectors is orthogonal,

and each vector satisfies the upper bound ‖gPi
‖2 ≤ 4(9(m−
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1))h+1 ≤ 4(9m)h+1. We repeat the calculation of Theorem

III.1 and get

n ≥
∑
u∈M

q∗∑
i=1

( 〈Ru, gPi
〉

‖gPi
‖

)2

≥ q∗ · (1− δ)2

4n2

1

4(9m)h+1

≥ (1− τ)(1− δ)2
(

hN

36em3

)h−2

(27m)−3.

An auspicious choice for δ is δ = 1−1/N . Since ε ≤ 1/2−
1/N1−α and 324m2/N ≤ Nα−1 we can upper bound τ by

τ ≤ 1 − 1/(N1−α). Substituting δ and τ and simplifying

yields

n3 ≥
(

hN

36em3

)h−2

(27mN)−3.
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