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Abstract—We give an explicit function h : {0, 1}n →
{0, 1} such that every deMorgan formula of size
n3−o(1)/r2 agrees with h on at most a fraction of 1

2
+

2−Ω(r) of the inputs. This improves the previous average-
case lower bound of Komargodski and Raz (STOC, 2013).

Our technical contributions include a theorem that
shows that the “expected shrinkage” result of Håstad
(SIAM J. Comput., 1998) actually holds with very high
probability (where the restrictions are chosen from a
certain distribution that takes into account the structure of
the formula), combining ideas of both Impagliazzo, Meka
and Zuckerman (FOCS, 2012) and Komargodski and Raz.
In addition, using a bit-fixing extractor in the construction
of h allows us to simplify a major part of the analysis of
Komargodski and Raz.1

I. INTRODUCTION

Proving lower bounds on the complexity of classi-

cal computational models for Boolean functions is the

holy grail in theoretical computer science. One of the

simplest and most natural non-uniform computational

models that is of great interest is the model of Boolean

deMorgan formulas. It is well known that the deMorgan

formula size of almost all functions on n variables is

at least Ω(2n/ log n). Nevertheless, no explicit func-

tion (constructible deterministically in polynomial time)

with super-polynomial lower bounds on the deMorgan

formula size has been found yet. Providing such a

function would separate P from NC1.

A deMorgan formula is a Boolean formula over the

basis B2 = {∨,∧,¬} with fan in at most 2. A deMorgan

formula is represented by a tree such that every leaf is

labeled by an input variable and every internal node is

labeled by an operation from B2. A formula is said to

compute a function f : {0, 1}n → {0, 1} if on all inputs

x ∈ {0, 1}n it outputs f(x). The computation is done in

the natural way from the leaves to the root. The size of

Research supported by an Israel Science Foundation grant and by
the I-CORE Program of the Planning and Budgeting Committee and
the Israel Science Foundation.

1We have learnt that the idea to use a bit-fixing extractor in this
context was suggested independently in [1] (private communication
with the authors).

a formula F , denoted by L(F ), is defined as the number

of leaves it contains. The deMorgan formula size of a

function f : {0, 1}n → {0, 1} is the size of the minimal

deMorgan formula that computes f .

Previous works considered the following two types

of lower bounds on deMorgan formula size: worst-case
lower bounds and average-case lower bounds.

Worst-case lower bounds are lower bounds on the

size of the minimal deMorgan formula that computes an

explicit function f : {0, 1}n → {0, 1}. The first lower

bound was achieved by Subbotovskaya [2] that proved

an Ω(n1.5) lower bound on the size of deMorgan for-

mulas that compute the parity function on n variables.

Subbotovskaya also introduced the concept of random

restrictions that has had many applications since. In fact,

Subbotovskaya showed a lower bound of Ω(nΓ) where

Γ is referred to as the shrinkage exponent of deMorgan

formulas under random restrictions and showed that

Γ ≥ 1.5. In [3] Khrapchenko was able to improve the

lower bound of [2] and to prove, using a completely

different method, that the parity function on n variables

requires a deMorgan formula of size Ω(n2) (which is

tight, up to constant factors). In [4] Andreev was able to

cleverly combine some previous techniques (including

the method of [2]) and to prove an Ω(n1+Γ−o(1)) lower

bound on the size of the minimal deMorgan formula

that computes an explicit function, later referred to as

the Andreev function. Subsequent improvements on the

constant Γ led to improved lower bounds on the deMor-

gan formula size of the Andreev function. Impagliazzo

and Nisan [5] proved that Γ ≥ 1.55, Paterson and Zwick

[6] proved that Γ ≥ 1.63 and finally Håstad [7] proved

that Γ ≥ 2−o(1) giving the lower bound of Ω(n3−o(1))
on the size of deMorgan formulas that compute the

Andreev function. Since Γ ≤ 2, Håstad’s result is tight

up to the o(1) term.

Average-case lower bounds (a.k.a., correlation

bounds) are lower bounds on the size of the minimal

deMorgan formula that only approximates an explicit

function f : {0, 1}n → {0, 1}. An approximation

of f is a computation that agrees with f on some
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fraction larger than 1/2 of the inputs (rather than

on all inputs). The first explicit average-case lower

bound for deMorgan formulas appears in the work

of Santhanam [8]. There, it is shown that any family

of linear-size deMorgan formulas has correlation of

at most 1
2 + 2−Ω(n) with the parity function, and

moreover, his technique could be extended to show

a correlation of at most 1
2 + 2−nΩ(1)

between any

deMorgan formula of size O(n1.5) and the parity

function. In addition, as pointed out in [9], works

regarding the degree of approximating polynomials

also imply correlation bounds for deMorgan formulas.

Specifically, from the works of [10], [11] it follows that

any formula of size o
(
(n/ log(1/ε))

2
)

has correlation

of at most 1
2+ε with the parity function on n variables.

Recently, Komargodski and Raz [9] constructed an

explicit function f : {0, 1}n → {0, 1} such that any

deMorgan formula of size at most O(n2.499) computes

f correctly on a fraction of at most 1
2 + 2−nΩ(1)

of the

inputs.
In this work, combining techniques from [12] and [9]

together with some new ideas, we improve the result

of Komargodski and Raz [9] and construct an explicit

function h : {0, 1}n → {0, 1} such that any deMorgan

formula of size at most O(n2.999) computes h correctly

on a fraction of at most 1
2+2

−nΩ(1)

of the inputs. More

generally, our main theorem gives the following trade-

off between the size of the formula and the quality of

approximation:

Theorem I.1. There is an explicit (computable in poly-
nomial time) Boolean function h : {0, 1}6n → {0, 1}
and a constant c ≥ 8 such that for any parameter r
such that c log(n) ≤ r ≤ n1/3, any formula of size
n3−o(1)

r2 computes h correctly on a fraction of at most
1/2 + 2−Ω(r) of the inputs.

A. Techniques
We start by informally defining restrictions and

shrinkage (more formal definitions can be found in

Section II). Given a function f : {0, 1}n → {0, 1}, a

vector ρ ∈ {0, 1, �}n defines a restriction of f , denoted

by f |ρ, in the following way: if ρi ∈ {0, 1} then the

i-th input variable of f is fixed (or assigned) to 0
or 1, respectively, and otherwise it is still a variable.

We say that deMorgan formulas have s-shrinkage with

probability γ over a distribution D of restrictions that

leave k variables unassigned if any deMorgan formula

shrinks by a factor of at least c ·(k/n)s with probability

γ over D for some universal constant c.
Our technical contributions are twofold. First, we

prove that 1.999-shrinkage occurs with probability ex-

ponentially close to 1 over a certain distribution (that

satisfies some additional properties; see the discussion

in Section I-A3 and Remark I.2), improving a theorem

from [9]. Second, we simplify a major part of the proof

of [9] by giving a different construction for the function

for which we prove the lower bound. We believe that the

insights in this simplification might be of independent

interest.

In order to explain our techniques, we first begin by

describing the worst-case lower bound of Andreev [4]

and then the average-case lower bound of Komargodski

and Raz [9].

1) Andreev’s Worst-Case Lower Bound: Andreev’s

function A : {0, 1}n × {0, 1}n → {0, 1} is defined as

follows. A views the second input as a log n by n/ log n
matrix and computes the XOR of the input bits in every

row. A uses the resulting logn bits to address an index

in the first input (log n bits are enough to represent a

cell in a vector of length n) and return that bit. The

analysis of [4]–[7] relies on the following 4 facts:

1) There exists an n bit vector h that represents a

Boolean function which is hard to compute by

formulas of size O(n)/ log log n.

2) It holds that L(A) ≥ L(Ah) where Ah is the

function A when the first input is fixed to the

hard function h from Item 1.

3) Γ-shrinkage occurs with probability at least 3/4
(over completely random restrictions). That is, for

a function f : {0, 1}n → {0, 1} and for a random

restriction ρ that leaves k variables unassigned it

holds that L(f |ρ) ≤ c·
(
k
n

)Γ
L(f) with probability

at least 3/4 for some universal constant c > 0.

This fact, that was first proved by [2] (for Γ =
1.5), was gradually improved throughout [5]–[7].

4) After applying a completely random restriction

that leaves k = Θ(log n · log log n) variables

unrestricted, with probability at least 3/4 every

row in the matrix (represented by the second input

to A) has at least one variable that is not restricted.

Andreev derived the lower bound as follows. Since

Item 3 and Item 4 occur with probability at least 3/4,

there exists a restriction ρ such that both items hold

simultaneously. Hence,

L(A)
Item 2

≥ L(Ah)
Item 3

≥ 1

c

(n
k

)Γ
L(Ah|ρ)

Items 1 and 4

≥ nΓ+1−o(1)

where Ah|ρ denotes the function Ah after applying the

restriction ρ.

2) Komargodski and Raz’s Average-Case Lower
Bound: Komargodski and Raz’s [9] function KR :
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{0, 1}n × {0, 1}n → {0, 1} is similar to Andreev’s

function. KR views the second input as an nε by n1−ε

matrix and computes the XOR of the input bits in every

row. KR encodes the first n input bits, using an error

correcting code, into 2n
ε

bits. Finally, KR uses the

resulting nε bits of the XORs to address an index in

the encoded first input and returns that bit. The analysis

of [9] relies on the following 4 facts (stated informally):

1) Most strings of length n after being encoded,

using an error correcting code with large rela-

tive distance, into strings of length 2n
ε

represent

functions (from nε bits into 1) that are hard to

approximate.

2) If a formula F approximates well KR, then there

exists a string h ∈ {0, 1}n such that its encoding

is hard to approximate (see Item 1) and Fh

approximates KRh where KRh (resp. Fh) is the

function KR (resp. F ) where the first input is

fixed to h.

3) 1.499-shrinkage occurs with probability exponen-

tially close to 1 (over a distribution of random

restrictions that takes into account the structure

of the formula).

4) After applying this restriction (from the same

distribution as in Item 3) most rows in the matrix

represented by the second input to KR have

at least one variable that is not restricted with

probability exponentially close to 1.

Deriving the lower bound of [9] is conceptually

similar to Andreev’s lower bound, but technically it is

a bit more complicated so we refer to [9] for additional

details.

3) Our Techniques: In this work we improve the

result of [9] by improving Item 3 in the proof scheme

above. We prove that 1.999-shrinkage occurs with prob-

ability exponentially close to 1.

Our second contribution is mainly conceptual. We

provide a more intuitive construction of the hard func-

tion and greatly simplify Item 4 in the proof of [9].

Improvement of Item 3: Komargodski and Raz [9]

prove a theorem that shows that for deMorgan formulas

1.499-shrinkage occurs with probability exponentially

close to 1 over a certain distribution of random restric-

tions that takes into account the structure of the formula.

Impagliazzo, Meka and Zuckerman [12] prove a

theorem (among other interesting results) that shows

that (2−o(1))-shrinkage occurs with probability that is

polynomially close to 1. In [12] the theorem is proved

for certain pseudorandom distributions and is used to

construct pseudorandom generators with seed of length

O(s) for deMorgan formulas of size s3−o(1) as well as

for several other models.

We combine the techniques of [9] and of [12]

and prove that 1.999-shrinkage occurs with probability

exponentially close to 1. That is, we use the proof

technique of [12] applied to a distribution of random

restrictions similar to that of [9] that takes the structure

of the formula into account.

In order to show that shrinkage occurs with high

probability, [12] show that formulas with no “heavy”

variables (variable that appear a lot more than an

average variable) can be split into many “medium size”

sub-formulas (subtrees). Thus, if one shows that the

total size of all sub-formulas after applying a random

restriction is small with high probability we are done.

The crucial point is that (assuming that there are no

“heavy” variables) these subtrees can be gathered into

large sets, such that in each set the sub-formulas are

defined over disjoint variables. Thus, in each such

set, the sizes of the subformulas after restriction is

independent of one another and one can apply Chernoff-

Hoeffding inequalities.

The main problem with this argument is the as-

sumption that there are no “heavy” variables. [12] treat

the “heavy” variables separately, showing overall that

shrinkage occurs with probability 1− 1/poly(n). Their

analysis can even be pushed to show that shrinkage over

uniformly random restrictions holds with probability at

least 1− 1/2o(log
2 n) but not further.

In this work, we use the formula structure to derive

our restriction. We first restrict all heavy variables one

by one, in each step ensuring that shrinkage occurs with

probability 1. When no heavy variables are left we apply

a random restriction and analyze similarly to [12]. This

technique ensures shrinkage with very high probability

(≥ 1− 2−nΩ(1)

).

Remark I.2. As we have stated, we prove that 1.999-
shrinkage occurs with probability exponentially close
to 1 over a certain distribution of random restrictions
that takes into account the structure of the formula
(see Theorem IV.1). We note that without additional
requirements on the distribution, achieving this goal is
pretty easy since it follows directly from [7].

However, in order to use “shrinkage with high prob-
ability” to prove an average-case lower bound in the
framework of [9], one needs to prove that shrinkage
occurs with very high probability over a distribution
with additional properties. More specifically, the follow-
ing property is sufficient: the distribution is defined by
some process such that at each step a variable is chosen
(possibly depending on the structure of the formula)
and then the value of the chosen variable is randomly
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fixed to 0 or 1. We refer to such a distribution as a
distribution of random valued restrictions. In the proof
we use the fact that the restrictions are random valued to
derive correlation bounds for the original function from
correlation bounds to the restricted function, using an
averaging argument (see Section VII).

In Section IV we define a distribution that has this
property, and prove that 1.999-shrinkage occurs with
probability exponentially close to 1 over this distribu-
tion. Moreover, for possible future applications, we note
that the process that defines our distribution can be
efficiently implemented.

Simplification of Item 4: As our restriction depends

on the structure of the formula, it is not a uniformly

random restriction, and one needs to work harder in

order to show Item 4 in the proof scheme above. [9]

overcame this problem by a series of reductions to

balls and bins games, heavily relying on the specific

distribution of restrictions defined in Item 3. In this

work, we view the restrictions distribution as a black-

box, only ensuring that the number of variables left

unrestricted is k = 100nε with high probability (where

nε is the input length to the hard function). Instead

of generating the index to the hard function by simply

XORing bits of the n bits of the second input, we apply

a more complicated function on those variables, which

is a bit-fixing extractor.

Bit-fixing extractors were introduced in [13] and then

later constructed in [14]–[16] with better and better pa-

rameters. Intuitively, a bit-fixing extractor is a function

which takes n bits of input, outputs nε bits and ensures

that if k of the input variables are truly random and

the rest are fixed to some constants, then the output is

very close to the uniform distribution over nε bits. This

allows us to argue that a hard function defined on nε

bits, is hard on the output of the bit-fixing extractor as

well.

We use the fact that we can also use an advice (seed)

for the bit-fixing extractor as part of the input and

give a construction of a bit-fixing extractor with better

parameters (smaller error and lower min-entropy) than

bit-fixing extractors that do not assume access to an

advice [14]–[16].

We think that the idea to use a bit-fixing extractor

can be helpful in other works. In general, instead of

arguing that formulas (or other models) shrink under

random restrictions to derive lower bounds, using a bit-

fixing extractor one only needs to argue that there exists
some restriction leaving k variables unrestricted under

which the formula shrinks well. In other words, when

proving worst-case lower bound, one can consider best-

case restrictions instead of random restrictions. When

proving average-case lower bounds, one can consider

any distribution of random valued restrictions (as in

Remark I.2) for which the formula shrinks well with

high probability.

B. Related Work

Recently, Chen et al. [1]2 addressed the following

problem (a.k.a, compression for “easy” Boolean func-

tions): given the truth table of a Boolean function

f : {0, 1}n → {0, 1} that can be computed by a

small unknown circuit from a given class C, construct

an explicit Boolean circuit (not necessarily in C) that

computes f and is of size o(2n/n).

Their results,3 that rely on “shrinkage with high

probability”, are the following: (1) any Boolean n-

variate function computable by a deMorgan formula of

size at most n2.49 is compressible in time poly(2n) to

a circuit of size at most 2n−nε

, for some ε > 0 and

(2) there exists a deterministic #SAT-algorithm for n-

variate deMorgan formulas of size at most n2.49 that

runs in time 2n−nε

, for some ε > 0. Our shrinkage

result (see Section IV) improves both of these results

to hold for deMorgan formulas of size at most n2.99.

However, the resulting #SAT algorithm is zero-error

randomized rather than deterministic.

Moreover, independent of our work, Chen et al. [1]

simplify the average-case lower bound of [9] using a

bit-fixing extractor. This is quite similar to some of our

techniques.

C. Paper Organization

The rest of the paper is organized as follows. In

Section II we give some general notations that are used

throughout the paper and some preliminary material and

definitions. In Section III we give the construction of the

hard function. In Section IV we prove our “shrinkage

with very high probability” theorem. In Section V we

provide a construction of a bit-fixing extractor that uses

an advice. In Section VI we prove that composing an

error correction code with a bit-fixing extractor almost

always represents a function that is hard to approximate

under any restriction. Finally, in Section VII we prove

the main theorem of this paper (Theorem I.1).

2Private communication with the authors. A preliminary version
can be found in [17].

3 [1] give results for several computational models such as branch-
ing programs, formulas over any complete basis and more. We only
focus on their results regarding deMorgan formulas.
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II. PRELIMINARIES

We start with some general notations. Throughout the

paper we will only consider deMorgan formulas and

not always explicitly mention it. We denote by [n] the

set of numbers {1, 2, . . . , n}. For i ∈ [n] and for x ∈
{0, 1}n, denote by xi the i-th bit of x. We denote by

ei ∈ {0, 1}n the vector with one on the i-th coordinate

and zero elsewhere. We will use logarithms to base two

by default. We denote by Uk the uniform distribution

over {0, 1}k. For a distribution D we denote by x ∼ D
a random element sampled according to D. For two

functions f : {0, 1}s → {0, 1}m and g : {0, 1}n →
{0, 1}s, we denote by f ◦ g : {0, 1}n → {0, 1}m the

composition of f and g, i.e., f ◦ g(x) = f(g(x)).

Boolean Formulas:

Definition II.1. A deMorgan formula is a Boolean
formula with AND, OR and NOT gates with fan in at
most 2.

Definition II.2. The size of a formula F is the number
of leaves in it and is denoted by L(F ). For a function
f : {0, 1}n → {0, 1}, we will denote by L(f) the size
of the smallest formula computing the function f .

Definition II.3 (Restriction). Let f : {0, 1}n → {0, 1}
be a Boolean function. A restriction ρ is a vector of
length n of elements from {0, 1, �}. We denote by f |ρ
the function f restricted according to ρ in the following
sense: if ρi = � then the i-th input bit of f is unassigned
and otherwise the i-th input bit of f is assigned to be
ρi.

We denote by Rk the set of restrictions that leave k
variables unassigned.

Definition II.4 (p-Random Restriction). A p-random
restriction is a restriction as in Definition II.3 that
is sampled in the following way. For every i ∈ [n],
independently with probability p set ρi = � and with
probability 1−p

2 set ρi to be 0 and 1, respectively. We
denote this distribution of restrictions by Rp.

Definition II.5 (Average-Case Hardness). A function f :
{0, 1}n → {0, 1} is said to be (s, ε)-hard if for any
deMorgan formula F of size at most s

Pr
x∈{0,1}n

[F (x) = f(x)] ≤ 1

2
+ ε.

Probability: We state a well known variant of Cher-

noff/Hoeffding inequality.

Proposition II.6 (Chernoff/Hoeffding Inequalities). Let
X =

∑n
i=1Xi be a sum of independent random

variables X1, . . . , Xn such that for every i ∈ [n] there

exists ai, bi ∈ R such that ai ≤ Xi ≤ bi. It holds that
for t > 0,

Pr[X − E[X] ≥ t] ≤ exp

(
−2t2∑n

i=1 (bi − ai)
2

)
.

If we assume further that X1, . . . , Xn ∈ {0, 1} are
identically distributed then for δ ∈ (0, 1),

Pr[X < (1− δ) · E[X]] ≤ exp
(
−δ2 · E[X]/2

)
and

Pr[X > (1 + δ) · E[X]] ≤ exp
(
−δ2 · E[X]/3

)
.

We will use this simple lemma.

Lemma II.7. Let X be a random variable taking
values in the range [0, 1] and let B be an event such
that Pr[B] > 0, then E[X|B] ≥ E[X] − Pr[¬B]. In
particular if X is an indicator of an event A, then
Pr[A|B] ≥ Pr[A]− Pr[¬B].

We will use the notion of statistical distance.

Definition II.8 (Statistical Distance). Let Ω be some
finite set. Let P and Q be two distributions on Ω. The
statistical distance between P and Q is defined as

|P −Q| = max
A⊆Ω

∣∣∣∣PrP (A)− Pr
Q
(A)

∣∣∣∣
If |P −Q| ≤ ε we say that P is ε-close to Q.

We define k-wise independent distributions.

Definition II.9 (k-wise independent distribution). A
distribution D over {0, 1}n is k-wise independent if and
only if for all a1, . . . , ak ∈ {0, 1} and all i1, . . . , ik ∈
[n]

Pr
x∼D

[xi1 = a1 ∧ · · · ∧ xik = ak] =
1

2k
.

Bit-Fixing and Affine Extractors: Two ingredients of

our construction are a bit-fixing extractor and an affine

extractor, which we define next.

Definition II.10 (Bit-Fixing Source). A distribution X
over F

n
2 is an (n, k)-bit-fixing source if there exist

k distinct indices i1, . . . , ik such that the distribution
(Xi1 , . . . , Xik) is uniformly distributed over {0, 1}k
and for i /∈ {i1, . . . , ik}, Xi is a fixed constant. We
refer to k as the entropy of the source.

An affine source, that we define next, is a generaliza-

tion of a bit-fixing source.

Definition II.11 (Affine Source). A distribution X over
F
n
2 is a (n, k)-affine source if there exist k linearly
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independent vectors v1, . . . , vk ∈ F
n
2 , and another

vector v0 ∈ F
n
2 such that X is distributed uniformly over

v0 + span{v1, . . . , vk}. We refer to k as the dimension
or entropy of the source.

Definition II.12 (Bit-Fixing Extractor, Affine Extrac-

tor). An (n, k)-bit-fixing extractor (affine extractor) with
error ε and output length r is a function Ext :
{0, 1}n → {0, 1}r such that for every (n, k)-bit-
fixing source ((n, k)-affine source) X the distribution
of Ext(X) is ε-close to the uniform distribution in
statistical distance, i.e.,

|Ext(X)−Ur| ≤ ε.

Coding Theory:

Definition II.13. A code C over an alphabet Σ of size
q that has block length n, dimension k and minimal
distance d is denoted as an (n, k, d)q code. A code C
can be thought of as a mapping from Σk to Σn such
that every two outputs of the mapping differ in at least d
locations. The mapping procedure is sometimes referred
to as the encoding function of C. The relative distance
of C is δ = d/n.

Furthermore, we say that a code is an [n, k, d]q linear
code if Σ = Fq is a finite field and the mapping is linear
over Fq .

Definition II.14. Let 0 ≤ ρ ≤ 1 and L ≥ 1. A code
C ⊂ {0, 1}n is (ρ, L)-list decodable if for every y ∈
{0, 1}n,

|{c ∈ C |Δ(y, c) ≤ ρn} | ≤ L

where Δ denotes the Hamming distance.

Next, we state the well known Johnson bound for

codes with binary alphabet. This version of the bound

was taken from [18] for the case of binary alphabet.

Proposition II.15 (Johnson Bound). Let C ⊆ {0, 1}n
be an (n, k, d)2 code with relative distance δ = d/n ≤
1/2. It holds that C is (ρ, 2dn)-list decodable for any

ρ <
1

2

(
1−

√
1− 2δ

)
.

III. CONSTRUCTION OF THE FUNCTION

Our construction is parameterized by two parameters:

n, r and can be thought of as a family of functions as

it is defined for infinitely many possibilities for these

parameters. Let c ≥ 8 be a large enough constant. We

assume that c log(n) ≤ r ≤ n1/3 and that n is large

enough.
We define a function h : {0, 1}4n × {0, 1}n ×

{0, 1}n → {0, 1} that takes three inputs: x ∈ {0, 1}4n,

y ∈ {0, 1}n and s ∈ {0, 1}n.

We use two ingredients in our construction: an error

correcting code and a bit-fixing extractor.

Let C be a [2r, 4n, d]2 error correcting code similar

to the one in [9]. C encodes x ∈ {0, 1}4n to EncCx ∈
{0, 1}2r and has relative distance δ = d

2r ≥ 1/2 −
2−r/4. One may view each codeword also as a Boolean

function EncCx : {0, 1}r → {0, 1}. The exact definition

and construction of the code C are described in the full

version of the paper [19].

Our bit-fixing extractor is a function BFExts :
{0, 1}n → {0, 1}r parameterized by the input s, which

is of length n. The exact definition of this function and

its properties are described in Section V.

The function h is defined as

h(x, y, s) = EncCx(BFExts(y)).

We remark that both computations z = BFExts(y)
and EncCx(z) can be done in polynomial time given the

inputs (s, y) and (x, z), respectively.

IV. SHRINKAGE WITH VERY HIGH PROBABILITY

In this section we prove that the shrinkage property

of deMorgan formulas holds with very high probability.

We begin by stating the main theorem of this section.

Theorem IV.1. Let c > 0 be any constant and let F be
a formula over n variables of size ≤ nc, for any n large
enough. Then there exists a constant c′ > 0 (where c′

depends only on c) such that for any k in the range
c′ · log(n) ≤ k ≤ n there is a distribution Tk of random

valued restrictions (see Remark I.2) such that

Pr
ρ∈Tk

[
L(F |ρ) ≤ 2O(log

2 logn) ·
(
k

n

)2

· L(F )

and ρ ∈ Rk

]
≥ 1− εshr

where εshr = 2−Ω(k) (recall that Rk is the set of
restrictions leaving k variables unassigned).

Our proof is based on the result of Håstad [7] that

showed that shrinkage of deMorgan formulas occurs in

expectation.

Theorem IV.2 ( [7]). Let F be a deMorgan formula.
For every p > 0 it holds that

E
ρ∈RRp

[L(F |ρ)] ≤

O

(
p2

(
1 + log

3
2 min

{
1

p
, L(F )

})
L(F ) + p

√
L(F )

)
.
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We define a restriction process for a formula F as

follows. If F contains a heavy variable (i.e., a variable

that appears in the formula many times), then we just

restrict it (assign to it 0 or 1 at random). Otherwise,

we treat all variables as equal and use a truly random

restriction on the remaining variables. In the analysis, a

removal of a “heavy” variable is pretty easy to handle

since we are guaranteed that the formula shrinks well,

and the second step is harder. In the analysis of the

second step, we split the formula (which is just a binary

tree) into parts (formulas) that are almost independent,

in the sense that every variable does not appear in too

many parts. We show that this small dependence does

not affect much and thus we can apply Hoeffding’s

inequality to get the result.

Formally, for a given formula F on n variables, we

define a “random” restriction algorithm with parameter

p that takes the structure of F into account.4 This

algorithm defines a distribution of random valued re-
strictions that we denote by T ′p .

1: F0 ← F .

2: i← 0.

3: while n− i > pn AND there is a variable xj in Fi

that appears more than ti =
2L(Fi)
n−i do

4: Assign xj at random and let Fi+1 be the formula

Fi restricted by xj .

5: i← i+ 1.

6: end while
7: Sample a random ρ′ ∈ R p·n

n−i
and restrict the

formula Fi according to ρ′.

Algorithm 1: T ′p distribution on restrictions.

First, we argue that shrinkage occurs with very high

probability for formulas that do not contain any “heavy”

variable. The proof of the following lemma can be found

in the full version [19].

Lemma IV.3. There exists a universal constant c >
0 such that for any formula F over n variables that
does not contain any variable that appears more than
2L(F )/n times and for any 0 < p ≤ 1

Pr
ρ∈Rp

[
L (F |ρ) ≥ c · p2 log3/2(n) · L(F )

]
≤ L(F ) · e−n·p8

.

A corollary of Lemma IV.3 is that shrinkage also

occurs under T ′p as follows. The proof of this corollary

can be found in the full version [19].

4For simplicity, we assume throughout this section that p · n is an
integer.

Corollary IV.4. Let c be the constant from Lemma IV.3.
Let F be formula over n variables. For any 0 < p ≤ 1
it holds that

Pr
ρ∈T ′p

[
L(F |ρ) ≥ c · p2 log3/2 (n) · L(F )

]
≤ L(F ) · e−n·p8

.

Remark IV.5. Note that Corollary IV.4 is useful only
for p > n−1/8. This range of p’s is not enough to derive
the lower bound of Theorem I.1, so we need to be able
to argue a similar statement for much smaller values of
p. This is what we achieve in Theorem IV.1.

Next, we prove the main theorem of this section

(Theorem IV.1).

Proof of Theorem IV.1: We apply Corollary IV.4

t ≥ 1 times where t will be determined later. Let F0 =
F and for 1 ≤ i ≤ t let Fi be the formula after the

i-th application of Corollary IV.4. If after t iterations

we are left with more than k variables unrestricted,5 we

further randomly restrict variables until we are left with

exactly k variables. We denote the resulting formula by

F ′. Set n0 = n and for every 1 ≤ i ≤ t think of ni as a

lower bound on the number of variables in Fi with high

probability. For 0 ≤ i ≤ t− 1 denote by pi the value of

p used in the (i + 1)-th application of Corollary IV.4.

We state the following claim that suggests the existence

of good parameters ni, pi. The proof of this claim can

be found in the full version [19].

Claim IV.6. There are parameters t ∈ N,
p0, . . . , pt−1 ∈ R, n0, . . . , nt ∈ N such that

1) n0 = n
2) nt = k
3) for 0 ≤ i ≤ t− 1, pi · ni = 2 · ni+1

4) for 0 ≤ i ≤ t− 1, p8i · ni = Ω(k)
5) for 0 ≤ i ≤ t− 1, 0 < pi ≤ 1
6) t = O(log log n)

For i = 1, . . . , t let Di be the event that after iteration

i, the number of variables left unrestricted is at least ni,

and let Ei be the event that L(Fi) ≤ c · log3/2(n) ·p2i−1 ·
L(Fi−1). Using Item 3 of Claim IV.6 and Chernoff’s

bound (Proposition II.6) gives that for i ∈ [t]

Pr [Di|D1, . . . ,Di−1] > 1− exp (−Ω(ni−1 · pi−1))
= 1− exp (−Ω(ni)) .

5We count variables which are unrestricted by our algorithm even
if they do not appear in the restricted formula.
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Using Item 4 of Claim IV.6 and Corollary IV.4 gives

Pr [Ei|D1, . . . ,Di−1] >

1− L(F ) · exp
(
−Ω(ni−1 · p8i−1)

)
=

1− L(F ) · exp (−Ω(k))

Standard calculation shows that all events Di, Ei hold

simultaneously with probability ≥ 1 − 2 · L(F ) · t ·
exp (−Ω(k)). By the assumption that L(F ) ≤ nc, there

exists a constant c′ such that if k ≥ c′ · log n then 1−
2 · L(F ) · t · exp (−Ω(k)) ≥ 1− 2−Ω(k).

In the case that all events Di and Ei hold, we have

L(F ′) ≤ L(Ft)

≤ ct ·
(

t−1∏
i=0

p2i

)
·
(
log3/2(n)

)t

· L(F0) .

Using Item 3 of Claim IV.6,
∏t−1

i=0 p
2
i =

∏t−1
i=0

4n2
i+1

n2
i

=

4t · k2

n2 . Using Item 6 of Claim IV.6 (t = O(log log n))
it follows that

L(F ′) ≤ 2O(log
2 logn) · k

2

n2
· L(F ) .

Under the assumption that Dt holds, the number of

unrestricted variables by the process is exactly k, which

completes the proof.

V. EXTRACTORS FOR BIT-FIXING SOURCES

One of the ingredients in the construction of our hard

function is an extractor for bit-fixing sources (recall

Definitions II.10 and II.12). We wish to construct a

bit-fixing extractor BFExt : {0, 1}n → {0, 1}r such

that for every (n, k)-bit-fixing source, X , the output

BFExt(X) is very close to the uniform distribution in

statistical distance. Such an extractor was constructed

by Rao.

Theorem V.1 ( [16]). There exist constants c and d such
that for every k(n) > logc n, there exists a polynomial
time computable function BFExt : {0, 1}n → {0, 1}r
that is an (n, k)-bit-fixing extractor with output length
r = k − o(k) and error 2−kd

.

We will show a construction with better parameters

which uses O(k2 · logn) bits of advice. Note that this is

not an explicit bit-fixing extractor. None the less, since

we can have advice of size O(n) without increasing the

input size by more than a constant factor, we can use

this advantage.

One ingredient of our construction is the following.

Definition V.2 (Linear Condenser). An (n,m, kin, kout)
linear condenser is a linear mapping T : {0, 1}n →

{0, 1}m such that for any S ⊆ [n] of size ≥ kin we
have

dim (T (span{ei : i ∈ S})) ≥ kout

The output of an (n,m, kin, kout) linear condenser

on an (n, kin)-bit-fixing source is distributed uniformly

over an affine subspace of F
m
2 of dimension at least

kout, i.e., an (m, kout)-affine source. Thus, we can

compose this linear condenser with an (m, kout) affine

extractor and get altogether an (n, kin)-bit-fixing ex-

tractor. The affine extractor that we use was given by

Bourgain.

Theorem V.3 ( [20]). Let δ ∈ (0, 1) be any constant.
There exists a constant λδ ∈ (0, 1) such that for any
m large enough there is an explicit polynomial time
computable (m, δm) affine extractor that extracts r =
λδ ·m bits with error 2−r.

Next, we claim that a random matrix, sampled from

a k2-wise independent distribution, is actually a good

linear condenser. The proof of this claim can be found

in the full version [19].

Claim V.4. For k ≥ 2 log n, a k×n matrix whose values
are bits sampled from a k2-wise independent distribu-
tion, is an (n, k, k, k − √k · 2 log n) linear condenser
with probability ≥ 1− 2−k·logn.

To summarize things in this section we state the

following theorem.

Theorem V.5. Let n be a large enough integer and
r, k be integers such that 8 · log n ≤ r ≤ n1/3 and
k = r/λ1/2 (where λ1/2 was given by Theorem V.3).

There exists a family of efficiently computable func-
tions {BFExts : {0, 1}n → {0, 1}r}s∈{0,1}n such that
all but 2−r·logn fraction of the seeds s ∈ {0, 1}n are
good where s is a good seed if and only if s is in the
set

S � {s ∈ {0, 1}n :BFExts is an (n, k)

bit-fixing extractor with error 2−r} .
Proof: We will use the most standard k2-wise

independent sample space that outputs n · k bits. The

sample space is generated by polynomials of degree

k2 − 1 over F2m where m is the least such that

2m ≥ n · k.6 This construction requires seeds of length

k2 ·m = O(n2/3 · log n) and this is smaller than n for n
large enough. By Claim V.4 at least 1− 2−k·logn (and

this is at least 1− 2−r·logn since k ≥ r) fraction of the

choices of s gives an (n, k, k, k −√k · 2 · log n) linear

condenser. We will show that these seeds are good.

6We can ignore extra bits, if needed.
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For a specific choice of s which defines an

(n, k, k, k−√k · 2 · log n) linear condenser, the output

of the linear condenser is an affine source of dimension

at least

k −
√
k · 2 · log n ≥ k −

√
k · k/4 = k/2 ,

using the assumption k ≥ r ≥ 8 · log n. By this

guarantee on the dimension of the condenser output,

the composition of the condenser with the affine ex-

tractor stated in Theorem V.3 yields an (n, k)-bit-fixing

extractor that outputs r = λ1/2 · k bits with error 2−r.

VI. MOST FUNCTIONS ARE HARD TO APPROXIMATE

ON ANY RESTRICTION

In this section we state two lemmas that are analogous

to Theorems 5.1 and 5.2 in [9]. Since those theorems

in [9] were tailored to their construction of the hard

function, we can not apply them here.

Throughout this section we will refer to the function

h defined in Section III. The first lemma states that if

we restrict our attention only to good seeds s, then for

almost all inputs x ∈ {0, 1}4n it holds that EncCx ◦
(BFExts|ρ) is hard to approximate for any restriction

ρ leaving k inputs unassigned. The proof of this lemma

can be found in the full version [19].

Lemma VI.1. Let {BFExts : {0, 1}n →
{0, 1}r}s∈{0,1}n be the family of functions as in
Theorem V.5. Recall that S = {s ∈ {0, 1}n :
BFExts is an (n, k) bit-fixing extractor with error 2−r}.

Let n′ = n/ log n, εapp = 2−r/10. For any seed s ∈ S
denote by

Hs = {x ∈ {0, 1}4n : EncCx ◦ (BFExts|ρ) is

(n′, εapp)-hard for all ρ ∈ Rk}.

Then |Hs| ≥ 24n − 23n.

The second lemma is a simple averaging argument

and its proof can also be found in the full version [19].

Lemma VI.2. Let ε > 0 and let F (x, y, s) be a formula
such that

Pr
x,y,s

[F (x, y, s) = h(x, y, s)] ≥ 1/2 + ε

then there exist s0 ∈ S and x0 ∈ Hs0 such that

Pr
y∈{0,1}n

[F (x0, y, s0) = h(x0, y, s0)] ≥ 1/2 + ε− εavg

where εavg = 2−r·logn + 2−n.

VII. PROOF OF MAIN THEOREM

In this section we prove the main theorem of this

paper (Theorem I.1).

Theorem VII.1 (Restating Theorem I.1). There is an
explicit (computable in polynomial time) Boolean func-
tion h : {0, 1}6n → {0, 1} and a constant c ≥ 8 such
that for any parameter r such that c log(n) ≤ r ≤ n1/3,
any formula of size n3−o(1)

r2 computes h correctly on a
fraction of at most 1/2 + 2−Ω(r) of the inputs.

Proof: Consider the function h constructed in Sec-

tion III. Recall that k, the entropy of our bit-fixing

extractor, is equal to 1/λ1/2 · r where λ1/2 is some

universal constant (see Theorem V.5). Let

ε := max(εavg, εshr, εapp)

= max(2−n + 2−r·logn, 2−Ω(k), 2−r/10) = 2−Ω(r).

Assume that F is a formula that approximates h with

probability ≥ 1/2+3ε. According to Lemma VI.2 there

exists s0 ∈ S and x0 ∈ Hs0 such that

Pr
y∈{0,1}n

[F (x0, y, s0) = h(x0, y, s0)] ≥ 1/2 + 3ε− εavg

≥ 1/2 + 2ε.

Denote by Fx0,s0(y) = F (x0, y, s0) and by hx0,s0(y) =
h(x0, y, s0). Let ρ be a random restriction to Fx0,s0

which is distributed according to Tk from Theorem IV.1,

and denote by Sρ the set of variables unassigned by ρ.

Since once a variable is chosen to be restricted its value

is determined randomly:

E
ρ∈Tk

Pr
z∈{0,1}Sρ

[Fx0,s0 |ρ(z) = hx0,s0 |ρ(z)] ≥ 1/2 + 2ε.

Let A be the set of restrictions in Tk that leave exactly

k variables unrestricted and that make Fx0,s0 shrink by a

factor of 2O(log
2 logn) ·

(
k
n

)2
. Theorem IV.1 gives Pr[ρ ∈

A] ≥ 1 − εshr. Since Xρ � Prz∈{0,1}Sρ [Fx0,s0 |ρ(z) =
hx0,s0 |ρ(z)] is a random variable whose range is [0, 1],
we can apply Lemma II.7

E
ρ∈Tk

[
Pr

z∈{0,1}Sρ
[Fx0,s0 |ρ(z) = hx0,s0 |ρ(z)]

∣∣∣∣ ρ ∈ A

]
≥

1/2 + 2ε− εshr ≥ 1/2 + ε .

By averaging there must exist ρ ∈ A such that

Pr
z∈{0,1}Sρ

[Fx0,s0 |ρ(z) = hx0,s0 |ρ(z)] ≥ 1/2 + ε .

Recall the definition of S , Hs0 , n
′, εapp in Lemma VI.1.

The fact that s0 ∈ S , x0 ∈ Hs0 and ε ≥ εapp gives

L(Fx0,s0 |ρ) ≥ n′ = n/ log(n) . (1)
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By the definition of A

L(Fx0,s0 |ρ) ≤
(
k

n

)2

· no(1) · L(Fx0,s0) (2)

Thus,

L(F ) ≥ L(Fx0,s0)
(2)

≥
(n
k

)2
· n−o(1) · L(Fx0,s0 |ρ)

(1)

≥ n3−o(1)

k2
=

n3−o(1)

r2

which completes the proof.
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