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Abstract—In the node-weighted prize-collecting Steiner tree
problem (NW-PCST) we are given an undirected graph G =
(V,E), non-negative costs c(v) and penalties π(v) for each
v ∈ V . The goal is to find a tree T that minimizes the total
cost of the vertices spanned by T plus the total penalty of
vertices not in T . This problem is well-known to be set-cover
hard to approximate. Moss and Rabani (STOC’01) presented
a primal-dual Lagrangean-multiplier-preserving O(ln |V |)-ap-
proximation algorithm for this problem. We show a serious
problem with the algorithm, and present a new, fundamentally
different primal-dual method achieving the same performance
guarantee. Our algorithm introduces several novel features to
the primal-dual method that may be of independent interest.

Keywords-node-weighted Steiner trees, prize-collecting prob-
lems, approximation algorithms, Lagrangean multiplier pre-
serving

I. INTRODUCTION

The node-weighted Steiner tree problem (NWST) is a

fundamental and well understood network design problem,

where we are given an n-node, undirected graph G =
(V,E), a non-negative cost c(v) for each vertex v ∈ V ,

and a set of terminals R ⊆ V . The goal is then to find a

tree T ⊇ R that has minimum total cost
∑

v∈T c(v).
In this paper, we consider the prize-collecting version of

the problem. As in standard NWST, the input in an instance

of the node-weighted prize-collecting Steiner tree problem

(NW-PCST) again consists of an n-node, undirected graph

G = (V,E) and a non-negative cost c(v) for each vertex

v ∈ V , but instead of a set of terminals we have now a

non-negative penalty value π(v) for each node v ∈ V . We

wish to find a tree T that minimizes
∑
v∈T

c(v) +
∑

v∈V \T
π(v).

Both NWST and NW-PCST have numerous practical and

theoretical applications (e.g., [5], [9], [17]), and are well-

known to be NP-hard. From an approximation point of view,

there is a relatively straight-forward, approximation-factor

preserving reduction from the set-cover problem, and there-

fore no o(lnn)-approximation algorithm exists for either

one, unless NP ⊆ DTIME(npolylog(n)) [6], [11]. In fact,

NWST and NW-PCST are significantly harder than the their

edge-weighted variants, for which constant approximation

algorithms are known [7], [10], [16], [2], [3], [1].

Klein and Ravi [11] showed that NWST admits an

O(lnn) approximation, matching the above in-approxima-

bility bound. Guha et al. [9] later gave a primal-dual interpre-

tation of this algorithm using a natural linear programming

formulation of the problem.

The focus of this paper will be the approximability of

the prize-collecting variant of the problem. We will in fact

address the rooted version of the problem, where a specific

root vertex r ∈ V has to be part of the output tree T . Clearly,

any algorithm for the rooted NW-PCST immediately yields

an algorithm with the same performance guarantee for the

unrooted version. The main result of this paper is stated in

the following theorem.

Theorem I.1. There is a Lagrangean multiplier preserving

(LMP) O(lnn)-approximation algorithm for NW-PCST; i.e.,
there is an algorithm that, given an NW-PCST instance,
computes a tree T containing the root r such that

∑
v∈T

c(v) + α
∑
v �∈T

π(v) ≤ α opt,

where opt is the value of an optimum solution to the problem,
and α = O(lnn).

We note that it is reasonably straight forward to obtain a

non-LMP O(lnn)-approximation algorithm for NW-PCST

via a standard threshold rounding approach for the natural

LP formulation of the problem [1]. Ensuring the LMP

property is highly non-trivial, however, and of crucial impor-

tance in the design of approximation algorithms for partial
versions of NWST via the Lagrangean framework of Chudak

et al. [4]. Two such partial problems that were considered

in [15] are the quota and budget versions of NWST. In the

former, we are given a non-negative profit p(v) for each

vertex v ∈ V and a quota Q > 0, and we wish to find a

connected set T of smallest cost whose vertices have profit

at least Q. In the latter problem, we are given a budget

B > 0, and wish to find a connected set T of largest total

profit whose cost is at most B.

The correctness of Theorem I.1 was previously claimed by

Moss and Rabani [14], [15]; the primal-dual algorithm pre-

sented there does, however, have a crucial technical mistake

that appears not to have a simple fix, as we explain in the

next subsection. For this reason, we present a fundamentally

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.67

568



different primal-dual approach. Beside proving correctness

of Theorem I.1, and therefore establishing correctness of

results that rely on using Theorem I.1 (e.g. approximation

results for the previous mentioned partial NWST prob-

lems [15] or for problems arising in the study of contagion

processes in networks [12], [8]), our algorithm features

several new ideas that it adds to the known primal-dual

repertoire, and therefore might be of independent interest.

We begin by presenting a natural integer programming

formulation for NW-PCST (see also [15]). Afterwards, we

give a high-level description of Moss and Rabani’s algo-

rithm, and show an example where it does not perform cor-

rectly. We then outline our algorithm, highlighting the main

novelties with respect to known primal-dual approaches.

A. LP Formulation for NW-PCST

The integer program has a variable xv for each vertex

v ∈ V that has value 1 if v is part of the output tree T ,

and xv = 0 otherwise. We also have variables zS for all

S ⊆ V ′ where V ′ = V \ {r}. We let zS = 1 if S is the

set of vertices not spanned by T , and zS = 0 otherwise. In

the following we let Γ(S) for a set S ⊆ V be the set of all

vertices u ∈ V \ S that have a neighbour in S, and we let

π(S) be equal to
∑

v∈S π(v).

min
∑
v∈V ′

c(v)xv +
∑
S⊆V ′

π(S)zS (P)

s.t.
∑

v∈Γ(S)
xv +

∑
U |S⊆U

zU ≥ 1 ∀S ⊆ V ′,

xv +
∑

U |v∈U
zU ≥ 1 ∀v ∈ V ′,

xv ∈ {0, 1} ∀v ∈ V ′,
zS ∈ {0, 1} ∀S ⊆ V ′,

We let (LP) be the linear programming relaxation of

(P), obtained by replacing integrality constraints by non-

negativity. Its LP dual is as follows.

max
∑
S⊆V ′

yS +
∑
v∈V ′

pv (D0)

s.t.
∑

S|v∈Γ(S)
yS + pv ≤ c(v) ∀v ∈ V ′

∑
U⊆S

yU +
∑
v∈S

pv ≤ π(S) ∀S ⊆ V ′

y ≥ 0

p ≥ 0

Call a vertex v ∈ V cheap if c(v) ≤ π(v), and expensive
otherwise. Just like in [15], we obtain a reduced version of

(D0) by setting pv = c(v) whenever v is a cheap vertex,

and pv = π(v) otherwise. We then define the reduced cost

c̄(v) of vertex v to be 0 if v is cheap, and we let it be

c(v)−π(v) otherwise. Similarly, we let the reduced penalty
π̄(v) be π(v) − c(v) if v is cheap, and 0 otherwise. The

reduced dual of (P) is then:

max
∑
S⊆V ′

yS + p(V ) (D)

s.t.
∑

S|v∈Γ(S)
yS ≤ c̄(v) ∀v ∈ V ′ (1)

∑
U⊆S

yU ≤
∑
v∈S

π̄(v) ∀S ⊆ V ′ (2)

y ≥ 0

B. Moss & Rabani’s algorithm

The algorithm in [15] computes a dual solution for (D)

using a monotone growing process. Initially, we let C be the

set of all inclusion-wise maximal connected components of

the graph induced by the cheap vertices and the root. All

such components but the one containing the root are active.

The algorithm raises the dual variables yS correspond-

ing to all active components in C uniformly, maintaining

feasibility for (D). When constraint (2) becomes tight for

some active component C, C becomes inactive and its

dual value is not increased anymore. When constraint (1)

becomes tight for some expensive vertex v, all the (active

and inactive) components adjacent to v are removed from

C and merged to form one new component C ′ given by

C ′ := {v} ∪ {C ∈ C : v ∈ Γ(C)}. This new component is

active if it does not contain the root, and inactive otherwise.

Then, the dual growing continues and the algorithm stops

when no active component remains. At the end of the

algorithm, the output is a tree T contained in the connected

component in C containing the root, and the dual solution

(y, p) for (D0). The claim is that

∑
v∈T

c(v) + α
∑
v/∈T

π(v) ≤ α(
∑
S⊆V ′

yS +
∑
v∈V ′

pv)

with α = O(lg n).
We exhibit a counterexample where the above process

finds a dual solution whose value is a factor of ≈ n
lower than the cost of an optimum solution. The starting

point for this example is the observation that the set-cover

problem is a special case NWST, and that known LP-based

O(lnn)-analyses for set-cover use dual-fitting, or direct

primal rounding approaches. So far, primal-dual algorithms

based on a monotone dual growing process are only known

to have performance ratio equal to the maximum frequency
of any element (e.g., see [18]), but no better. Since Moss and

Rabani’s algorithm is indeed based on a monotone primal-

dual process, this would (interestingly) lead to an algorithm

of the same type for set-cover. However, as we now show,

this is not the case.
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Figure 1. Counter example for the dual solution proposed in [14]. The pairs
of numbers on vertices show the values of cost and penalty respectively.

Indeed, the instance shown in Figure 1 draws motivation

from the usual set-cover reduction to NWST. The graph is

obtained by taking a complete bipartite graph with cheap

vertices u1, . . . , un on one side and expensive vertices

v1, . . . , vn on the other side. For each 1 ≤ i ≤ n, another

cheap vertex wi is attached to each expensive vertex vi.
All these cheap vertices have cost 0 and penalty n, while

all these expensive vertices have penalty 0 and cost n + 1.

Finally, we attach to u1 an expensive vertex of cost 2 and

penalty 0, that in turn is attached to the root.

When running the algorithm of [15] on this instance, at

the beginning the cheap vertices u1, . . . , un and w1, . . . , wn

form singleton active components. In the first step, the dual

values y{ui} and y{wi} (i = 1, . . . , n) are increased by 1
and constraint (1) becomes tight for all expensive vertices

v1, . . . , vn. This basically implies that all such expensive

vertices will join together to form a single component C
containing all vertices ui, vi, wi, for i = 1, . . . , n. The dual

value yC of this new active component will then be increased

by 1 where the expensive vertex adjacent to the root becomes

tight as well. At this point the entire graph forms one inactive

component, and the algorithm terminates. The total value of

the dual solution y computed by the algorithm is O(n), while

the optimal solution is any spanning tree of the whole graph,

that has value Ω(n2).

C. The new algorithm

Our algorithm follows a dual-growing approach, as does

that of Moss and Rabani. Unlike their algorithm, however,

ours is not monotone! Instead, it is inspired by Guha et

al.’s primal-dual view of Klein and Ravi’s NWST algorithm.

Like the algorithm in [9], our method works in phases.

In each phase but the last we construct trees that merge

several of the components from the previous phase. When

the algorithm terminates, the cost of the tree connected to

the root as well as the penalty of all vertices not spanned

by this tree are approximately charged to a feasible solution

to (D0). Both our algorithm and its analysis depart from the

standard primal-dual approach taken in [9] in several ways.

We highlight the two most important new features.

First, a standard primal-dual strategy for node-weighted

problems goes as follows: whenever at least two active

components tighten constraint (1) of a vertex v, then a tree

connecting these components and v is built. Our algorithm

instead considers connecting active and inactive components

neighbouring v, but does so only if the total dual of

participating components is large enough. We stress that

the algorithm may build a tree even if only one of the

participating components is active.

The second main difference of our methods lies in the

charging argument that accounts for the cost of the final

tree produced. For this, we identify a unique core for each

set S in the support of the dual solution produced. The

cost of the computed final tree is charged to only those

cores that it spans. We then combine this fact with a non-

standard potential function based argument to show our

claimed approximation guarantee.

Overall, both our algorithm and its analysis are signifi-

cantly more involved than the ones of Moss and Rabani:

in our opinion, this might be consistent with the fact

that classical primal-dual approaches based on monotone

growing seem to fail for NW-PCST, and therefore additional

ideas are required. We describe the details of our algorithm

in the next section.

II. ALGORITHM

Our algorithm for NW-PCST is primal-dual, and con-

structs an integral feasible solution for (P) as well as

a feasible solution for (D0) whose values are within an

O(lnn) factor of each other. This is accomplished in phases.

Phase i starts with a set of initial components Ci as well

as a component Tr that contains the root. Our algorithm

maintains a tree for each of these sets, spanning its vertices.

We also maintain the invariant, that no two components in

Ci are adjacent, or in other words, no two components in Ci
are connected by an edge.

Initially, in the first phase of the algorithm we define these

sets as follows: recall that we call a vertex cheap if its cost is

at most its penalty. We look at the graph induced by the root

r and all the cheap vertices, i.e. G[{r} ∪ {v : v is cheap}].
Each connected component in this induced subgraph will

be an initial component in C1, except for the component

containing the root that we call Tr.

In phase i we run a dual growing process that computes

a feasible solution (yi, pi) for (D0), and either

[i] finds a tree T i connecting a set C(T i) ⊆ Ci of at least

two initial components with cost proportional to the

total value of the dual solution (yi, pi), or

[ii] determines that the total penalty of components in Ci
is at most the value of (yi, pi).

In case [i] we either replace C(T i) in Ci by the single set T i,

or we replace Tr by Tr∪T i, while in case [ii] the algorithm
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terminates and returns the tree Tr.

To achieve the claimed approximation guarantee, we will

show that at least one among the feasible dual solutions

(yi, pi) produced by the algorithm in each phase, has a value

within an O(lnn) factor the cost of the returned tree Tr plus

the penalties of the nodes in V \ Tr.

We now give a detailed description of a phase of our

algorithm. For notational convenience we will omit super-

scripts i whenever there is no ambiguity. We will eliminate

all p-variables, and revert to reduced costs and penalties as

described in Section I-A. Our dual growing process will now

compute a dual solution feasible for (D).

The dual growing procedure of the current phase is best

described as a process over time. The algorithm maintains a

feasible dual solution yτ for (D) for every time τ ≥ 0, and

we let Sτ be a collection of sets that contains its support,
(i.e., Sτ contains all S with yτS > 0).

Call a vertex v tight if the constraint (1) for v holds with

equality for yτ , and note that cheap vertices are always tight.

In the following we will call a maximal connected set of

tight vertices with respect to yτ a moat. Any two moats are

clearly vertex disjoint, and no two vertices in different moats

can be adjacent. A moat S is active at time τ ≥ 0 if
∑
U⊆S

yτU < π̄(S),

and inactive otherwise. For ease of notation, we letAτ be the

collection of active moats. Initially, A0 is the set C of initial

components, and so each initial component is contained in

an active moat at time 0. We also define Iτ as the set of all

inclusion-wise maximal inactive sets in Sτ . For C ∈ C, and

τ ≥ 0, we let

ageτ (C) = min{τ,
∑
v∈C

π̄(v)}

be the age of C at time τ . The age of C is the first time,

where C becomes part of an inactive moat during the dual

growing process if that has happened before time τ , and τ
otherwise.

For a given set S ∈ Sτ , and an initial component C, we

call C the core of S if C ⊆ S has the largest age value

among all initial components contained in S. We will later

see that every set S ∈ Sτ has a unique core which we will

denote by core(S). This allows us to extend the age-notion

to sets S ∈ Sτ : we let the age of S at time τ be that of its

defining core.

At any time τ ≥ 0, the algorithm grows all sets in Aτ

uniformly at unit rate. Several events may happen during

this growth process.

[A] a constraint of type (2) becomes tight for an active set

S ∈ Aτ , or

[B] a constraint of type (1) becomes tight for a vertex ṽ.

In [A], the set S now becomes inactive, and moves from

Aτ to Iτ . If, after S moves, Aτ = ∅, then the phase ends

and we will show that condition [ii] holds. Otherwise, the

growing process continues for the remaining moats in Aτ .
Consider now an event of type [B]. We say that an initial

component C ∈ C loads ṽ if there is a set S ∈ Sτ with

ṽ ∈ Γ(S) such that C = core(S). Let Lτ (ṽ) be the set of

all C ∈ C that load ṽ. If ṽ ∈ Γ(Tr) or if
∑

C∈Lτ (ṽ)

ageτ (C) ≥ 3

2
τ, (�)

then we will find a tree T that connects ṽ and the cores

that load it, among possibly other things. We emphasize the

subtle but important departure from the familiar primal-dual

theme of active mergers: we do not require there to be more

than one active moat neighbouring ṽ at time τ !
The tree T is constructed iteratively; initially we let

T = ({ṽ}, ∅), and we will add to it in recursive calls

to two main procedures, named FindSubTree (FST) and

ConnectVertex (CVtx). We will refer to T as the phase
tree.

Once the tree construction is complete, the phase ends. We

remove from C all the initial components C connected by

T and we either replace Tr by Tr ∪ T , in case ṽ ∈ Γ(Tr),
or add the single component T to C. We will show that

condition [i] holds for T .
If instead ṽ /∈ Γ(Tr) and (�) does not hold, then we simply

continue the growing process. Note that, by definition of

moat, there will now be a single active moat containing ṽ
as well as all the sets in Aτ ∪ Iτ adjacent to ṽ. Indeed, at

any time τ , Sτ is a laminar family of non-adjacent sets.
We provide more details for the computation of tree T

in [B]. The general goal of the computation is to construct

a tree T with the following property: for every expensive

vertex w ∈ T , T connects all the initial components that load

w! To this aim, let S1, . . . , Sp be the collection of inclusion-

wise maximal sets in Sτ that neighbour ṽ. For each of these

sets Sj we will now invoke the function FST whose job is

to find a tree Tj that connects ṽ to those cores in Lτ (ṽ) that

are contained Sj . In general, the procedure FST takes as

parameters two vertex sets S ⊆ V and L ⊆ Γ(S); the set L
contains vertices that are already spanned by the phase tree

T . FST computes a tree connecting L to core(S) and adds it

to T . In our computation of tree Tj , we call FST(Sj , {ṽ}).
The final tree T centered at ṽ will then be the union of {ṽ}
and

⋃p
j=1 Tj .

ṽR

S

We point out the following subtlety indicated in the figure

above. There may be sets S,R ∈ Aτ ∪ Iτ that both load
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ṽ and hence their cores are contained in Lτ (ṽ). Notice

however that, if R is contained in S, then R is not among the

sets S1, . . . , Sp, and hence FST will not be called directly
for R, but rather will be invoked indirectly, at some later

point in the recursive procedure. This is important to ensure

that FST is called at most once for each set in Sτ : indeed,

this will be crucial for our analysis.

A. FindSubTree

FST(S,L) first constructs auxiliary graph HS as follows.

Let τ̄ be the time at which the construction of the phase

tree started, and hence, where the current phase ended. Let

τ be the age of S at time τ̄ . (Note this could be < τ̄ , if S
is an inactive set at time τ̄ ). Start with graph G[S ∪ L] and

among all the inactive sets in Sτ contained in S, identify

inclusion-wise maximal ones; abusing notation, we call the

super-vertex resulting from identifying set R by R as well.

Observe that HS may now have super-vertices but also

original, expensive vertices. In fact, no two super-vertices

are adjacent, or in other words, every neighbour of a super-

vertex in HS is an original expensive vertex. Each such

expensive vertex is tight (in terms of constraint (1)) at time

τ̄ . We let its auxiliary cost cS(v) be the total amount of dual

load it feels from core(S); i.e.,

cS(v) =
∑

R⊆S,v∈Γ(R)
core(R)=core(S)

yτR.

Let the auxiliary costs of the super-vertices and the vertices

contained in the core be 0.

a b

P

Q

z

R
a'

b'

a'

b'

z

R

(i) (ii)

a''

R'

Figure 2. Inside method FST. Paths P and Q appear in thick solid and
dashed stroke, respectively. Original (expensive) vertices appear in white,
and super-vertices are coloured in red; the small red subset indicates the
core of the considered set.

FST has two main parts that we now describe.

Part I. The purpose of part I is to find a tree TL that

connects the vertices in L, and to add it to T . We will later

see that L has never more than two vertices. We start by

computing a minimum-cS-cost path P in HS connecting

the vertices in L. This is trivial when L consists of a single

vertex a where we let P = {a}. Otherwise, assume that

L = {a, b} for some a, b ∈ Γ(S). Compute a minimum-cS-

cost a, b-path P ; i.e., a path in HS connecting a and b with

minimum value of ∑
v∈P

cS(v).

We now add the path P to the phase tree T ; recall that the

two end-points of P are already in the phase tree. The path

P may contain super- as well as expensive original vertices.

Super-vertices will be replaced by sub-trees as follows. For

each super-vertex R on this path with neighbours a′ and b′

we recursively call FST with parameters R, and L = {a′, b′}.
We also call

FST(R′,Γ(R′) ∩ P )

for each super-vertex R′ that is not on P , but is the

neighbour of some original expensive vertex in P ; see Figure

2 for an illustration. The trees returned by all of these

subcalls are added to the phase tree T , and indeed these

trees together with the expensive vertices in P form a tree

TL connecting vertices a and b.
Why do we recursively call the function FST on the sets

that neighbour expensive vertices in P ? The reason is that

their cores are loading such expensive vertices. Since those

vertices will become part of the tree T , as outlined in the

previous subsection, we now want to connect all cores that

load them as well.

Part II. The goal in the second part of FST is to connect

the core of S to the phase tree T . This is established by

procedure CVtx that takes as parameters a set S, a vertex

a ∈ Γ(S)∪S, and (for analysis purposes) a level index i. The

procedure computes a tree contained in S ∪ a that connects

a to T , and adds that to the phase tree. In our specific case,

we choose an arbitrary vertex z in core(S), and call

CVtx(S, z, 0).

At the end, FST adds core(S) to the phase tree as well.

B. ConnectVertex

Much like FST, CVtx(Sd, zd, d) first computes an aux-

iliary graph HSd
, as follows. First, consider the graph

G[Sd ∪ zd ∪ T ], where T is the current phase tree. Then, as

in FST, among all sets in Sτ contained in Sd, identify all

inclusion-wise maximal inactive ones, where τ = ageτ̄ (Sd)
and τ̄ is the time at which the current phase ended. Finally,

define the auxiliary cost cSd
(v) of a vertex v to be 0 if v is

a super-vertex or if v is in core(Sd). Otherwise, let cSd
(v)

be the total amount of dual load it feels from core(Sd).
The procedure computes a shortest-cSd

-cost path Qd in

HSd
, from zd to T . Qd ends in some (super- or non-super-)

vertex Sd+1 in HSd
. Note that Sd+1 could be a super-vertex.

However, this would mean that Sd+1∩T �= ∅, and therefore
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that the function FST has been called already for the set

Sd+1. For this reason, we do not call the function FST again

on Sd+1, but we rather recursively call

CVtx(Sd+1, zd+1, d+ 1)

where zd+1 is the second-last vertex on Qd. Now add the

path Qd to the phase tree T . This path may contain super-

as well as expensive vertices. For all super-vertices S′ on

Qd we now call FST(S′,Γ(S′) ∩ Qd). The computed tree

will replace the super-vertex placeholder in phase tree T .

Sd
zd

zd+1
S′′

S′

Sd ∩ TSd+1

v

u

Each expensive vertex v on Qd may feel dual load from

(the inactive component of a) super-vertex S′′, and hence

core(S′′) ∈ Lτ (v). We observe, however, that among the

internal vertices, only zd+1 may feel dual load from super-

vertices in T ∩ Sd. This follows from the fact that Qd is

a shortest path according to auxiliary costs cSd
. The figure

above illustrates the situation. CVtx now calls

FST(S′′,Γ(S′′) ∩Qd)

for all super-vertices S′′ �∈ T that neighbour some v ∈ Qd.

III. ANALYSIS

A. Correctness

The goal here is to show that the algorithm described in

the previous section can be correctly implemented.

First of all, note that in each phase i the number of initial

components in Ci decreases by at least one, and therefore

the algorithm terminates after at most n iterations.

The final output is a connected tree Tr, containing the

root by definition. Connectivity of Tr follows by the way

FST and CVtx are defined. However, correctness of the above

functions crucially relies on two properties that we just stated

in the previous sections and we are now going to prove:

(a) Each set S ∈ Sτ has a unique core;

(b) In each call of the function FST the cardinality of the

set L is at most 2.

To see (a), we show the following more general statement

by induction: at any time τ , an active set S ∈ Aτ contains

exactly one initial component C with ageτ (C) = τ . This

implies (a), because any set in Sτ was an active set up to

some time τ ′ ≤ τ . Observe that the statement is certainly

true at the beginning of each phase (τ = 0). The only event

that changes the family Aτ at time τ is when a vertex ṽ
becomes tight. In order for this to happen, it is necessary

that at least one set S, with ṽ ∈ Γ(S), is in Aτ . Suppose we

have two such sets S1 and S2. By induction hypothesis, there

is one initial component in S1 and one initial component in

S2 with age τ . But in this case, condition (�) holds and the

phase ends. Therefore, if the phase does not terminate, there

is only one set S ∈ Aτ with ṽ ∈ Γ(S). Any other maximal

set S′ ∈ Sτ adjacent to ṽ, if any, belongs to Iτ and by

induction hypothesis it follows that it contains only initial

components with age < τ . This implies that the new active

set, which now includes S, ṽ, and all its adjacent inactive

sets, will contain only one initial component with maximum

age value τ .

To see (b), we observe that there are only three different

situations that lead to FST calls. The first one is when (�) is

verified: here we will call FST with L = {ṽ}.
The second possibility is when there is a super-vertex R

that belongs to either a path P computed inside a FST call,

or a path Q computed inside a CVtx call. In both cases, we

call FST with L = {a, b}, where a and b are the expensive

vertices on the path adjacent to R.

The last possibility is when there is a super-vertex R′

adjacent to an expensive vertex v that belongs to either a path

P computed inside a FST call, or a path Q computed inside

a CVtx call. Assume v ∈ P (the other case is identical). We

call FST with L = {Γ(R′)∩P}. What does set L look like?

Recall that P is a minimum-cS-cost path in an auxiliary

graph HS (for some set S). Since super-vertices in HS are

never adjacent, L contains only expensive vertices. We now

claim that any expensive vertex w ∈ HS has a positive

auxiliary cost cS(w). If not, it means w became tight at

some time 0 < τ ′ < ageτ̄ (S), where τ̄ is the time at which

the current phase ended. However, when that happened we

had to check condition (�): since the phase did not end,

w became part of an active set at time τ ′, and therefore

it would now be inside a super-vertex, a contradiction. It

follows that, if |L| ≥ 3 then the path P contains at least

3 expensive vertices with positive auxiliary cost that are

adjacent to R′. Since the auxiliary cost of R′ is instead

0, P could be shortcut contradicting the fact that it is of

minimum cost.

B. Bounding the tree cost in phase i

Recall that with the exception of the very last phase, each

phase i of the algorithm computes a tree T i that joins a

number of initial components C(T i) in Ci. The tree will

then be merged with Tr if it and Tr have common adjacent

vertices, and T i will be added to Ci+1 otherwise, replacing

the components of C(T i). In this section we will bound the

total cost of T i. We do this by providing a detailed charging

scheme that distributes c̄(T i) over the components in C(T i).
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Recall from the description of phase i in Section II that

we start construction of tree T i as soon as constraint (1)

becomes tight for some vertex ṽ and either ṽ ∈ Γ(Tr) or (�)

holds. Suppose that this happens at time τ ≥ 0, and recall

that yτ is the feasible dual solution for (D) at this time. By

definition the set Sτ contains all sets S in the support of

yτ , and it is not hard to see that the family of these sets is

laminar (i.e., any two sets are either disjoint, or one is fully

contained in the other).

As soon as a vertex ṽ becomes tight and either ṽ ∈ Γ(Tr)
or (�) holds, our algorithm invokes FST for each inclusion-

wise maximal set S ∈ Sτ that neighbours ṽ; the goal being

to connect the core of S to ṽ. Each of these top-level FST
calls may itself trigger further, lower level FST calls on sets

S′ that are descendants of S in the laminar family defined

by Sτ .

In Part I, Function FST constructs a partial tree TL to be

added to T . In part II, FST invokes CVtx in order to connect

vertex z0 ∈ core(S) to the partial tree TL constructed so far.

In its construction of a path linking core and TL, CVtx will

call itself with progressively higher level-indices. A chain

of CVtx calls is associated with a chain {Si}pi=0 of sets in

Sτ with the following properties:

(i) S0 = S,

(ii) Si is a super-vertex in HSi−1 contained in Si−1 for all

1 ≤ i ≤ p− 1,

(iii) Sp is an original vertex contained in HSp−1 .

S0

S2

S1

z0

z1

z2

C

TL

S3

Q0

Q1

Q2

Figure 3. The chain of CVtx calls invoked from within a call to FST. The
thick black lines indicate edges of the tree TL constucted by FST.

For 0 ≤ i ≤ p − 2, the level-i call to CVtx computes a

shortest cSi
-cost zi, Si+1-path Q̄i in HSi

. By assumption

Si+1 is a super-vertex of HSi
. Let zi+1 be its original,

expensive predecessor on path Q̄i, and let Qi denote its

zi, zi+1-prefix. We then inductively call

CVtx(Si+1, zi+1, i+ 1).

Finally, Sp is an original vertex that is part of tree TL, and

the z0, T -path is simply the concatenation of Q0, . . . , Qp−1.

Figure 3 illustrates the construction for p = 3.

A component C ∈ Ci is charged whenever FST is called

on set S whose core is C. As we will see later, during a

phase, FST is executed at most once for any given set S, and

thus, a component C ∈ Ci is charged at most once during

a phase i. Even stronger, we will see that any core C is

charged at most once throughout the entire execution of the

algorithm. This fact will be crucial for the performance ratio

analysis in the next section.

As mentioned, a call of the form FST(S,L) yields a

charge Φ(core(S)) to core(S). This charge consists of three

main components.

(C1) The auxiliary cost cS(P ) of the L-path P computed.

(C2) The auxiliary cost

p−1∑
j=0

cSj
(Qj)

of the paths computed in the CVtx calls.

(C3) The non-auxiliary costs

p−1∑
j=1

(c̄(zj)− cSj−1(zj))

of vertices z1, . . . , zp−1.

Several comments are in order. Consider an expensive vertex

v on P ∪ Q0 ∪ . . . Qp−1. We charge the vertex’ auxiliary

cost to core(S). Who pays for the non-auxiliary part of v’s

cost? Recall that, in the description of FST and CVtx, if

v �= z1, . . . , zp−1 we are careful to invoke FST for all super-

vertices S′ whose cores are in Lτ (v). The set Lτ (v) contains

all cores of sets in Sτ that ever load v. Thus, through these

FST calls, we make sure that the entire cost of all vertices

in the constructed trees is charged to some cores.

Vertices z1, . . . , zp−1 receive special treatment; why? A

vertex zj , 1 ≤ j ≤ p − 1 is incident to super-vertex Sj in

HSj−1 where Sj intersects T . Vertex zj may also be adjacent

to other super-vertices that intersect T . All of these super-

vertices have cSj−1 -cost 0. If a vertex zj feels dual load

from super vertex R that intersects T , then we may have

already called FST on R. We must not call FST twice for

a set R ∈ Sτ ! For this reason, we charge all its reduced

cost c̄(v) to core(S) instead. Differently, note that Sp is an

expensive vertex by definition, and the vertex zp preceeding

Sp on Qp−1 is not incident to super-vertices intersecting T .

Otherwise, Qp−1 would not be a shortest zp−1, T -path in

HSp−1. We now bound the total charge Φ(C) to a core C
in phase i. Let us first show that each core is charged at

most once in the entire algorithm.
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Lemma III.1. Any set C of vertices is charged at most once
in the entire algorithm; i.e., FST is called at most once on
a set S whose core is C.

Proof: First note that whenever FST is called for a set S
with core C in some phase, then C is connected to at least

one other core through the phase tree. Hence, C will be

removed from the list of initial components C in this phase,

and will never enter it again. Hence, it suffices to show that

a set C ∈ C is charged at most once in any given phase i.
Within phase i, let S be the first set with core C for

which FST is called. FST(S,L) recursively computes a tree

within G[S ∪ L] that connects the core of S (i.e. C) to the

phase tree. All FST calls from within FST(S,L) must be

on inactive strict subsets of S, and hence all these subsets

have a different core. On the other hand, after FST(S,L) is

completed, core(S) is connected to the phase tree.
Finally, note that in our algorithm, we never call FST for

sets S whose core is part of the phase tree. This completes

the argument.
We continue focusing on a specific component C ∈ Ci.

Suppose that C was charged during FST(S,L). Recall that

we let τ be the time at which the construction of the phase

tree started, and hence, where the phase ended. We will

bound the part of Φ(C) coming from (C1), (C2), and (C3).

Lemma III.2. The auxiliary cost cS(P ) of the path con-
necting the vertices in L is at most 2 ageτ (S).

Proof: By the standard primal-dual argument on short-

est paths, it follows that any path from any vertex in HS to

any vertex in core(S) has auxiliary cost at most ageτ (S).
Therefore, the shortest path between any 2 vertices in HS

has auxiliary cost at most 2 ageτ (S).
In order to bound (C2), we use a similar primal-dual

argument, as well as (�).

Lemma III.3. Suppose that the path constructed in the CVtx
call to connect C to the phase tree consists of the concate-
nation of Q0, . . . , Qp−1. The auxiliary cost

∑p−1
j=0 cSj (Qj)

of this path is at most 4ageτ (S).

Proof: Let S0 = S, S1, . . . , Sp be the chain of sets

in Sτ corresponding to the chain of CVtx calls invoked

to construct Q0, . . . , Qp−1. Using a similar argument as in

Lemma III.2 one sees that that

cSi(Qi) ≤ 2ageτ (Si).

The lemma follows by showing that ageτ (Si) <
ageτ (Si−1)/2 for all 1 ≤ i ≤ p− 1.

Observe that Si is a super-vertex in HSi−1 for all 1 ≤ i ≤
p − 1. Hence, there is a time τ̄ < τ during the algorithm

where the active moat containing C meets Si. Repeating

an argument used in Section III-A, Si could not have been

active at the time as (�) would have been satisfied otherwise,

and the phase would have ended. More specifically, the age

of Si must have been smaller than τ̄ /2 < ageτ (Si−1)/2.

It remains to bound the contributions in (C3).

Lemma III.4. Using the notation of Lemma III.3, let zi+1
be the final vertex of path Qi for all 0 ≤ i ≤ p − 1. The
total non-auxiliary cost

p−1∑
i=1

(c̄(zi)− cSi−1(zi))

is at most ageτ (S).

Proof: This once again uses condition (�). Since Si+1

is a (super-)vertex in HSi for all 0 ≤ i ≤ p − 1, it must

be the case that at some time τ̄ < ageτ (Si), an active moat

containing core(Si) tightens vertex zi+1 (i.e., constraint (1)

of zi+1 becomes tight). Once again, as the phase did not

end at this time, we know that the total age of components

with cores in Lτ̄ (zi+1) − core(Si) (and hence the non-

auxiliary reduced cost of the vertex) must be less than τ̄ /2
which in turn is at most ageτ (Si)/2. As ageτ (Si) is at most

ageτ (S0)/2
i, and hence the non-auxiliary costs of vertices

zi decrease geometrically, the lemma follows.

We obtain the following final corollary.

Corollary III.5. The total charge Φ(C) of a component
C ∈ Ci is at most 7 ageτ (C).

Note that ageτ (C) =
∑

S:C=core(S) y
τ
S . Finally note that

the cost of each vertex in the phase tree T i is charged to

some core in Ci. Hence, the reduced cost of the T i is at most

the sum of Φ(C) over all initial components C ⊆ C(T i).

C. Approximation Factor Guarantee

In this section we prove that our algorithm is a primal-dual

O(lnn) approximation algorithm for the Prize Collecting

Steiner Tree problem. We start by proving that the total

reduced cost of the final tree T returned by the algorithm

in the last phase is within an O(lnn) factor of the value

of a feasible dual solution y∗ to (D) computed during some

phase of the algorithm.

Indeed, for the purpose of designing an LMP algorithm

the following section we will prove a slightly stronger

statement. The algorithm computes a feasible dual solution

yi for every phase i = 1, . . . ,m where m is the total number

of phases. For any such yi, we consider the dual solution yi,
obtained from y by setting yS := yS if core(S) ⊆ T , and

yS := 0 otherwise. Clearly, yi is a feasible dual solution.

We will prove the claimed bound by selecting l = O(lnn)
indices t1, . . . , tl ∈ {1, . . . ,m} such that

c̄(T ) = O
( l∑

j=1

∑
S

y
tj
S

)
. (3)

From the previous section, we know that

c̄(T ) =
∑

i:T i⊆T

c̄(T i) ≤
∑

C∈Ci:C⊆T

Φ(C)
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Therefore, it will be enough for us to prove that

∑
C∈Ci:C⊆T

Φ(C) = O
( l∑

j=1

∑
S

y
tj
S

)
.

To this aim, let us call Ci is the collection of initial

components in phase i that have been included in the final

tree T , that is Ci = {C ∈ Ci : C ⊆ T}.
The proof will go as follows: first, we will define buckets

1, . . . , l and assign every component in
⋃

i C
i

to exactly one
bucket. Secondly, we will prove that for every bucket j, we

can identify one dual solution ytj such that the total charge

of the components in bucket j is within a constant factor of

the value of ytj . Let us start by describing the assignment

process of components to buckets.

Set l := lnn�. In order to avoid dealing with constant in

the formulas later on, let us set Φ′(C) := Φ(C)/7 for every

C ∈ ⋃
i C

i
and let Φ′max be the maximum Φ′(C) among all

C ∈ ⋃
i C

i
. We assign a component C to a bucket 1 ≤ j < l

if and only if

Φ′max

2j
< Φ′(C) ≤ Φ′max

2j−1

and we assign C to bucket l otherwise. Clearly every

component is assigned to exactly one bucket. We observe

that bucket 1 is non-empty by definition, and bucket l
contains all small charges.

We now describe how we select one dual solution for each

bucket 1 ≤ j < l. Let tj be equal to the smallest phase index

i such that there is some component C ∈ Ci assigned to

bucket j. If there are buckets with no components assigned

to it, then we let tj be any arbitrary phase index. Note that

for some j and j′ �= j, we may have tj = tj′ . We also let

tl = t1, and we will show that
∑

C assigned to
bucket j

Φ′(C) = O
(∑

S

y
tj
S

)
, (�)

for all 1 ≤ j ≤ l. From the discussion above, it follows that

(�) implies the bound (3) on c̄(T ). Therefore our goal now

is to prove the above equality. We will treat the cases j < l
and j = l separately.

Let us start by assuming j < l, and let bj :=
Φ′max

2j .

Observe that, by construction, every component C assigned

to bucket j satisfies: Φ′(C) ≤ 2bj . Therefore, if bucket j
contains in total K components, the left-hand side of (�) is

at most 2Kbj . The key idea to relate the quantity 2Kbj to

the value of the dual solution ytj is that of introducing a

potential function βj(i), defined as

βj(i) =
∑

C∈Ci

min{π̄(C), bj},

for every bucket j, and for each phase i.

We now show how to use this potential function. Before,

we just state a useful remark that follows directly from

Corollary III.5 and the definitions.

Remark III.6. Let τ̄ i be the time when phase i terminates.
If there is a component C ∈ Ci which is assigned to bucket
j, then τ̄ i ≥ ageτ̄

i

(C) ≥ Φ′(C) ≥ bj . Moreover, π̄(C) ≥
Φ′(C).

The next lemma shows that the value of the potential

function computed in phase tj is a lower bound on the value

of the dual solution ytj .

Lemma III.7. βj(tj) ≤
∑

S y
tj
S .

Proof: By Remark III.6 above, the time τ := τ̄ tj when

phase tj terminates is at least bj . So for every component

C ∈ Ctj we have that the age of C at time τ is equal to

min{π̄(C), τ} ≥ min{π̄(C), bj} and therefore,
∑
S

y
tj
S ≥

∑

C∈Ctj

ageτ (C) ≥
∑

C∈Ctj

min{bj , π̄(C)} = βj(tj).

The following lemma is the heart of our analysis. It shows

that in each phase i, the potential function βj decreases

by an amount proportional to the total charge value of the

components in Ci assigned to bucket j. For space reasons,

we defer its proof to the full version of the paper [?].

Lemma III.8. Consider a phase i < m, and let k be the
number of components in Ci assigned to bucket j. Then

βj(i)− βj(i+ 1) ≥ k

2
bj

With the above two lemmas at hand, we are now ready

to prove (�). Let ki be the number of the components in C
i

assigned to bucket j. For a bucket j we have:

∑
S

y
tj
S ≥ βj(tj) ≥

m−1∑
i=tj

ki
2
bj + βj(m)

≥ 1

2

∑

C assigned to
bucket j

Φ′(C)/2,

and hence ∑

C assigned to
bucket j

Φ′(C) = O(
∑
S⊆V ′

ytS).

It remains to prove (�) for j = l. At the beginning of

the algorithm, we have at most n initial components, and

in every phase, at least two of these are merged into one

common component. Hence, the total number of distinct

initial components throughout the algorithm is at most

2n, and this is an upper bound on the total number of

components that are charged in the algorithm.
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We know that in phase tl = t1 there is a component

C ′ ∈ Ctl such that Φ′(C ′) ≥ Φ′max/2. Let τ := τ̄ tl . Then,∑
S ytlS ≥ ageτ (C ′) ≥ Φ′(C ′) = Φ′max/2. Therefore

∑
C:Φ′(C)≤bl

Φ′(C) ≤ 2nbl ≤ 2n
Φ′max

2�lnn	 ≤ 4Φ′max ≤ 8
∑
S

ytlS ,

as desired. Putting all together, we proved:

Theorem III.9. Let T be the tree returned by the algorithm
and let y∗ be the dual solution to (D) among y1, . . . , ym

with maximum value. Then

c̄(T ) ≤ O(lnn)
∑
S

y∗S .

The next lemma will complete our argument. Its proof

follows trivially by the algorithm definition.

Lemma III.10. Let ym be the dual solution found in the
last phase of the algorithm, then every component S in the
support of this solution is disjoint from T and

π̄(V ′ \ T ) ≤
∑
S

ymS

The approximation bound now follows.

Theorem III.11. Let OPT be the value (cost plus penalty)
of an optimal solution for the given instance of NW-PCST.
Our algorithm finds a solution T with c(T ) + π(V ′ \ T ) =
O(lnn)OPT .

Proof: Recall that, given a feasible solution y to the

dual (D), setting pv = c(v) if v is cheap, and pv = π(v)
otherwise, yields a feasible solution (y, p) to the dual (D0).

Using weak duality together with Theorem III.9 and Lemma

III.10, we have

c(T ) + π(V ′ \ T ) ≤
∑
v∈V ′

pv + c̄(T ) + π̄r(V
′ \ T )

= O(lnn)OPT +OPT = O(lnn)OPT

The proof of the following theorem uses the fact that the

cost of the tree output by our algorithm is charged only to

cores that it spans, and by a rather standard scaling argument.

We omit it here and refer the reader to the full version of

the paper [13].

Theorem III.12. There is an LMP O(lnn)-approximation
algorithm for NW-PCST.
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