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Abstract— We present the first data structures that maintain
near optimal maximum cardinality and maximum weighted match-
ings on sparse graphs in sublinear time per update. Our main
result is a data structure that maintains a (1+ ε) approximation of
maximum matching under edge insertions/deletions in worst case
O(

√
mε−2) time per update. This improves the 3/2 approximation

given by Neiman and Solomon [20] which runs in similar time. The
result is based on two ideas. The first is to re-run a static algorithm
after a chosen number of updates to ensure approximation guar-
antees. The second is to judiciously trim the graph to a smaller
equivalent one whenever possible.

We also study extensions of our approach to the weighted
setting, and combine it with known frameworks to obtain arbi-
trary approximation ratios. For a constant ε and for graphs with
edge weights between 1 and N , we design an algorithm that
maintains an (1 + ε)-approximate maximum weighted matching
in O(

√
m logN) time per update. The only previous result for

maintaining weighted matchings on dynamic graphs has an ap-
proximation ratio of 4.9108, and was shown by Anand et al.{[2],
[3]}

1. INTRODUCTION

The problem of computing maximum or near-maximum

matchings in a graph has played a central role in the study

of combinatorial optimization[18], [22]. A matching is a

set of vertex-disjoint edges in a graph, and two variants of

the problem are finding the maximum cardinality match-

ing in an unweighted graph, and finding the matching of

maximum weight in a weighted graph. The problem is

appealing for several reasons: it has a simple description;

matchings sometimes need to be improved by highly non-

local steps; and certifying the optimality of a matching

yields a surprising amount of structural information about

a graph. On static graphs, the current best algorithms for

maximum cardinality matching run in O(m
√
n) time, on

bipartite graph by Hopcroft and Karp [15], and on general

graph by Micali and Vazirani [19]. In the weighted case,

algorithms with similar running times were given by Gabow

and Tarjan [10], and by Duan et al. [7].

A natural question from a data structure perspective is

whether on a dynamically changing graph the solution to

an optimization problem can be maintained faster than

recomputing it from scratch after each update. For maximum

cardinality matching, an O(m) time algorithm follows by

executing one phase of the static algorithm described by

Tarjan[24]. For dense graphs, a faster running time of

O(n1.495) has been shown by Sankowski [23], and to date

this is the only known result that gives sublinear time per

update. For trees, Gupta and Sharma [11] gave an algorithm

based on top trees that takes O(log n) time per update.

On static graphs, a nearly-optimal matching can be com-

puted much faster than finding the optimum matching. So it

stands to reason that the same should apply in the dynamic

case. Ivković and Llyod[16] gave the first result in this

direction: an algorithm that maintains a maximal matching

with O((n+m)0.7072) update time. Recently there has been

a growing interest in designing efficient dynamic algorithms

for approximate matching. Onak and Rubinfeld designed a

randomized algorithm that maintains a c-approximation of

maximum matching in O(log2 n) update time [21], where c
is a large unspecified constant. Baswana, Gupta and Sen[4]

showed that maximal matching, which is a 2-approximation

of maximum matching, can be maintained in a dynamic

graph in amortized O(log n) update time with high prob-

ability. Subsequently, Anand et al. {[2], [3]} extended this

work to the weighted case, and showed how to maintain

a matching with weight that is expected to be at least

1/4.9108 ≈ 0.2036 of the optimum.

These results show that a large matching can be main-

tained very efficiently in dynamic graphs, but leave open the

question of maintaining a matching closer to the optimum

matching. Recently, Neiman and Solomon[20] showed that

a matching of size at least 2/3 of the size of optimum

matching can be maintained in O(
√
m) time per update

in general graphs , as well as O(log n/ log log n) time

per update on bounded arboricity graphs. A similar result

of maintaining 3/2-approximate matchings was obtained

independently by Anand [1]. This leads to the following

question: Can we maintain a matching close to maximum

matching (say (1 + ε)-approximate matching) in a dynamic

weighted or unweighted graph? We answer this question

in affirmative by designing the first data structure that

maintains arbitrary quality approximate max-cardinality and

max-weighted matching in sublinear time on sparse graph.

Our algorithm differs significantly from previous ones in

that we do not maintain strict invariants. Baswana et al. [4]

maintained a maximal matching, which ensures no edge

has both endpoints unmatched; and the 3/2-approximate

algorithm designed by Neiman and Solomon[20] remove
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all length three augmenting paths in the graph at each

update step. Our approach makes crucial use of the fact

that the optimization objectives involving matching is stable.

That is, a single update can only change the value of the

optimum matching by 1. So if we find a matching close to

maximum matching at some update step, it remains close to

maximum even after several updates to the graph. In case

the current matching ceases to be a good approximation of

the maximum matching, we then re-run the static algorithm

to get a matching that is close to optimum. This approach

of re-running a expensive routine occasionally is a common

technique in dynamic graph data structures [13], [14], [5]. It

is particularly powerful for approximating matchings since

the stability property gives us freedom in choosing when to

re-run the static algorithms. But re-running static algorithm

occasionally works well when the maximum matching in the

graph is large. To deal with graphs having small maximum

matching, we introduce the concept of core subgraph which

is the central concept of our paper. A core subgraph is a

subgraph of a graph having the following two properties: Its

size is considerably smaller than the entire graph. Secondly,

the size of maximum matching in core subgraph is same as

the size of maximum matching in the entire graph. We will

crucially use these two properties in designing a dynamic

algorithm for approximate matching. A detailed description

of our algorithm, as well as other components of our data

structure are presented in Section 3. The main result for

approximating the maximum cardinality matching can be

stated as follows:

Theorem 1.1: For any constant ε < 1/2, there exists an

algorithm which maintains a (1+ε)-approximate matching in

an unweighted dynamic graph in O(
√
m) worst case update

time.

It can be argued that the stability property of matchings

that we rely on is rare among optimization problems. For

most other problems like shortest paths and minimum span-

ning tree, there exist updates that require immediate changes

in the approximate solution maintained. For matchings, such

updates exists in the weighted version, where the objective

is the sum of weight over edges in the matching. Direct

extensions of our approach have linear dependencies on N
in update time, where N is the maximum weight of an edge.

This dependency can in fact be viewed as a quantitative

measurement of the decrease in stability as we allow larger

weights.

As a result, we investigate rounding/bucketing based

approaches which have logarithmic dependency on N in

Section 4. This was first studied for maintaining dynamic

matchings by Anand et al. [2], and they used dynamic max-

imal matchings as a subroutine in their algorithm. Directly

substituting our result for maximum cardinality matching

leads to immediate improvements in the approximation ratio

which is the second result in this paper.

Theorem 1.2: For any constant ε < 1/2, there exists

an algorithm that maintains (3 + ε)-approximate maximum

weighted matching in a graph where edges have weights

between [1, N ] in O(
√
m logN) worst case update time.

Our (3 + ε)-approximation algorithm is derived from

known schemes which bucket edges based on their weights.

The rounding scheme we use in this algorithm is based

on algorithm designed by Anand et al. [2]. It is not clear

whether any extension of this bucketing scheme will lead

to a (1 + ε)-approximate matching. To do this, we use

another rounding scheme designed by Lingas and Di[17].

Using this new rounding scheme, we obtain arbitrarily good

approximations of maximum matching, albeit at the cost of

a much higher dependency on 1/ε in the running time.

Theorem 1.3: For any constant ε < 1/2, there exists

an algorithm that maintains (1 + ε)-approximate maximum

weighted matching in a graph where edges have weights

between [1, N ] in O(
√
m logN) worst case update time.

As with the algorithm by Neiman and Solomon [20], our

algorithms are deterministic and the update time guaranteed

by them is worst case. However, for simplicity in our

presentations we will often start by describing the simpler

amortized variants.

2. PRELIMINARIES

We start by stating the notations that we will use, and

reviewing some well-known results on matchings. An undi-

rected graph is represented by G = (V,E), where V
represents the set of vertices and E represents the set of

edges in the graph. We will use n to denote the number of

vertices |V |, and m to denote the number of edges |E|.
A matching in a graph is a set of independent edges in the

graph. Specifically, a subset of edges, M ⊆ E is a matching

if no vertex of the graph is incident on more than one edge

in M . A vertex is called unmatched if it is not incident on

any edge in M , otherwise it is matched. Similarly, an edge

is called matched if it is in M or free otherwise. A vertex

cover is a set of vertices in a graph such that each edge has

at least one of its endpoint in the vertex cover.

The maximum cardinality matching(MCM) in a graph is

the matching of maximum size. Similarly, given a set of

weights w : E → [1, N ], we can denote the weight of

a matching M as w(M) =
∑

e∈M w(e). The maximum

weight matching(MWM) in a graph is in turn the matching

of maximum weight. We will use M to denote a optimum

matching for either of these two objectives depending on

context.

For measuring the quality of approximate matching, we

will use the notation of α-approximation, which indicates

that the objective (either cardinality or weight) given by the

current solution is at least 1/α of the optimum. Specifically,

a matching M is called α-MCM if |M | ≥ 1
α |MCM |, and

α-MWM if w(M) ≥ 1
α |MWM |.

Finding or approximating MCMs and MWMs in the

static setting have been intensely studied. Nearly linear time
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algorithms have been developed for finding (1+ ε) approxi-

mations, and we will make crucial use of these algorithms in

our data structure. For maximum cardinality matching, such

an algorithm for bipartite graph was introduced by Hopcroft

and Karp[15], and extended to general graphs by Micali and

Vazirani[19], [25].

Lemma 2.1: There exists an algorithm APPROXMCM

that when given a graph G with m edges along with a

parameter ε < 1, return an (1+ ε)-MCM in O(mε−1) time.

For approximate MWM, there has been some recent

progress. Duan et al.[6], [7] designed an algorithm that

find a (1 + ε) approximate maximum weighted matching

in O(mε−1 log(ε−1)) time.

Lemma 2.2: [6], [7] There exists an algorithm APPROX-

MWM that when given a graph G with m edges along

with a parameter ε < 1, return an (1 + ε)-MWM in

O(mε−1 log(ε−1)) time.

All logarithms in this paper are with base 2 unless

mentioned otherwise.

3. (1 + ε)-MCMS USING LAZY UPDATES

3.1. Overview

To maintain approximate matching, we exploit the sta-
bility of the matching and use the static algorithm for

matching APPROXMCM periodically. Our starting point is

the observation that the size of maximum matching changes

by at most 1 per update. This means that if we have a large

matching that’s close to the maximum, it will remain close

to maximum matching over a large number of updates. So

we use the following approach: Find a matching at certain

update step and wait for certain number of updates till the

matching is a good approximation of maximum matching.

This approach works well if the maximum matching is itself

large to begin with. But if the maximum matching itself is

small, we still need to run the static algorithm many times.

To overcome this, we show that instead of finding a

maximum matching on the entire graph, we can use a small

special subgraph such that the size of maximum matching in

this subgraph is same as the size of maximum matching in

the entire graph. We call this subgraph a core subgraph, and

it is the central idea of our (1 + ε) approximate algorithm.

As this subgraph is considerably smaller, the time needed

to find a maximum matching on it is considerably less. We

will show that this core subgraph can be formed using the

vertex cover of the entire graph. Specifically, we take the

vertex-induced subgraph formed by the cover, along with

some special chosen edges out of vertices belonging to the

cover.

But this leads to another question: How do we maintain

a vertex cover in a dynamic graph? For this, we can use

the algorithm of Neiman and Solomon [20]. One of the

invariants in this algorithm is that there are no edges between

unmatched vertices, which means the set of matched vertices

form a 2-approximate minimum vertex cover. Therefore

reporting these vertices suffices for a vertex cover at any

update step. However, note that our dependence on the above

algorithm is not critical. Specifically, we design another

simple algorithm which does not depend on the algorithm

of Neiman and Solomon[20] for finding the core subgraph.

A description of this, as well as modifications for handling

edges with weights in a small range, and obtaining worst

case bounds are in Section 3.3

3.2. Algorithm

We start with some notations that we will use in this

section. We number the updates from 1 to t and use the

following notations:

• G(i): The graph after the ith update.

• M(i): A matching computed on G(i)
• M(i \ j): Let delM (i, j) denote the set of all edges in

M(i) that are deleted from the graph between update

steps i and j. We define M(i\j) to be M(i)\delM (i, j),
i.e., M(i \ j) consists of all the edges in the matching

M(i) that are not deleted between update step i and j.

Also, we will use M(i) to denote the optimal matching

at step i. The approximation guarantees of M(i \ j) is as

follows:

Lemma 3.1: If ε, ε′ ≤ 1/2 and M(i) is an (1+ε)-MCM in

G(i), then for j ≤ i+ε′|M(i)|, M(i\j) is an (1+2ε+2ε′)-
MCM in G(j)

Proof: Suppose there were kins insertions and kdel
deletions in the k = ε′|M(i)| updates between updates i
and j. The assumption about M(i) implies that |M(i)| ≤
(1+ ε)|M(i)|. Since each insert can increase the size of the

maximum matching by 1, we have |M(j)| ≤ |M(i)|+kins.

Also, each deletion can remove at most one edge from M(i),
so |M(i \ j)| ≥ |M(i)| − kdel. The approximation ratio is

then at most:

|M(j)|
|M(i \ j)| ≤

(1 + ε)|M(i)|+ kins
|M(i)| − kdel

= 1 +
ε|M(i)|+ k

|M(i)| − kdel

≤ 1 +
ε|M(i)|+ ε′|M(i)|

1/2|M(i)|
Since kdel ≤ ε′|M(i)| ≤ 1/2|M(i)|

≤ 1 + 2ε+ 2ε′

This fact has immediate algorithmic consequences for

situations where the maximum matching is large. Suppose

we computed an (1 + ε/4)-MCM for G(i), M(i), then

M(i\ j) is (1+ ε) approximate maximum matching as long

as j ≤ i + ε|M(i)|/4. The O(mε−1) cost of the call to

APPROXMCM (given by Lemma 2.1) can then be charged

to the next ε|M(i)|/4 updates, giving O( m
|M(i)|ε

−2) time per

update. When |M(i)| is large, this cost is fairly small. On the
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GG′
v |Vcover|+ 1 neighbors of

v ∈ Vcover

Figure 1. An example showing the core subgraph G′ of G. All the
vertices in the inner circle form a vertex cover Vcover of G. The core
subgraph contains all the edges induced by the vertices in Vcover plus
at most |Vcover| + 1 edges from each vertex v ∈ Vcover whose other
endpoint is not in the vertex cover

other hand, when |M(i)| is of constant size, this approach

will make a call to APPROXMCM almost every update.

For small size matching, we introduce the concept of core
subgraph. As mentioned previously, core subgraph can be

found by using a vertex cover G.

Definition 3.2: Given a graph G and a vertex cover

Vcover, a core subgraph G′ consists of:

• All edges between vertices in Vcover

• For each vertex v ∈ Vcover, the |Vcover| + 1 edges of

maximum weight of v to vertices in V \Vcover. In case

of an unweighted graph, these edges can be chosen

arbitrarily.

An illustration of a core subgraph is shown in Figure 1.

It can be used algorithmically as follows.

Lemma 3.3: Let G′ be a core subgraph of G formed using

a vertex cover Vcover ⊆ V . If M ′ is a (1 + ε)-MCM in G′,
then it’s also a (1 + ε)-MCM in G.

Proof: We first show that the size of the maximum

matching in G is the same as the size of the maximum

matching in G′. Among all maximum matchings in G, letM
be one that uses the maximum number of edges in E(G′).
For the sake of contradiction, suppose M contains an edge

(u, v) in E(G) \E(G′). Since Vcover is a vertex cover, one

of u or v is in Vcover, without loss of generality assume it’s

u. By the construction rule, for (u, v) to not be included in

G′, there exist |Vcover| + 1 neighbors of u in V \ Vcover

that are in G′, let them be NV \Vcover
(u). As the maximum

matching in G has size at most |Vcover| and there are no

edges with both endpoints in V \ Vcover, at most |Vcover|
vertices in NV \Vcover

(u) can be matched. Therefore there

exists an unmatched vertex x in NV \Vcover
(u). Substituting

(u, v) with (u, x) gives a maximum matching that uses one

more edge in G′, giving a contradiction.

Combining this with the fact that E(G′) ⊆ E(G) implies

that the size of the maximum matchings in G and G′ are the

same. Therefore any (1 + ε)-MCM in G′ is also a (1 + ε)-
MCM in G.

As mentioned previously, we can find Vcover in the graph

by using the algorithm of Neiman and Solomon [20]. Their

algorithm maintains 3/2 approximate matching in O(
√
m)

update time in the worst case which is less than the bound

we are claiming. Whenever we need a vertex cover, we

can report all the matched vertices in the 3/2 approximate

matching. From now on we will assume an oracle access to

the vertex cover at any update step.

Any vertex cover Vcover in the graph G(i) formed out

of a valid matching has the following property: |Vcover| ≤
2|M(i)|. This is because the size of any valid matching is

always less than the maximum matching size |M(i)|. There-

fore when |M(i)| is small, we only need to run the static

algorithm given by Lemma 2.1 on a core subgraph G′(i)
of G(i). We can construct this graph in O(|Vcover|2)(=
O(|M(i)|2)) time by examining up to O(|Vcover|) neigh-

bors of each vertex in Vcover. Using Lemma 2.1, we can

find a (1 + ε) approximate matching in this graph in

O(|M(i)|2ε−1) time. Furthermore, Lemma 3.1 allows us

to charge this O(|M(i)|2ε−1) time to the next ε|M(i)|/4
updates. Therefore, cost charged per update can be bounded

by O(|M(i)|ε−2), which is small for small values of |M(i)|.
Our data structure maintains the following global states:

1) A matching M .

2) A counter t indicating the number of updates until we

make the next call to APPROXMCM

3) A vertex cover Vcover (Using the algorithm of Neiman

and Solomon [20])

We assume that the graph is empty initially. So M = ∅
at the start of the algorithm. Since we handle insertions and

deletions in almost symmetrical ways, we present them as a

single routine UPDATE, shown in Figure 2

Procedure Update(u, v)
if Update is a deletion and (u, v) ∈M then

Remove (u, v) from M ;

t← t− 1 ;1

if t ≤ 0 then2

Construct a core subgraph G′ of the current3

graph;

M ← APPROXMCM(G′, 1 + ε/4) ;4

t← ε/4|M | ;5

Figure 2. Lazy update algorithm for maintaining (1 + ε)-MCMs

The bounds of this routine is as follows:

Theorem 3.4: The matching M is an (1 + ε)-MCM over

all updates. Furthermore, the amortized cost per update is

O(
√
mε−2).
Proof: Let the current update be at time j, and the

matching M that we maintained was computed in iteration

i < j. So at update step i, the matching M is same as M(i)
and at update step j, it is M(i \ j). If t > 0, then since t
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was initialized to ε/4|M(i)|, we have j − i ≤ ε/4|M(i)|.
The guarantees for M(i \ j) follows from Lemma 3.1 with

ε← ε/4 and ε′ ← ε/4.

We now turn our attention to running time. Consider

a call to APPROXMCM made at update i. Assume that

ε|M(i)| ≥ 1. We have seen that there exists a core subgraph
G′(i) such that the number of edges |E(G′(i))| can be

bounded by O(min{m, |M(i)|2}). Since M(i) is a (1+ε/4)
approximate matching, (1 + ε/4)|M(i)| ≥ |M(i)|. So, the

size of E(G′(i)) is O(min{m, |M(i)|2}). Moreover, the

cost of finding the matching( in APPROXMCM) in the

graph is at most O(min{m, |M(i)|2}ε−1). This cost can

be charged to the ε|M(i)|/4 updates starting at update i,
implying the following amortized cost per update:

O(min{m, |M(i)|2}ε−1)
ε
4 |M(i)| = O

(
min

{
m

|M(i)| , |M(i)|
}
ε−2

)

If |M(i)| ≥ √m, the first term inside min is at most
√
m,

otherwise the second is at most
√
m. Combining these two

cases gives our desired bound.

Now we take a look at some corner cases to complete the

proof. We assumed that the cost of finding the matching at

level i can be charged to next ε|M(i)|/4 updates. This is

true except for last call to APPROXMCM. The number of

updates after this last call can be less than ε|M(i)|/4. This

cost can be amortized to all the updates. Since the number

of updates is at least m, the total cost charged to each update

step is O(ε−1).
The other case is when ε|M(i)| < 1. This implies that

G′(i) has size at most O(ε−2) and finding a matching in

such a graph takes time O(ε−3). For any constant ε, this

bound is O(
√
mε−2) and can be charged to the update step

itself. So the amortized cost charged to any update step is

at most O(
√
mε−2).

3.3. Improvements, Worst-Case Bound, and Weights

Several improvements can be made to the simpler version

of our algorithm described above. Due to space constraints

we only state the main statements here, and more details on

these modifications can be found in the arXiv version of our

paper [12].

First, note that we depend on the algorithm of Neiman and

Solomon [20] to maintain approximate vertex cover. Instead

of using their algorithm, we design another simple dynamic

algorithm which maintains approximate vertex cover. This

algorithm is similar in spirit as our approximate matching

algorithm, i.e, we use the property that vertex covers are

also stable and a single update to the graph can change the

vertex cover by 1. Using the techniques similar to the one

presented in the previous section, we design an algorithm in

which take O(
√
m) update time in the worst case to maintain

approximate vertex cover.

Note that APPROXMCM may take O(mε−1) time in the

worst case. So our algorithm in the previous section had

an amortized running time of O(
√
mε−2) per update. We

show that we can maintain approximate matching in worst

case O(
√
mε−2) update time. Specifically, we show that

computation cost of O(mε−1) time in APPROXMCM can

be distributed across a number of updates.

Furthermore, our ideas of maximum cardinality matching

can also be adapted to maximum weighted matchings. This

extension is natural because maximum cardinality matchings

is a special case where all edges have weight 1. A closer

examination of the proofs of Lemma 3.1 shows that when all

edge weights are in the range [1, N ], the stability properties

only degrade by a factor of N . In [12], we present the

following result:

Theorem 3.5: There exists an algorithm that maintains

(1 + ε)-approximate maximum weighted matching in

a graph where edges have weights between [1, N ] in

O(
√
mNε−2 log(ε−1)) update time.

4. APPROXIMATE WEIGHTED MATCHINGS WITH

POLYLOG DEPENDENCY ON N

We now show algorithms that approximate the maximum

weighted matching in time that depends on logN instead

of poly(N). This reduced dependency on N is a subject of

study in static algorithms since N is often poly(n) or larger.

Our overall scheme is based on the data structure for

weighted matchings by Anand et al. [2], [3]. Their algorithm

maintains logN levels and the edges are partitioned across

various levels according to their weights. A matching Ml is

maintained at each level l, and they gave a way to form a

single matching M̂ from these logN matchings. Algorith-

mically, it can be viewed as adding an edge (u, v) ∈Ml to

M̂ and removing all edges incident to u and v from all Ml′s

where l′ < l. At any update step, the matching maintained

is equivalent to the one generated in Figure 3.

M̂ = ∅;
Let lmax and lmin be the maximum and minimum

level number respectively;

for l = lmax to lmin do
M̂ = M̂ ∪Ml;

for (u, v) ∈Ml do
Remove all the edges adjacent to u and v
from Ml′ such that l′ < l

Figure 3. Generating M̂

Anand et al. [2], [3] showed that the combined matching

M̂ can be maintained on a dynamic graph if the matching

at each level l can be maintained. We will use their result

as a black-box via. the following Lemma.

Lemma 4.1: ([3]) If the matching on each level is main-

tained in O(f(m,n)) update time, then the overall matching

can be maintained in O(f(m,n) logN) update time.
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In their work, f(m,n) = O(log n) due to the use of the

dynamic maximal matching data structure by Baswana et

al.[4], which leads to a total bound of O(log n logN). We

will substitute our algorithms in place of this algorithm,

and investigate different leveling schemes which lead to

improved approximation ratios. This comes at a cost of a

higher value of f(m,n) = O(
√
mpoly(ε−1)), which leads

to a time of O(
√
m logNpoly(ε−1)) per update.

In Section 4.1, we present a deterministic algorithm which

maintains a (3+ε)-MWM in O(
√
m logNε−3) time, and in

Section 4.2, we given an alternate approach which maintains

a (1 + ε)-approximate MWM in O(
√
m logNε−2−O(ε−1))

time per update. Note that in both the above algorithm, we

will maintain approximate MCM or MWM matching at each

level. For this we can use the amortized and worst-case

versions of our data structures described in Section 3 and

Section 3.3 leading to corresponding types of final bounds

for the above algorithm.

In many of our proofs, we will incur (1 + O(ε)) mul-

tiplicative error in several places. As a result, the final

approximation factors in our calculations will often be 1+cε
for some constant c. Such bounds can be converted to 1+ ε
approximations by initiating the calls with smaller values

of ε. As a result, we will omit these steps to simplify

presentation.

4.1. (3 + ε)-Approximation Using Approx MCMs

We first show that our data structure for maintaining (1+
ε)-MCMs given in Theorem 1.1 can be used on each level.

The transformation for turning a MWM problem into a set

of O(logN) MCM instances is based on a rounding scheme

by Eppstein et al. [8], [9]. For a fixed value of r, we assign

an edge e with w(e) ∈ [αl+r, αl+r+1) to level l where α is

a constant which we will calculate later. Note that the level

of some edges can be −1, but our proof below can extend

to any negative level as well. We define the rounded weight

of an edge e assigned to level l using:

wr(e) :
def
= αl+r

Our analysis of the quality of M̂ is based on mapping each

edge in M̂ to a set of edges in Ml’s. For e = (u, v) ∈ M̂
from level l, we define R(e) as:

R(e) = {e}∪{(x, y) | (x, y) ∈Ml′

where l′ < l, and {x, y} ∩ {u, v} = ∅}
In other words, R(e) contains edge e and all those edges

adjacent to u and v from lower levels that were removed

when (u, v) was added to M̂ . Note that e is the only edge

in R(e) from level l. And for all l′ < l, there can be at most

2 edges from level l′ in R(e). To simplify our notations, we

will use w(S) to denote the total weight of a set of edges

S (that could be either M̂ , M or Ml for some l′)

For an edge e ∈ M̂ , let Φ(e) denote the total rounded

weights of edges in R(e), i.e., Φ(e) = wr(R(e)). We can

show that Φ(e) is closely related to wr(e).
Lemma 4.2: For e ∈ M̂ ,

Φ(e) ≤ α+ 1

α− 1
wr(e)

Proof: Let e ∈ M̂ be on level i. Since there is at most

1 edge on level i assigned to e (e itself) and 2 edges per

level assigned to e for each level j < i, we have:

Φ(e) =
∑

e′∈R(e)

wr(e
′)

=wr(e) +
∑
j<i

∑
e′∈Mj&e′∈R(e)

wr(e
′)

≤αi+r +
∑
j<i

2αj+r

≤αi+r

⎛
⎝1 + 2

∑
j<i

αj−i

⎞
⎠

=wr(e)

(
1 + 2

1

α− 1

)

=
α+ 1

α− 1
wr(e)

This allows us to relate the weight of M̂ to the weight of

the optimum matching, M.

Lemma 4.3:

(1 + ε)
α+ 1

α− 1
w(M̂) ≥ wr(M)

Proof:
Let M(i) denote the edges of M at level i. Since Mi is

a (1 + ε) approximate matching at level i, we have:

|M(i)| ≤(1 + ε)|Mi|
wr(M(i)) ≤(1 + ε)wr(Mi)

Since edges on same level have the same values of wr(e)

wr(M) ≤(1 + ε)
∑
i

wr(Mi)

Consider an edge e = (u, v) ∈ Mi. If e ∈ M̂ , then

e ∈ R(e). If e /∈ M̂ , then there exists an edge e′ ∈ M̂ at

level j > i such that one of the endpoints of e′ is either u or

v, which means e is in the set R(e′). Therefore each edge

e can be mapped to one or more R(e′), and we have:

Φ(M̂) ≥
∑
i

wr(Mi)

Which implies (1 + ε)Φ(M̂) ≥ wr(M). Applying Lemma

4.2 on all edges in M̂ then gives:

(1 + ε)
α+ 1

α− 1
wr(M̂) ≥ wr(M)
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And the result follows from the fact that the rounded down

edge weights satisfy wr(e) ≤ w(e).
Hence, it suffices to bound ratio between wr(M) and

w(M). The analysis in Anand et al.[3] bounded this ra-

tio over a uniformly random choices of r. They showed

that the expected rounded value of the optimum matching,

Er[wr(M)] satisfies Er[wr(M)] ≥ α− 1

α lnα
w(M), which

when combined with Lemma 4.3 leads to an expected

approximation ratio of about 3+ε when α ≈ 5.704. Here we

show instead that a deterministic and worst-case bound can

be obtained by using O(1/ε) versions of our data structure,

each with a pre-selected value of r.

We have k = lnα/ ln(1 + ε) copies of our algorithm

which work exactly identically but with different value of r.

For the jth copy, r(j) = j−1
k . Consider an edge e such that

w(e) = αi+δ where 0 < δ ≤ 1. Let j∗ is the value such

that j∗−1
k ≤ δ < j∗

k . Then we have:

wr(j)(e) =

{
αi+ j−1

k if j ≤ j∗

αi+ j−1
k −1 j > j∗

Informally, an edge e is at level i in jth copy, if j ≤ j∗

otherwise it is at level i−1. We want to relate the weight of

maximum matching M in G to the new weight in these k
copies. Specifically, we want to get a relation similar to the

relation between Er[wr(M)] and w(M) mentioned above.

We show that there exists a j with the following relation.

Lemma 4.4: There exists a j such that:

wr(j)(M) ≥ (1− ε)
α− 1

α lnα
w(M)

Proof: Summing over all j of wr(j)(e) gives:
∑k

j=1 wr(j)(e)

w(e)

=

∑j∗

j=1 α
i+ j−1

k +
∑k

j=j∗+1 α
i+ j−1

k −1

αi+δ

=

∑j∗

j=1 α
j−1
k +

∑k
j=j∗+1 α

j−1
k −1

αδ

= α−δ+ j∗−1
k

⎛
⎝ j∗∑

j=1

αj/k−j∗/k +
k∑

j=j∗+1

αj/k−j∗/k−1

⎞
⎠

= (1 + ε)−kδ+j∗−1

⎛
⎝ j∗∑

j=1

(1 + ε)j−j∗ +
k∑

j=j∗+1

(1 + ε)j−j∗−k

⎞
⎠

Since j∗ was chosen such that j∗

k > δ, −kδ + j∗ − 1 ≥
−k( j∗k ) + j∗ − 1 = −1 and (1 + ε)−kδ+j∗−1 ≥ (1 + ε)−1.

Substituting this gives:
∑k

j=1 wr(j)(e)

w(e) ≥

(1 + ε)−1

⎛
⎝ j∗∑

j=1

(1 + ε)j−j∗ +

k∑
j=j∗+1

(1 + ε)j−j∗−k

⎞
⎠

The two summations are a rearranged version of a geometric

sum. It can be rearranged by substituting l = j∗ − j + 1
and l = j∗ − j + k + 1 in the first and second summation

respectively to obtain:

∑k
j=1 wr(j)(e)

w(e)
=(1 + ε)−1

⎛
⎝ j∗∑

l=1

(1 + ε)−l+1 +

k∑
l=j∗+1

(1 + ε)−l+1

⎞
⎠

=
k∑

l=1

(1 + ε)−l

=
1− (1 + ε)−k

ε

=
(1− 1/α)

ε

=
α− 1

αε

Summing this over all edges in M gives:∑
e∈M

∑
j

wr(j)(e) ≥
∑
e∈M

α− 1

αε
w(e)

∑
j

wr(j)(M) ≥α− 1

αε
w(M)

By an averaging argument we get:

max
j
{wr(j)(M)} ≥1

k

∑
j

wr(j)(M)

≥α− 1

αεk
w(M)

Note that k = lnα/ ln(1 + ε). Here we make use of the

following known fact

Fact 4.5: For ε < 1, if 0 ≤ x ≤ ε, then ln(1 + x) ≥
(1− ε)x.

Applying it with x = ε gives:

max
j
{wr(j)(M)} =(α− 1) ln(1 + ε)

αε lnα
w(M)

≥ (α− 1)(1− ε)ε

αε lnα
w(M) By Fact 4.5

=(1− ε)
α− 1

α lnα
w(M)

Combining Lemmas 4.3 and 4.4 gives the following

theorem.

Theorem 4.6: For any ε < 1/2, there exists a fully

dynamic algorithm that maintains a (3 + ε)-MWM for any

graph on n in worst case O(
√
m logNε−3) time per update.

Proof: Consider maintaining k copies of our data struc-

ture and picking the maximum weighted matching among

these copies as the current best matching.

Using Lemma 4.3, we get:

∀j (1 + ε)
α+ 1

α− 1
w(M̂(j)) ≥wr(j)(M)
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Using Lemma 4.4, there exists a j′ = argmaxj{w(M̂(j))}
such that

wr(j′)(M) ≥ (1− ε)
α− 1

α lnα
w(M)

Combining the above two equations we get:

(1 + ε)
α+ 1

α− 1
w(M̂(j′)) ≥(1− ε)

α− 1

α lnα
w(M)(

1 + ε

1− ε

)
(α+ 1)α lnα

(α− 1)2
w(M̂(j′)) ≥w(M)

Where one can check that 1+ε
1−ε ≤ (1+4ε) when ε < 1/2.

By a suitable choice of ε, this factor of 1+4ε can be turned

into 1+ε′. This implies that the approximation ratio obtained

by our algorithm is
(1+ε)(α+1)α lnα

(α−1)2 . This term achieves its

minimum value of ≈ 3 + 3ε when α ≈ 5.704. Again this

approximation ratio can be turned into 3 + ε′ by a suitable

choice of ε.
For the update time, note that since α is a constant,

k = O(1/ log(1 + ε)) = O(1/ε) copies of the structure are

needed. In each such copy, a matching can be maintained in

O(
√
m logNε−2) update time. So matching in all the copies

can be maintained in O(
√
m logNε−3) time per update.

4.2. (1 + ε)-MWMs Using Approximate MWMs

Overview: In this section, we present an algorithm that

maintains a (1 + ε)-MWM using a more gradual bucketing

scheme. This bucketing scheme was first used by Lingas

and Di[17]. We start by observing the definition of R(e) for

an edge e(u, v) in M̂ from the previous section. Informally,

R(e) contains edge e and all those edges adjacent to u and

v from lower levels that were removed when (u, v) was

added to M̂ . A closer look at our algorithm reveals that the

approximation ratio depends on the ratio of weight of e and

the combined weight of edges in R(e). This ratio can be

reduced if the edges at lower level have significantly less

weight than the weight of edge e. To achieve this, we will

artificially create levels such that the ratio of weight between

two consecutive level is significant. For this, we will drop

some edges from the graph to create a gap between two

consecutive levels. In order to account for the weight of

these dropped edges, we in turn need to keep several copies

of our data structure with different edges left out in the other

copies.

We then proceed with the same algorithm as mentioned in

Section 4 with one main difference. Instead of maintaining

(1 + ε)-MCM at each level, we maintain (1 + ε)-MWM at

each level using the Theorem 3.5. Note that this theorem

has a dependence of N in its running time. We will show

that each level can be formed in such a way that N
can be bounded by O(ε−O(ε−1)). So the running time for

maintaining (1 + ε) approximate MWM at each level will

have exponential dependence on (1/ε).
Thereafter, we combine the matching across the various

level using the same procedure as mentioned in Section 4.

Bucket

0
1
2
3
4
5
6
7
8
9
10
11

Level 0

Level 1

Level 2

Level 0

Level 1

Level 2

Level 3

Level 0

Level 1

Level 2

Level 3

Copy c = 0 c = 1 c = 2

Figure 4. Bucketing and level scheme where C = 3

We will show that there exists a copy of our data structure

such that the weight of the matching maintained by our

algorithm in that copy is a good approximation of maximum

weighted matching in the entire graph.

Algorithm: Once again we partition the edges by weights

geometrically: an edge e is in bucket b if w(e) is in the range

[ε−b, ε−(b+1)). However, our levels no longer corresponds to

individual buckets, but instead to a set of C − 1 continuous

buckets for a value of C to be specified later. We will also

remove some of these buckets, and the choices of buckets to

remove leads us to run several copies of our data structure

simultaneously.

We will run C = �ε−1� copies of our algorithm, where in

the cth copy, we remove all buckets i such that i mod C =
c. This leads to a set of graphs G0 . . . GC−1. Removing the

buckets creates natural partitions of the remaining edges,

which gives our levels. For a copy c, we will place buckets

with b = [lC + c+ 1 . . . (l+ 1)C + c− 1] into level l. Note

that the ratio of maximum to minimum edge weight in each

level is bounded by ε−(C−2)(= O(ε−O(ε−1))). Therefore,

the algorithm given in Theorem 3.5 allows us to main-

tain an (1 + ε)-MWM in O(ε−O(ε−1)
√
mε−2 log(ε−1)) =

O(ε−2−O(ε−1)
√
m log(ε−1)) time at each level. These

matchings can in turn be combined together in the same

way as in Section 4. An illustration of leveling scheme used

by our algorithm is shown in Figure 4.

We start by analyzing the guarantees of our algorithm

on the cth copy. Specifically, the approximation ratio of the

combined matching M̂ c w.r.t. the maximum matching Mc

in this copy . Let Mc
l be the edges of Mc at level l. Also

let M c
l denote the matching maintained at each level using

Theorem 3.5. Once again, for an edge e = (u, v) in M̂ c at

level l, we define Rc(e) as:

Rc(e) = {e}∪{(x, y)|(x, y) ∈M c
l′

where l′ < l, and {x, y} ∩ {u, v} = ∅}
For an edge e ∈ M̂ c, let Φc(e) denote the total rounded
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weights of edges in Rc(e), i.e., Φc(e) = w(Rc(e)). We

can show that Φc(e) is related to w(e) by the following

inequality:

Lemma 4.7: For any edge e in the combined matching

M̂ c, we have:

Φc(e) ≤ (1 + 3ε)w(e)

Proof: Assume that e is on level l. Since there are at

most 1 edge on level l assigned to e (e itself) and 2 edges

per level l′ < l assigned to e, we have:

Φc(e) =
∑

e′∈Rc(e)

w(e′) = w(e) +
∑
l′<l

∑
e′∈Mc

l′∩Rc(e)

w(e′)

Since an edge on level l′ is in bucket [l′C + c+ 1 . . . (l′ +
1)C + c − 1] and an edge in bucket b has weight at most

(1/ε)b+1, the weight of an edge at level l′ is ≤ ε−c−(l′+1)C .

Φc(e) ≤w(e) +
∑
l′<l

2ε−c−(l′+1)C

Which can in turn be bounded relative to w(e). Since e is

in level l and an edge in bucket b has weight at least (1/ε)b,

w(e) ≥ ε−lC−c−1

Φc(e) ≤w(e) +
∑
l′<l

2ε(l−l′−1)C+1w(e)

≤w(e) + 2ε

1− εC
w(e)

≤w(e)(1 + 3ε) assuming that ε < 1/2

We now show the relation between the combined match-

ing M̂ c and Mc.

Lemma 4.8:

(1 + 7ε)w(M̂ c) ≥ w(Mc)

Proof:
Since M c

l is a (1 + ε) approximate maximum weighted

matching on level l, we have:

w(Mc
l ) ≤(1 + ε)w(M c

l ), so w(Mc) ≤ (1 + ε)
∑
l

w(M c
l )

Consider an edge e = (u, v) ∈ M c
l . If e ∈ M̂ c, then

e ∈ Rc(e). If e /∈ M̂ c, then there exists an edge e′ at level

l′ > l such that one of the endpoints of e′ is either u or v,

which means e is in the set Rc(e′). Therefore each edge e
can be mapped to one more Rc(e′), and we have:

Φc(M̂ c) ≥
∑
l

w(M c
l )

Which implies (1 + ε)Φc(M̂ c) ≥ w(Mc). Applying

Lemma 4.7 over all edges in M̂ c then gives:

(1 + ε)(1 + 3ε)w(M̂ c) ≥ w(Mc)

And the bound follows from (1+ε)(1+3ε) = 1+4ε+3ε2 ≤
1 + 7ε when ε < 1.

We now find a relation between w(Mc) and w(M). We

show there is at least one copy whose maximum matching

has weight at least (1− 1/C) of w(M).
Lemma 4.9: At any update step, if the maximum weight

matching in the current graph is w(M), there exist a copy

c such that w(Mc) ≥ (1− 1/C)w(M).
Proof:

Let M̄c denote the set of edges in M that are not present

in the cth copy. Since each bucket is removed in only one

copy, we have:

∪cM̄c =M, so
∑
c

w(M̄c) = w(M)

Since M \ M̄c is a matching in Gc, we have w(Mc) ≥
w(M) − w(M̄c). Note that the inequality is due to Mc

being the maximum weighted matching in Gc instead of the

restriction of M on it. Summing over all c copies gives:∑
c

w(Mc) ≥
∑
c

(
w(M)− w(M̄c)

)

=C · w(M)−
(∑

c

w(M̄c)

)

=(C − 1) · w(M)

Dividing both sides by C gives that the average of w(Mc)
is at least (1 − 1/C)w(M). Therefore there exist some c
where w(Mc) ≥ (1− 1/C)w(M).

Combining Lemmas 4.9 and 4.8, we deduce that there

exists a copy c such that

(1 + 7ε)w(M̂ c) ≥ (1− ε)w(M). So,

w(M)

w(M̂ c)
≤ (1 + 7ε)

(1− ε)

This ratio is less that (1 + 16ε) for ε < 1/2. By a suitable

chose of ε′, the factor of (1+16ε) can be turned into (1+ε′).
This means that if we set C = �ε−1� and maintain (1+ε)-

MWMs on each copy of our data structure, then one of

the maximum weight matching among these C copies will

always be a good approximation of the maximum weighted

matching for the entire graph.
Note that in each copy of our data structure there

are O(logε−1 N)/C = O
(

logN
C log(ε−1)

)
levels and in

each level an approximate MWM is maintained in

O(ε−2−O(ε)−1√
m log(ε−1)) time. This implies that the

overall update time taken by our algorithm across the

C copies is O(C · logN
C log(ε−1)

√
mε−2−O(ε)−1

log(ε−1)) =

O(
√
mε−2−O(ε)−1

logN). So we can state the following

theorem:
Theorem 4.10: For any ε < 1/2, there exists a fully

dynamic algorithm that maintains a (1 + ε)-MWM in worst

case O(
√
mε−2−O(1/ε) logN) time per update.
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5. CONCLUSION

We showed a simpler method for maintaining approximate

matchings that maintains (1 + ε)-approximations in about√
m time per update. A challenging question is to design an

algorithm with better update time. Since a maximal matching

can be maintained in O(log n) update time [4], it is natural

to believe that we may be able to maintain a (1 + ε)-
approximate matching in polylog time. A starting point in

this direction might be dense graphs, where m ≈ n2. Even

for a (2− ε)-approximation, no algorithm with o(n) update

time is known.

Theoretically our arbitrary quality approximation algo-

rithm from Section 4.2 outperforms the (3+ε) approximation

given in Section 4.1. It falls short of a practical algorithm

for maintaining (1 + ε)-MWMs due to an exponential

dependency on ε−1. We believe a more intricate rounding

scheme such as the one given in Section 4.2, or possibly

a data structure that incorporates details of the Duan et al.

algorithm [6], [7] are promising approaches in this direction.
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