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Abstract—We study dynamic (1 + ε)-approximation algo-
rithms for the all-pairs shortest paths problem in unweighted
undirected n-node m-edge graphs under edge deletions. The
fastest algorithm for this problem is a randomized algorithm
with a total update time of Õ(mn) and constant query time by
Roditty and Zwick [34] (FOCS 2004). The fastest deterministic
algorithm is from a 1981 paper by Even and Shiloach [23]; it
has a total update time of O(mn2) and constant query time.
We improve these results as follows:

(1) We present an algorithm with a total update time of
Õ(n5/2) and constant query time that has an additive
error of two in addition to the 1 + ε multiplicative error.
This beats the previous Õ(mn) time when m = Ω(n3/2).
Note that the additive error is unavoidable since, even
in the static case, an O(n3−δ)-time (a so-called truly
subcubic) combinatorial algorithm with 1+ε multiplicative
error cannot have an additive error less than 2−ε, unless
we make a major breakthrough for Boolean matrix mul-
tiplication [19] and many other long-standing problems
[40].
The algorithm can also be turned into a (2 + ε)-
approximation algorithm (without an additive error) with
the same time guarantees, improving the recent (3 + ε)-
approximation algorithm with Õ(n5/2+O(1/

√
logn)) run-

ning time of Bernstein and Roditty [12] (SODA 2011) in
terms of both approximation and time guarantees.

(2) We present a deterministic algorithm with a total update
time of Õ(mn) and a query time of O(log log n). The
algorithm has a multiplicative error of 1 + ε and gives
the first improved deterministic algorithm since 1981. It
also answers an open question raised by Bernstein in his
STOC 2013 paper [11].

In order to achieve our results, we introduce two new tech-
niques: (1) A monotone Even-Shiloach tree algorithm which
maintains a bounded-distance shortest-paths tree on a certain
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I. INTRODUCTION

Dynamic graph algorithms is one of the classic areas in

theoretical computer science with a countless number of ap-

plications. It concerns maintaining properties of dynamically

changing graphs. The objective of a dynamic graph algo-

rithm is to efficiently process an online sequence of update

operations, such as edge insertions and deletions, and query

operations on a certain graph property. It has to quickly

maintain the graph property despite an adversarial order of

edge deletions and additions. Dynamic graph problems are

usually classified according to the types of updates allowed:

decremental problems allow only deletions, incremental
problems allow only insertions, and fully dynamic problems

allow both.

A. The Problem

We consider the decremental all-pairs shortest paths
(APSP) problem where we wish to maintain the distances

in an undirected unweighted graph under a sequence of the

following delete and distance query operations:

• DELETE(u, v): delete edge (u, v) from the graph, and

• DISTANCE(x, y): return the distance between vertex

x and vertex y in the current graph G, denoted by

dG(x, y).

We use the term single-source shortest paths (SSSP) to refer

to the special case where the distance query can be done only

when x = s, for a pre-specified source node s. The efficiency

is judged by two parameters: query time denoting the time

needed to answer each distance query, and total update time
denoting the time needed to process all edge deletions. The

running time will be in terms of n, the number of nodes in

the graph, and m, the number of edges before any deletion.

We use Õ-notation to hide an O(poly log n) term. When it

is clear from the context, we use “time” instead of “total
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update time”, and, unless stated otherwise, the query time

is O(1). One of the main focuses of this problem in the

literature, which is also the goal in this paper, is to optimize
the total update time while keeping the query time and

approximation guarantees small. We say that an algorithm

provides an (α, β)-approximation if the distance query on

nodes x and y on the current graph G returns δ(x, y) such

that dG(x, y) ≤ δ(x, y) ≤ αdG(x, y) + β. We call α and

β multiplicative and additive errors, respectively. We are

particularly interested in the case where α = 1 + ε, for an

arbitrarily small constant ε > 0, β is a small constant, and

the query time is constant or near-constant.

Previous Results: Prior to our work, the best total update

time for deterministic algorithms was Õ(mn2) by one of the

earliest papers in the area from 1981 by Even and Shiloach

[23]. The fastest exact randomized algorithms are the

Õ(n3)-time algorithms by Demetrescu and Italiano [18] and

Baswana, Hariharan, and Sen [7]. The fastest approxima-
tion algorithm is the Õ(mn)-time (1 + ε, 0)-approximation

algorithm by Roditty and Zwick [34]. If we insist on an

O(n3−δ) running time, for some constant δ > 0, Bern-

stein and Roditty [12] obtain an Õ(n2+1/k+O(1/
√
logn))-

time (2k−1+ε, 0)-approximation algorithm, for any integer

k ≥ 2, which gives, e.g., a (3+ε, 0)-approximation guarantee

in Õ(n5/2+O(1/
√
logn)) time. All these algorithms have an

O(1) worst case query time. See Section II for more detail

and other related results.

B. Our Results
We present improved randomized and deterministic algo-

rithms. Our deterministic algorithm provides a (1 + ε, 0)-
approximation and runs in Õ(mn/ε) total update time. Our

randomized algorithm runs in Õ(n5/2/ε2) time and can

guarantee both (1+ ε, 2)- and (2+ ε, 0)-approximations. Ta-

ble I compares our results with previous results. In short, we

make the following improvements over previous algorithms

(further discussions follow).

• The total running time of deterministic algorithms is

improved from Even and Shiloach’s Õ(mn2) to Õ(mn)
(at the cost of (1+ε, 0)-approximation and O(log log n)
query time). This is the first improvement since 1981.

• For m = ω(n3/2), the total running time is improved

from Roditty and Zwick’s Õ(mn) to Õ(n5/2), at the

cost of an additive error of two, which appears only

when the distance is O(1/ε) (since otherwise it could

be treated as a multiplicative error of O(ε)) and is

unavoidable (as discussed below).

• Our (2 + ε, 0)-approximation algorithm improves the

algorithm of Bernstein and Roditty in terms of both

total update time and approximation guarantee. The

multiplicative error of 2 + ε is essentially the best we

can hope for, if we do not want any additive error.

To obtain these algorithms, we present two novel techniques,

called Moving Even-Shiloach Tree and Monotone Even-

Shiloach Tree, based on a classic technique of Even and

Shiloach [23]. These techniques are reviewed in Section III.

Improved Deterministic Algorithm: In 1981, Even and

Shiloach [23] presented a deterministic decremental SSSP

algorithm for undirected, unweighted graphs with a total

update time of O(mn) over all deletions. This was the first

dynamic problem studied in theoretical computer science

[12]. By running this algorithm from n different nodes, we

get an O(mn2)-time decremental algorithm for APSP. No

progress on deterministic decremental APSP has been made

since then. Our algorithm achieves the first improvement

over this algorithm, at the cost of a (1+ ε, 0)-approximation

guarantee and O(log log n) query time. (Note that our al-

gorithm is also faster than the current fastest randomized

algorithm [34] by a log n factor.)

Theorem 1 (Deterministic O((mn log n)/ε) total update

time). Given an unweighted undirected graph and 0 <
ε ≤ 1, there is a deterministic decremental algorithm
for maintaining (1 + ε)-approximate shortest paths with a
total update time of O((mn log n)/ε) and a query time of
O(log log n).

Our deterministic algorithm also answers a question re-

cently raised by Bernstein [11] which asks for a determin-

istic algorithm with a total update time of Õ(mn/ε). As

pointed out in [11] and several other places, this question

is important due to the fact that deterministic algorithms

can deal with an adaptive offline adversary (the strongest

adversary model in online computation [13], [9]) while

the randomized algorithms developed so far assume an

oblivious adversary (the weakest adversary model) where

the order of edge deletions must be fixed before an algorithm

makes random choices. Our deterministic algorithm answers

exactly this question.

Improved Randomized Algorithm: Our aim is to improve

the Õ(mn) running time of Roditty and Zwick [34] to

so-called truly subcubic time, i.e., O(n3−δ) time for some

constant δ > 0, a running time that is highly sought of

in many problems (e.g., [40], [39], [32]1). Note, however,

that this improvement has to come at the cost of worse

approximation:

Fact 2 ([19], [40]). For any α ≥ 1 and β ≥ 0 such that
2α+β < 4, there is no combinatorial (α, β)-approximation
algorithm, not even a static one, for APSP on unweighted
undirected graphs that is truly subcubic, unless we make a
major breakthrough on many long-standing open problems,
such as a combinatorial Boolean matrix multiplication and
triangle detection.

This fact is due to the reductions of Dor, Halperin, and

Zwick [19] and Vassilevska Williams and Williams [40] (see

1Bernstein [11] also recently mentioned a few future directions towards
this running time in the decremental setting.

539



Reference Total Running Time Approximation Deterministic?
Even and Shiloach [23] Õ(mn2) Exact Yes

This paper Õ(mn/ε) (1 + ε, 0) Yes

Demetrescu and Italiano [18] and Baswana, Hariharan, and Sen [7] Õ(n3) Exact No

Roditty and Zwick [34] Õ(mn/ε) (1 + ε, 0) No

This paper Õ(n5/2/ε2) (1 + ε, 2) No

Bernstein and Roditty [12] Õ(n5/2+
√

log(6/ε)/
√

logn) (3 + ε, 0) No

This paper Õ(n5/2/ε2) (2 + ε, 0) No

Table I: Comparisons between our and previous algorithms that are closely related. For details of these and other results

see Section II. All algorithms, except our deterministic algorithm, have O(1) query time. Our deterministic algorithm has

O(log log n) query time.

the full version for a proof sketch). (Roditty and Zwick

[33] also showed a similar fact for decremental SSSP.)

Thus, the best approximation guarantee we can expect from

combinatorial truly subcubic algorithms is, e.g., a multi-

plicative or additive error of at least two. Our algorithms

achieve essentially these best approximation guarantees2: in

Õ(n5/2) time, we get a (1 + ε, 2)-approximation.

Theorem 3 (Randomized (1+ ε, 2)-approximation with tru-

ly-subcubic total update time). Given an unweighted undi-
rected graph and 0 < ε ≤ 1, there is a (1+ε, 2)-approximate
decremental APSP algorithm with constant query time and
a total update time of O(n5/2(log2 n)/ε2+n5/2(log4 n)/ε).
The approximation guarantee holds with high probability.

Additionally, if we do not want any additive error, we can

get a (2 + ε, 0)-approximation.

Corollary 4 (Randomized (2+ε, 0)-approximation with tru-

ly-subcubic total update time). Given an unweighted undi-
rected graph and 0 < ε ≤ 1, there is a (2+ε, 0)-approximate
decremental APSP algorithm with constant query time and
a total update time of O(n5/2(log2 n)/ε2+n5/2(log4 n)/ε).
The approximation guarantee holds with high probability.

This result easily follows from the observation that if the

distance between two nodes is 1, then we can answer queries

for their distance exactly by checking whether they are con-

nected by an edge. We note that, prior to our work, Bernstein

and Roditty’s algorithm [12] can achieve, e.g., a (3 + ε, 0)-

approximation guarantee in Õ(n5/2+O(
√

1/ logn)) time. This

result is improved by our (2+ε, 0)-approximation algorithm

in terms of both time and approximation guarantee, and is far

worse than our (1+ε, 2)-approximation guarantee, especially

when the distance is large. Also note that the running time of

our (1+ε, 2)-approximation algorithm improves the Õ(mn)
one of Roditty and Zwick [34] when m = ω(n3/2), except

that our algorithm gives an additive error of two which is

unavoidable and appears only when the distance is O(1/ε)
(since otherwise it could be counted as a multiplicative error

of O(ε)).

2We note that there is still some room to eliminate the ε-terms. But
nothing beyond this is likely to be possible.

II. RELATED WORK

Dynamic APSP has a long history, with the first papers

dating back to 1967 [30], [31]3. It also has a tight connection

with its static counterpart (where the graph does not change),

which is one of the most fundamental problems in computer

science: On the one hand, we wish to devise a dynamic

algorithm that beats the naive algorithm where we recompute

shortest paths from scratch using static algorithms after every

deletion. On the other hand, the best we can hope for is to

match the total update time of decremental algorithms to

the best running time of static algorithms. To understand

the whole picture, let us first recall the current situation

in the static setting. We will focus on combinatorial algo-

rithms4 since our and most previous decremental algorithms

are combinatorial. Static APSP on unweighted undirected

graphs can be solved in O(mn) time by simply constructing

a breadth-first search tree from every node. Interestingly,

this algorithm is the fastest combinatorial algorithm for

APSP (despite other fast non-combinatorial algorithms based

on matrix multiplication). In fact, a faster combinatorial

algorithm will be a major breakthrough, not just because

computing shortest paths is a long-standing problem by

itself, but also because it will imply faster algorithms for

other long-standing problems, as stated in Fact 2.
The fact that the best static algorithm takes O(mn)

time means two things: First, the naive algorithm will take

O(m2n) total update time. Second, the best total update time

we can hope for is O(mn). A result that is perhaps the first

that beats the naive O(m2n)-time algorithm is from 1981 by

Even and Shiloach [23], for the special case of SSSP. They

showed an O(mn) total update time with O(1) query time;

this implies a total update time of O(mn2) for APSP. Roditty

and Zwick [33] later provided evidence that the O(mn)-
time decremental unweighted SSSP algorithm of Even and

Shiloach is the fastest possible by showing that this is at least

as hard as several natural static problems such as Boolean

matrix multiplication and the problem of finding all edges of

3The early papers [30], [31], however, were not able to beat the naive
algorithm where we compute APSP from scratch after every change.

4The vague term “combinatorial algorithm” is usually used to refer to
algorithms that do not use algebraic operations such as matrix multiplica-
tion.
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a graph that are contained in triangles. For the incremental

setting, Ausiello, Italiano, Marchetti-Spaccamela, and Nanni

[3] presented an Õ(n3)-time APSP algorithm on unweighted

directed graphs. (An extension of this algorithm for graphs

with small integer edge weights is given in [4].) After that,

many efficient fully-dynamic algorithms have been proposed

(e.g., [27], [29], [24], [18], [16]). Subsequently, Demetrescu

and Italiano [17] achieved a major breakthrough for the fully

dynamic case: they obtained a fully dynamic deterministic

algorithm for the directed APSP problem with an amortized

time of Õ(n2) per update, implying a total update time of

Õ(mn2) over all deletions in the decremental setting, the

same running time as the algorithm of Even and Shiloach.

(Thorup [35] presented an improvement of this result.) An

amortized update time of Õ(n2) is essentially optimal if the

distance matrix is to be explicitly maintained, as done by the

algorithm of [17], since each update operation may change

Ω(n2) entries in the matrix. Even for unweighted, undirected

graphs, no faster algorithm is known. Thus, the O(mn2)
total update time of Even and Shiloach remains the best
for deterministic decremental algorithms, even on undirected

unweighted graphs and if approximation is allowed.

For the case of randomized algorithms, Demetrescu and

Italiano [18] obtained an exact decremental algorithm on

weighted directed graphs with Õ(n3) total update time5 (if

weight increments are not considered). Baswana, Hariharan,

and Sen [7] obtained an exact decremental algorithm on

unweighted directed graphs with Õ(n3) total update time.

They also obtained a (1 + ε, 0)-approximation algorithm

with Õ(m1/2n2) total update time. In [6], they improved

the running time further on undirected unweighted graphs,

at the cost of a worse approximation guarantee: they ob-

tained approximation guarantees of (3, 0), (5, 0), (7, 0) in

Õ(mn10/9), Õ(mn14/13), and Õ(mn28/27) time, respec-

tively. Roditty and Zwick [34] presented two improved

algorithms for unweighted, undirected graphs. The first was

a (1 + ε, 0)-approximate decremental APSP algorithm with

constant query time and a total update time of Õ(mn). This

algorithm remains the current fastest. The second algorithm

achieved a worse approximation bound of (2k − 1, 0), for

any 2 ≤ k ≤ log n, which has the advantage of requiring

less space (Õ(mn + n1/k)). By modifying the second

algorithm to work on an emulator, Bernstein and Roditty

[12] presented the first truly subcubic algorithm which gives

a (2k− 1 + ε, 0)-approximation and has a total update time

of Õ(n1+1/k+O(1/
√
logn)). They also presented a (1+ ε, 0)-

approximation Õ(n2+O(1/
√
logn))-time algorithm for SSSP,

which is the first improvement since the algorithm of Even

and Shiloach. Very recently, Bernstein [11] presented a

5This algorithm actually works in a much more general setting where
each edge weight can assume S different values. Note that the amortized
time per update of this algorithm is Õ(Sn), but this holds only when there
are Ω(n2) updates (see [18, Theorem 10]). Also note that the algorithm is
randomized with one-sided error.

(1 + ε, 0)-approximation Õ(mn logW )-time algorithm for

the directed weighted case, where W is the ratio of the

largest edge weight ever seen in the graph to the smallest

such weight.

We note that the (1+ε, 0)-approximation Õ(mn)-time al-

gorithm of Roditty and Zwick matches the state of the art in

the static setting; thus, it is essentially tight. However, by al-

lowing additive error, this running time was improved in the

static setting. For example, Dor, Halperin, and Zwick [19],

extending the approach of Aingworth et al. [1], presented

a (1, 2)-approximation for APSP in unweighted undirected

graphs with a running time of O(min{n3/2m1/2, n7/3}).
Elkin [20] presented an algorithm for unweighted undirected

graphs with a running time of O(mnρ + n2ζ) that approxi-

mates the distances with a multiplicative error of 1 + ε and

an additive error that is a function of ζ, ρ and ε. There is

no decremental algorithm with additive error prior to our

algorithm.

III. OVERVIEW OF ALGORITHMS AND ANALYSES

Our results build on two previous algorithms. The first al-

gorithm is the classic SSSP algorithm of Even and Shiloach

[23] (with the more general analysis of King [29]), which

we will refer to as Even-Shiloach tree. The second algorithm

is the (1 + ε, 0)-approximation APSP algorithm of Roditty

and Zwick [34]. We actually view the algorithm of Roditty

and Zwick as a framework which runs several Even-Shiloach

trees and maintains some properties while edges are deleted.

We wish to alter the Roditty-Zwick framework but doing

so usually makes it hard to bound the cost of maintaining

Even-Shiloach trees (as we will discuss later). Our main

technical contribution is the development of new variations

of the Even-Shiloach tree, called moving Even-Shiloach tree
and monotone Even-Shiloach tree, which are suitable for our

modified Roditty-Zwick frameworks. Since there are many

other algorithms that run Even-Shiloach trees as subroutines,

it might be possible that other algorithms will benefit from

our new Even-Shiloach trees as well.

Review of Even-Shiloach Tree: The Even-Shiloach tree has

two parameters: a root (or source) node s and the range

(or depth) R. It maintains a breadth-first search tree rooted

at s and the distances between s and all other nodes in the

dynamic graph, up to distance R (if the distance is more than

R, it will be set to∞). It has a query time of O(1) and a total

update time of O(mR) over all deletions. The total update

time crucially relies on the fact that the distance between s
and any node v changes at most R times before it exceeds

R (i.e., from 1 to R). This property heavily relies on the

“decrementality” of the model, i.e., the distance between two

nodes never decreases, and is easily destroyed when we try

to use the Even-Shiloach tree in a more general setting (e.g.,

when we want to allow edge insertions or alter the Roditty-

Zwick framework). Most of our effort in constructing both
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randomized and deterministic algorithms will be spent on

recovering the destroyed decrementality.

A. Monotone Even-Shiloach Tree for Improved Randomized
Algorithms

The high-level idea of our randomized algorithm is to run

an existing decremental algorithm of Roditty and Zwick [34]

on an emulator, a sparser weighted graph that approximates

the distances in the original graph (see the full version

for more detail). This approach is commonly used in the

static setting (e.g., [1], [19], [20], [22], [5], [14], [15],

[36], [41]), and it was recently used for the first time in

the decremental setting by Bernstein and Roditty [12]. As

pointed out by Bernstein and Roditty, while it is a simple

task to run an existing APSP algorithm on an emulator in

the static setting, doing so in the decremental setting is

not easy since it will destroy the “decrementality” of the

setting: when an edge in the original graph is deleted, we

might have to insert an edge into the emulator. Thus, we

cannot run decremental algorithms on an arbitrary emulator,

because from the perspective of this emulator, we are not in

a decremental setting.

Bernstein and Roditty manage to get around this prob-

lem by constructing an emulator with a special property6.

Roughly speaking, they show that their emulator guarantees

that the distance between any two nodes changes Õ(n)
times. Based on this simple property, they show that the

(2k − 1, 0)-approximation algorithm of Roditty and Zwick

[34] can be run on their emulator with a small running

time. However, they cannot run the (1+ε, 0)-approximation

algorithm of Roditty and Zwick on their emulator. The

main reason is that this algorithm relies on a more general

property of a graph under deletions: for any R between 1
and n, the distance between any two nodes changes at most

R times before it exceeds R (i.e., it changes from 1 to R).

They suggested to find an emulator with this more general

property as a future research direction.

In our algorithm, we manage to run the (1 + ε, 0)-
approximation algorithm of Roditty and Zwick on our emu-

lator, but in a conceptually different way from Bernstein and

Roditty. In particular, we do not construct the emulator asked

for by Bernstein and Roditty; rather, we show that there is a

type of emulators such that, while edge insertions can occur

often, their effect can be ignored. We then modify the al-

gorithm of Roditty and Zwick to incorporate this ignorance.

More precisely, the algorithm of Roditty and Zwick relies on

the classic Even-Shiloach tree. We develop a simple variant

of this classic algorithm called monotone Even-Shiloach tree
that can handle restricted kinds of insertions and use it to

6In fact, their emulator is basically identical to one used earlier by
Bernstein [10], which is in turn a modification of a spanner developed
by Thorup and Zwick [36], [37]. However, the properties they proved are
entirely new.

replace the classic Even-Shiloach tree in the algorithm of

Roditty and Zwick.

Our modification to the Even-Shiloach tree is as follows.

Recall that the Even-Shiloach tree can maintain the distances

between a specific node s and all other nodes, up to R,

in O(mR) total update time under edge deletions. This

is because, for any node v, it has to do work O(deg(v))
(the degree of v) only when the distance between s and

v changes, which will happen at most R times (from 1 to

R) in the decremental model. Thus, the total work on each

node v will be O(R deg(v)) which sums to O(mR) in total.

This algorithm does not perform well when there are edge

insertions: one edge insertion could cause a decrease in the

distance between s and v by as much as Ω(R), causing an

additional Ω(R) distance changes. The idea of our monotone

Even-Shiloach tree is extremely simple: ignore distance
decreases! It is easy to show that the total update time of our

algorithm remains the same O(mR) as the classic one. The

hard part is proving that it gives a good approximation when

run on an emulator. This is because it does not maintain the

exact distances on an emulator anymore. So, even when the

emulator gives a good approximate distance on the original

graph, our monotone Even-Shiloach tree might not. Our

monotone Even-Shiloach tree does not give any guarantee

for the distances in the emulator, but we can show that it

still approximates the distances in the original graph. Of

course, this will not work on any emulator; but we can

show that it works on a specific type of emulators that

we call locally persevering emulators.7 Roughly speaking, a

locally persevering emulator is an emulator where, for any

“nearby”8 nodes u and v in the original graph, either

(1) there is a shortest u-v path in the original graph that

appears in the emulator, or

(2) there is a path in the emulator that approximates

the distance in the original graph and behaves in a
persevering way, in the sense that all edges of this path

are in the emulator since before the first deletion and

their weights never decrease. We call the latter path a

persevering path.

Once we have the right definition of a locally persevering

emulator, proving that our monotone Even-Shiloach tree

gives a good distance estimate is conceptually simple (we

sketch the proof idea below). Our last step is to show that

such an emulator exists and can be efficiently maintained

under edge deletions. We show (roughly) that we can main-

tain an emulator, which (1+ε, 2)-approximates the distances

7We remark that there are other emulators that can be maintained in the
decremental setting, e.g., [36], [37], [34], [10], [12], [2], [21], [8]. We are
the first to introduce the notion of locally persevering emulators and show
that there is an emulator that has this property.

8Note that the word “nearby” will be parameterized by a parameter τ
in the formal definition. So, formally, we must use the term (α, β, τ)-
locally persevering emulator where α and β are multiplicative and additive
approximation factors, respectively. See the full version for detail.
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and has Õ(n3/2) edges, in Õ(n5/2) total update time under

edge deletions. By running the Õ(mn)-time algorithm of

Roditty and Zwick on this emulator, replacing the classic

Even-Shiloach tree by our monotone version, we have the

desired Õ(n5/2)-time (1 + ε, 2)-approximation algorithm.

To turn this algorithm into a (2 + ε, 0)-approximation, we

observe that we can check if two nodes are of distance one

easily; thus, we only have to use our (1+ε, 2)-approximation

algorithm to answer a distance query when the distance

between two nodes is at least two. In this case, the additive

error of two can be treated as a multiplicative factor.

Proving the Approximation Guarantee of the Monotone
Even-Shiloach Tree: To illustrate why our monotone Even-

Shiloach tree gives a good approximation when run on a lo-

cally persevering emulator, we sketch a result that is weaker

and simpler than our main results; we show how to (3, 0)-
approximate distances from a particular node s to other

nodes. This fact easily leads to a (3 + ε, 0)-approximation

Õ(n5/2)-time algorithm, which gives the same guarantee as

the algorithm of Bernstein and Roditty [12], and is slightly

faster and reasonably simpler. To achieve this, we modify the

emulator of Dor et al. [19]: Randomly select Õ(
√
n) nodes.

At any time, the emulator consists of all edges incident to

nodes of degree at most
√
n and edges from each random

node c to every node v of distance at most 2 from c with

weight equal to their distance. It can be shown that this

emulator can be maintained in Õ(mn1/2) = Õ(n5/2) time

under edge deletions. Moreover, it is a (3, 0)-emulator with

high probability: for every edge (u, v), either

(i) (u, v) is in the emulator, or

(ii) there is a path 〈u, c, v〉 of length at most three, where

c is a random node.

Observe further that if (ii) happens, then the path 〈u, c, v〉
is persevering (as in item (2) above):

(ii’) 〈u, c, v〉 must be in this emulator since before the first

deletion, and the weights of the edges (u, c) and (c, v)
never decrease.

It follows that this emulator is locally persevering.9 Now

we show that when we run the monotone Even-Shiloach

tree on the above emulator, it gives (3, 0)-approximate

distances between s and all other nodes. Recall that the

monotone Even-Shiloach tree maintains a distance estimate,

say 	(v), between s and every node v in the emulator10.

For every node v, the value of 	(v) is regularly updated,

except that when the degree of a node drops to
√
n and

the resulting insertion of an edge, say (u, v), decreases the

distance between v and s in the emulator; in particular,

	(v) > 	(u) + w(u, v) where w(u, v) is the weight of edge

9We note that we are being vague here. To be formal, we define the
notion of (α, β, τ)-locally persevering emulator in the full version, and the
emulator we just define will be (3, 0, 1)-locally persevering.

10Here � stands for “level” as �(v) is the level of v in the breadth-first
search tree rooted at s.

(u, v). A usual way to modify the Even-Shiloach tree for

dealing with such an insertion [12] is to decrease the value

of 	(v) to 	(u)+w(u, v). Our monotone Even-Shiloach tree

will not do this and keeps 	(v) unchanged. In this case, we

say that the node v and the edge (u, v) become stretched. In

general, an edge (u, v) is stretched if 	(v) > 	(u)+w(u, v)
or 	(u) > 	(v) + w(u, v), and a node is stretched if it is

incident to a stretched edge. Two observations that we will

use are

(O1) as long as a node v is stretched, it will not change 	(v),
and

(O2) a stretched edge must be an inserted edge.

We will argue that 	(v) of every node v is at most three

times its real distance to s in the original graph. To prove

this for a stretched node v, we simply use the fact that this is

true before v becomes stretched (by induction), and 	(v) has

not changed since then (by (O1)). If v is not stretched, we

consider a shortest v-s path 〈v, u1, u2, . . . , s〉 in the original

graph. We will prove that

	(v) ≤ 	(u1) + 3;

thus, assuming that 	(u1) satisfies the claim (by induction),

	(v) will satisfy the claim as well. To prove this, observe

that if the edge (v, u1) is contained in the emulator then we

know that 	(v) ≤ 	(u1)+1 (since v is not stretched), and we

are done. Otherwise, by the fact that this emulator is locally

persevering, we know that there is a path P = 〈v, c, u1〉 of

length at most three in the emulator, and it is persevering

(see (ii’)). By (O2), edges in P are not stretched. It follows

that

	(v) ≤ 	(c)+w(v, c) ≤ 	(u1)+w(v, c)+w(c, u1) ≤ 	(u1)+3,

where w(v, c) and w(c, u1) are the current weights of edges

(v, c) and (c, u1), respectively, in the emulator. The claim

follows.
In the full version, we show how to refine the above

argument to obtain a (1+ε, 2)-approximation guarantee. The

first refinement, which is simple, is extending the emulator

above to a (1 + ε, 2)-emulator. This is done by adding

edges from every random node c to all nodes of distance

at most 1/ε from c. The next refinement, which is the main

one, is the formal definition of (α, β, τ)-locally persevering

emulator for some parameters α, β, and τ (see below),

and extending the proof outlined above to show that the

monotone Even-Shiloach tree on such an emulator will give

an (α+ 1/τ, β)-approximate distance. We finally show that

our simple (1 + ε, 2)-emulator is a (1 + ε, 2, 1/ε)-locally

persevering emulator.
We end this section with the formal definition of locally-

persevering emulator. In the definitions below, we view a

dynamic graph as a sequence of graphs H0, H1, . . . re-

spectively with edge weights w0, w1, . . ., written as H =
(Hi, wi)0≤i≤k. We first define the notion of persevering
path.
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Definition 5 (Persevering path). Let H = (Hi, wi)0≤i≤k

be a dynamic weighted graph. We say that a path P is
persevering up to time t (where t ≤ k) if for every edge
(u, v) on P and, for all 0 ≤ i ≤ t, (u, v) ∈ E(Hi) and, for
all 0 ≤ i < t, wi(u, v) ≤ wi+1(u, v). In other words, edges
in P always exist in H up to time t and their weights never
decrease.

To motivate the definition of locally persevering emula-

tor, we note that an (α, β)-emulator of a dynamic graph

G = (Gi)0≤i≤k is usually used to refer to another dynamic

weighted graph H = (Hi, wi)0≤i≤k over the same set of

nodes that preserves the distance of the original dynamic

graph, i.e., for all i ≤ k and all nodes x and y, there is a path

P in Hi such that dGi
(x, y) ≤ wi(P ) ≤ αdGi

(x, y)+β. The

notion of a locally persevering emulator puts an additional

restriction on such paths. In particular, this concerns nodes

x and y such that dGi
(x, y) ≤ τ for some parameter τ . We

demand that the path P must be either a shortest path in Gi

or a persevering path.

Definition 6 (Locally persevering emulator). Consider pa-
rameters α ≥ 1, β ≥ 0 and τ ≥ 1, a dynamic graph
G = (Gi)0≤i≤k, and a dynamic weighted graph H =
(Hi, wi)0≤i≤k. For every i ≤ k, we say that a path P in Gi

is contained in (Hi, wi) if every edge of P is contained in
Hi and has weight 1. We say that H is an (α, β, τ )-locally

persevering emulator of G if for every 0 ≤ i ≤ k and for
all nodes x and y we have dGi(x, y) ≤ dHi,wi(x, y) and
if dGi

(x, y) ≤ τ , then additionally one of the following
holds: either a shortest path P from x to y in Gi is
contained in (Hi, wi), or there is a path P ′ from x to
y in H that is persevering up to time i and satisfies
wi(P

′) ≤ αdGi(x, y) + β.

B. Moving Even-Shiloach Tree for Improved Deterministic
Algorithms

Many distance-related algorithms in both dynamic and

static settings use the following randomized argument as an

important technique: if we select Õ(h) nodes, called centers,

uniformly at random, then every node will be at distance at

most n/h from one of the centers with high probability [38],

[34]. This even holds in the decremental setting (assuming

an oblivious adversary). Like other algorithms, the Roditty-

Zwick framework also heavily relies on this argument, which

is the only reason why it is randomized. Our goal is to

derandomize this argument. Specifically, for several different

values of h, the Roditty-Zwick framework selects Õ(h)
centers and uses the randomized argument above to argue

that every node in a connected component of size at least

n/h is covered by a center in the sense that it will always be

within distance at most n/h from at least one center; we call

this set of centers a center cover. It also maintains an Even-

Shiloach tree of depth R = O(n/h) from these h centers,

which takes a total update time of Õ(mR) for each tree and

thus Õ(hmR) = Õ(mn) over all trees. To derandomize the

above process, we have two constraints:

(1) the center cover must be maintained (i.e., every node in

a component of size at least n/h has a center nearby),

and

(2) the number of centers (and thus Even-Shiloach trees

maintained) must be Õ(h) in total.

Maintaining these constraints in the static setting is fairly

simple, as in the following algorithm.

Algorithm 7. As long as there is a node v in a “big”
connected component (i.e., of size at least n/h) that is not
covered by any center, make v a new center.

Algorithm 7 clearly guarantees the first constraint. The

second constraint follows from the fact that the distance

between any two centers is more than n/h. Since under-

standing the proof for guaranteeing the second constraint is

important for understanding our charging argument later,

we sketch it here. Let us label the centers by numbers

j = 1, 2, . . . , h. For each center number j, we let Bj

be a “ball” of radius n/2h; i.e., Bj is a set of nodes of

distance at most n/2h from center number j. Observe that

Bj and Bj′ are disjoint for distinct centers j and j′ since the

distance between these centers is more than n/h Moreover,

|Bj | ≥ n/2h since every center is in a big connected

component. So, the number of balls (thus the number of

centers) is at most n/(n/2h) = 2h. This guarantees the

second constraint. Thus, we can guarantee both constraints

in the static setting.

However, after edge deletions, some nodes in big com-

ponents might not be covered anymore and, if we keep

repeating Algorithm 7, we might have to keep creating new

centers to the point that the second constraint is violated. The

key idea that we introduce to avoid this problem is to allow

a center and the Even-Shiloach tree rooted at it to move. We

call this a moving Even-Shiloach tree or moving center data

structure. Specifically, in the moving Even-Shiloach tree, we

view a root (center) s not as a node, but as a token that can

be placed on any node, and the task of the moving Even-

Shiloach tree is to maintain the distance between the node

that the root is placed on and all other nodes, up to distance

R. We allow a move operation where we can move the root

to a new node and the corresponding Even-Shiloach tree

must be adjusted accordingly. To illustrate the power of the

move operation, consider the following simple modification

of Algorithm 7. (Later, we also have to modify this algorithm

due to other problems that we will discuss next.)

Algorithm 8. As long as there is a node v in a big connected
component that is not covered by any center, we make it a
center as follows. If there is a center in a small connected
component, we move this center to v; otherwise, we open a
new center at v.
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Algorithm 8 reuses centers and Even-Shiloach trees in

small connected components11 without violating the first

constraint since nodes in small connected components do

not need to be covered. The second constraint can also

be guaranteed by showing that |Bj | ≥ n/2h for all j
when we open a new center. Thus, by using moving Even-

Shiloach trees, we can guarantee the two constraints above.

We are, however, not done yet. This is because our new

move operation also incurs a cost! The most nontrivial idea
in our algorithm is a charging argument to bound this
cost. There are two types of cost. First, the relocation cost
which is the cost of constructing a new breadth-first search

tree rooted at a new location of the center. This cost can

be bounded by O(m) since we can construct a breadth-

first search tree by running the static O(m)-time algorithm.

Thus, it will be enough to guarantee that we do not move

Even-Shiloach trees more than O(n) times. In fact, this is

already guaranteed in Algorithm 8 since we will never move

an Even-Shiloach tree back to the same node. The second

cost, which is much harder to bound, is the additional
maintenance cost. Recall that we can bound the total update

time of an Even-Shiloach tree by O(mR) because of the

fact that the distance between its root (center) and each

other node changes at most R times before exceeding R,

by increasing from 1 to R. However, when we move the

root from, say, a node u to its neighbor v, the distance

between the new root v and some node, say x, might be

smaller than the previous distance from u to x. In other

words, the decrementality property is destroyed. Fortunately,

observe that the distance change will be at most one per

node when we move a tree to a neighboring node. Using

a standard argument, we can then conclude that moving a
tree between neighboring nodes costs an additional distance
maintenance cost of O(m). This motivates us to define the

notion of moving distance to measure how far we move the

Even-Shiloach trees in total. We will be able to bound the

maintenance cost by O(mn) if we can show that the total

moving distance (summing over all moving Even-Shiloach

trees) is O(n). Bounding the total moving distance by O(n)
while having only O(h) Even-Shiloach trees is the most

challenging part in obtaining our deterministic algorithm.

We do it by using a careful charging argument. We sketch

this argument here. For more intuition and detail, see the

full version.

Charging Argument for Bounding the Total Moving Dis-
tance: Recall that we denote the centers by numbers j =
1, 2, . . . , h. We make a few modifications to Algorithm 8.

The most important change is the introduction of the set

Cj for each center j (which is the root of a moving Even-

Shiloach tree). This will lead to a few other changes. The

11We note the detail that we need a deterministic dynamic connectivity
data structure [25], [28] to implement Algorithm 8. The additional cost
incurred is negligible.

importance of Cj is that we will “charge” the moving cost

to nodes in Cj ; in particular, we bound the total moving

distance to be O(n) by showing that the moving distance

of center j can be bounded by |Cj |, and Cj and Cj′ are

disjoint for distinct centers j and j′. The other important

changes are the definitions of “ball” and “small connected

component” which will now depend on Cj .

• We change the definition of Bj from a ball of radius

n/2h to a ball of radius (n/2h)− |Cj |.
• We redefine the notion of “small connected component”

as follows: we say that a center j is in a small connected

component if the connected component containing it

has less than (n/2h) − |Cj | nodes (instead of n/h
nodes).

These new definitions might not be intuitive, but they are

crucial for the charging argument. We also have to modify

Algorithm 8 in a counter-intuitive way: the most important

modification is that we have to give up the nice property that

the distance between any two center is more than n/2h as in

Algorithms 7 and 8. In fact, we will always move a center

out of a small connected component, and we will move it

as little as possible, even though the new location could

be near other centers. In particular, consider the deletion of

an edge (u, v). It can be shown that there is at most one
center j that is in a small connected component (according

to the new definition), and this center j must be in the same

connected component as u or v. Suppose that such a center

j exists, and it is in the same connected component as u,

say X . Then, we will move center j to v, which is just

enough to move j out of component X (it is easy to see

that v is the node outside of X that is nearest to j before

the deletion). We will also update Cj by adding all nodes of

X to Cj . This finishes the moving step, and it can be shown

that there is no center in a small connected component now.

Next, we make sure that every node is covered by opening a

new center at nodes that are not covered, as in Algorithm 7.

To conclude, our algorithm is as follows.

Algorithm 9. Consider the deletion of an edge (u, v).
Check if there is a center j that is in a “small” connected
component X (of size less than (n/2h) − |Cj |). If there is
such a j (there will be at most one such j), move it out of X
to a new node which is the unique node in {u, v}\X . After
moving, execute the static algorithm as in Algorithm 7.

To see that the total moving distance is O(n), observe

that when we move a center j out of component X in

Algorithm 9, we incur a moving distance of at most |X|
(since we can move j along a path in X). Thus, we can

always bound the total moving distance of center j by

|Cj |. We additionally show that Cj and Cj′ are disjoint

for different centers j and j′. So, the total moving distance

over all centers is at most
∑

j |Cj | ≤ n. We also have to

bound the number of centers. Since we give up the nice
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property that centers are far apart, we cannot use the same

argument to show that the sets Bj are disjoint and big (i.e.,

|Bj | ≥ n/2h), as in Algorithm 8 and Algorithm 9. However,

using Cj , we can still show something very similar: We can

show that Bj ∪ Cj and Bj′ ∪ Cj′ are disjoint for distinct

j and j′, and that |Bj ∪ Cj′ | ≥ n/2h. Thus, we can still

bound the number of centers by O(h) as before.

IV. CONCLUSION

We obtained two new algorithms for solving the decre-

mental approximate APSP algorithm in unweighted undi-

rected graphs. The first algorithm provides a (1 + ε, 2)-
approximation and has a total update time of Õ(n5/2/ε2)
and constant query time. The main idea behind this algo-

rithm is to run an algorithm of Roditty and Zwick [34]

on a sparse dynamic emulator. In particular, we modify

the central shortest paths tree data structure of Even and

Shiloach [23], [29] to deal with edge insertions in a mono-

tone manner. Our approach is conceptually different from the

approach of Bernstein and Roditty [12] who also maintain an

ES-tree in a sparse dynamic emulator. The second algorithm

provides a (1 + ε, 0)-approximation and has a deterministic
total update time of Õ(mn log n/ε) and constant query time.

We obtain it by derandomizing the algorithm of [34] using a

new amortization argument based on the idea of relocating

Even-Shiloach trees.

Our results directly motivate the following directions for

further research. It would be interesting to extend our de-

randomization technique to other randomized algorithms. In

particular, we ask whether it is possible to derandomize the

exact decremental APSP algorithm of Baswana, Hariharan

and Sen [7] (total update time Õ(n3)).

Another interesting direction is to check whether our

monotone ES-tree approach also works for other dynamic

emulators, also for weighted graphs. One of the tools that

we used was a dynamic (1 + ε, 2)-emulator for unweighted

undirected graphs. Is it also possible to obtain purely ad-
ditive dynamic emulators or spanners with small additive

error?

The sparsification techniques used here and at other places

only work for undirected graphs. Can we also get subcubic

algorithms for directed graphs (without relying on these

sparsification techniques)? In fact, not even decremental

single-source reachability in directed graphs can currently be

done faster than with a total time of O(mn) for a sequence

of Ω(m) deletions.

Maybe the most important open problem in this field is

a faster APSP algorithm for the fully dynamic setting. The

fully dynamic algorithm of Demetrescu and Italiano [17]

provides exact distances and takes time Õ(n2) per update,

which is essentially optimal. Is it possible to get a faster fully

dynamic algorithm that still provides a good approximation,

for example a (1 + ε)-approximation?
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