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Abstract—We prove that there exist infinite families of
regular bipartite Ramanujan graphs of every degree bigger
than 2. We do this by proving a variant of a conjecture of Bilu
and Linial about the existence of good 2-lifts of every graph.

We also establish the existence of infinite families of ‘ir-
regular Ramanujan’ graphs, whose eigenvalues are bounded
by the spectral radius of their universal cover. Such families
were conjectured to exist by Linial and others. In particular,
we prove the existence of infinite families of (c, d)-biregular
bipartite graphs with all non-trivial eigenvalues bounded by√
c− 1 +

√
d− 1, for all c, d ≥ 3.

Our proof exploits a new technique for demonstrating the
existence of useful combinatorial objects that we call the
“method of interlacing polynomials”.

Keywords-Ramanujan Graph; Matching Polynomial; Lifts of
Graphs

I. INTRODUCTION

Ramanujan graphs have been the focus of substantial

study in Theoretical Computer Science and Mathematics.

They are graphs whose non-trivial adjacency matrix eigen-

values are as small as possible. Previous constructions

of Ramanujan graphs have been sporadic, only producing

Ramanujan graphs of particular degrees. In this paper, we

prove a variant of a conjecture of Bilu and Linial [1], and

use it to realize an approach they suggested for constructing

bipartite Ramanujan graphs of every degree.

Our main technical contribution is a novel existence

argument. The conjecture of Bilu and Linial requires us to

prove that every graph has a signed adjacency matrix with all

of its eigenvalues in a small range. We do this by proving

that the roots of the expected characteristic polynomial of

a randomly signed adjacency matrix lie in this range. In

general, a statement like this is useless, as the roots of a

sum of polynomials do not necessarily have anything to

do with the roots of the polynomials in the sum. However,

there seem to be many sums of combinatorial polynomials

for which this intuition is wrong. With this in mind, we

define an “interlacing family” of polynomials and then use a

technique we call the “method of interlacing polynomials” to

show that such families always contain a polynomial whose

largest root is at most the largest root of the sum. To finish

the proof, we then bound the largest root of the sum of the

characteristic polynomials of the signed adjacency matrices

of a graph by observing that this sum is the well-studied

matching polynomial of the graph.

This paper is the first one in a series focusing on the

method of interlacing polynomials. In the next paper [2], we

use the method of interlacing polynomials to give a positive

resolution to the Kadison–Singer problem.

II. TECHNICAL INTRODUCTION AND PRELIMINARIES

A. Ramanujan Graphs

Ramanujan graphs are defined in terms of the eigenvalues

of their adjacency matrices. If G is a d-regular graph and A
is its adjacency matrix, then d is always an eigenvalue of A.

The matrix A has an eigenvalue of −d if and only if G is

bipartite. The eigenvalues of d, and −d when G is bipartite,

are called the trivial eigenvalues of A. Following Lubotzky,

Phillips and Sarnak [3], we say that a d-regular graph is

Ramanujan if all of its non-trivial eigenvalues lie between

−2√d− 1 and 2
√
d− 1. It is easy to construct Ramanujan

graphs with a small number of vertices: d-regular complete

graphs and complete bipartite graphs are Ramanujan. The

challenge is to construct an infinite family of d-regular

graphs that are all Ramanujan. One cannot construct infinite

families of d-regular graphs whose eigenvalues lie in a

smaller range: the Alon–Boppana bound (see [4]) tells us

that for every constant ε > 0, every sufficiently large d-

regular graph has a non-trivial eigenvalue with absolute

value at least 2
√
d− 1− ε.

Lubotzky, Phillips and Sarnak [3] and Margulis [5] were

the first to construct Ramanujan graphs. They built both

bipartite and non-bipartite Ramanujan graphs from Cayley

graphs. All of their graphs are regular and have degrees

p + 1 where p is a prime. There have been very few other

constructions of Ramanujan graphs [6], [7], [8], [9]. To the

best of our knowledge, the only degrees for which infinite

families of Ramanujan graphs were previously known to

exist were those of the form q + 1 where q is a prime

power. Lubotzky [10, Problem 10.7.3] asked whether there

exist infinite families of Ramanujan graphs of every degree

greater than 2. We resolve this conjecture in the affirmative

in the bipartite case.

B. 2-Lifts

Bilu and Linial [1] suggested constructing Ramanujan

graphs through a sequence of 2-lifts of a base graph. Given

a graph G = (V,E), a 2-lift of G is a graph that has two

vertices for each vertex in V . This pair of vertices is called
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the fibre of the original vertex. Every edge in E corresponds

to two edges in the 2-lift. If (u, v) is an edge in E, {u0, u1}
is the fibre of u, and {v0, v1} is the fibre of v, then the 2-lift

can either contain the pair of edges

{(u0, v0), (u1, v1)} , or (1)

{(u0, v1), (u1, v0)} . (2)

If only edge pairs of the first type appear, then the 2-lift is

just two disjoint copies of the original graph. If only edge

pairs of the second type appear, then we obtain the double-
cover of G. To determine the eigenvalues of a 2-lift, Bilu and

Linial introduce signings of the edges of G: s : E → {±1}.
They place signings in one-to-one correspondence with 2-

lifts by setting s(u, v) = 1 if edges of type (1) appear in the

2-lift, and s(u, v) = −1 if edges of type (2) appear.

To analyze the eigenvalues of a 2-lift, they define the

signed adjacency matrix As to be the same as the adjacency

matrix of G, except that the entries corresponding to an

edge (u, v) are s(u, v). They prove [1, Lemma 3.1] that

the eigenvalues of the 2-lift are the union, taken with

multiplicity, of the eigenvalues of the adjacency matrix of

A and of the signed adjacency matrix of A. Following

Friedman [11], they refer to the eigenvalues of A as the

old eigenvalues and the eigenvalues of the signed adjacency

matrix as the new eigenvalues. They prove that every graph

of maximal degree d has a signing in which all of the new

eigenvalues have absolute value at most O(
√

d log3 d). They

then build d-regular expander graphs by repeatedly taking 2-

lifts of a complete graph on d+ 1 vertices.

Bilu and Linial conjectured that every d-regular graph has

a signing in which all of the new eigenvalues have absolute

value at most 2
√
d− 1. If one applied the corresponding 2-

lifts to the d-regular complete graph, one would obtain an

infinite sequence of d-regular Ramanujan graphs. We prove a

weak version of Bilu and Linial’s conjecture: every d-regular

graph has a signing in which all of the new eigenvalues are

at most 2
√
d− 1. The difference between our result and the

original conjecture is that we do not control the smallest

new eigenvalue. This is why we consider bipartite graphs.

The eigenvalues of the adjacency matrices of bipartite graphs

are symmetric about zero (see, for example, [12, Theorem

2.4.2]) So, a bound on the smallest non-trivial eigenvalue

follows from a bound on the largest. We also use the fact

that a 2-lift of a bipartite graph is also bipartite. By applying

the corresponding 2-lifts to the d-regular complete bipartite

graph, we obtain an infinite sequence of d-regular bipartite

Ramanujan graphs.

C. Irregular Ramanujan Graphs and Universal Covers

We say that a bipartite graph is (c, d)-biregular if all

vertices on one side of the bipartition have degree c and

all vertices on the other side have degree d. The adjacency

matrix of a (c, d)-biregular graph always has eigenvalues

±√cd; these are its trivial eigenvalues. Feng and Li [13]

(see also [14]) prove a generalization of the Alon–Boppana

bound that applies to (c, d)-biregular graphs: for all ε > 0,

all sufficiently large (c, d)-biregular graphs have a non-trivial

eigenvalue with absolute value at least
√
c− 1+

√
d− 1−ε.

Thus, we say that a (c, d)-biregular graph is Ramanujan if all

of its non-trivial eigenvalues are at most
√
c− 1 +

√
d− 1.

We prove the existence of infinite families of (c, d)-biregular

Ramanujan graphs for all c, d ≥ 3.

The regular and biregular Ramanujan graphs discussed

above are actually special cases of a more general phe-

nomenon. To describe it, we will require a construction

known as the universal cover. The universal cover of a

graph G is the infinite tree T such that every connected

lift of G is a quotient of the tree (see, e.g., [15, Section

6]). It can be defined concretely by first fixing a “root”

vertex v0, and then placing one vertex in T for every non-

backtracking walk (v0, v1, . . . , v�) starting at v0, where a

walk is non-backtracking if vi−1 �= vi+1 for all i. Two

vertices of T are adjacent if and only if one is a simple

extension of another, i.e., the edges of T are all of the form

(v0, v1, . . . , v�) ∼ (v0, v1, . . . , v�, v�+1). The universal cover

of a graph is unique up to isomorphism, independent of the

choice of v0
The adjacency matrix AT of the universal cover T is an

infinite-dimensional symmetric matrix. We will be interested

in the spectral radius ρ(T ) of T , which may be defined1 as:

ρ(T ) := sup
‖x‖2=1

‖ATx‖2 (3)

where ‖x‖22 :=
∑∞

i=1 x(i)
2 whenever the series converges.

Naturally, the spectral radius of a finite tree is defined to be

the norm of its adjacency matrix.

With these notions in hand, we can state the definition

of an irregular Ramanujan graph. As before, the largest

(and smallest, in the bipartite case) eigenvalues of finite

adjacency matrices are considered trivial. Greenberg [17]

(see also [18]) showed that for every ε > 0 and every

infinite family of graphs that have the same universal cover

T , all sufficiently large graphs in the family have a non-

trivial eigenvalue with absolute value at least ρ(T ) − ε.
Following Hoory, Linial, and Wigderson [15, Definition 6.7],

we therefore define an arbitrary graph to be Ramanujan if all

of its non-trivial eigenvalues are smaller in absolute value

than the spectral radius of its universal cover.

The universal cover of any d-regular graph is the infi-

nite d-ary tree, whereas the universal cover of any (c, d)-
biregular graph is the infinite (c, d)−biregular tree in which

the degrees alternate between c and d on every other

level [14]. The former tree is known to have spectral

1In functional analysis, the spectral radius of an infinite-dimensional
operator A is traditionally defined to be the largest λ for which (A− λI)
is unbounded. However, in the case of self-adjoint operators, this definition
is equivalent to the one presented here (see, for example, Theorem VI.6 in
[16]).
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radius 2
√
d− 1 while the latter has a spectral radius of√

c− 1 +
√
d− 1 (see [19], [14]). Thus, a definition based

on universal covers generalizes both the regular and bireg-

ular definitions of Ramanujan graphs, and the bound of

Greenberg generalizes both the Alon-Boppana and Feng-Li

bounds.

In this general setting, we show that every bipartite graph

G has a 2-lift in which all of the new eigenvalues are less

than the spectral radius of its universal cover. Applying these

2-lifts inductively to any finite irregular bipartite Ramanujan

graph yields an infinite family of irregular bipartite Ramanu-

jan graphs whose degree distribution matches that of the

initial graph (since taking a 2-lift simply doubles the number

of vertices of each degree). In particular, applying them to

the (c, d)-biregular complete bipartite graph yields an infinite

family of (c, d)-biregular Ramanujan graphs. As far as we

know, infinite families of irregular Ramanujan graphs were

not known to exist prior to this work.

D. Related Work

There have been numerous studies of random lifts of

graphs. For some results on the spectra of random lifts,

we point the reader to [20], [21], [22], [23], [24], [25].

Friedman [26] has proved that almost every d-regular graph

almost meets the Ramanujan bound: he shows that for every

ε > 0 the absolute value of all the non-trivial eigenvalues of

almost every sufficiently large d-regular graph are at most

2
√
d− 1 + ε. In the irregular case, Puder [27] has shown

that with high probability a high-order lift of a graph G has

new eigenvalues that are bounded in absolute value by
√
3ρ,

where ρ is the spectral radius of the universal cover of G.

We remark that constructing bipartite Ramanujan graphs

is at least as easy as constructing non-bipartite ones: the

double-cover of a d-regular non-bipartite Ramanujan graph

is a d-regular bipartite Ramanujan graph. For many appli-

cations of expander graphs, we refer the reader to [15].

For those applications of expanders that just require upper

bounds on the second eigenvalue, one can use bipartite Ra-

manujan graphs. Some applications actually require bipartite

expanders, while others require the non-bipartite ones. For

example, the explicit constructions of error correcting codes

of Sipser and Spielman [28] require non-bipartite expanders,

while the improvements of their construction [29], [30], [31]

require bipartite Ramanujan expanders.

III. 2-LIFTS AND THE MATCHING POLYNOMIAL

For a graph G, let mi denote the number of matchings

in G with i edges. Set m0 = 1. Heilmann and Lieb [32]

defined the matching polynomial of G to be the polynomial

μG(x)
def
=
∑
i≥0

xn−2i(−1)imi,

where n is the number of vertices in the graph. They proved

two remarkable theorems about the matching polynomial

that we will exploit in this paper. It is worth mentioning

that the proofs of these theorems are elementary and short,

relying only on simple recurrence formulas for the matching

polynomial.

Theorem III.1 (Theorem 4.2 in [32]). For every graph G,
μG(x) has only real roots.

Theorem III.2 (Theorem 4.3 in [32]). For every graph G of
maximum degree d, all of the roots of μG(x) have absolute
value at most 2

√
d− 1.

The preceding theorems will allow us to prove the exis-

tence of infinite families of d-regular bipartite Ramanujan

graphs. To handle the irregular case, we will require a

refinement of these results due to Godsil. This refinement

uses the concept of a path tree, which was also introduced

by Godsil (see [33] or [12, Section 6]). Recall that a path

in G is a walk that does not visit any vertex twice.

Definition III.3. Given a graph G and a vertex u, the

path tree P (G, u) contains one vertex for every path in

G (with distinct vertices) that starts at u. Two paths are

adjacent if one is a simple extension of the other, i.e., all

the edges of P (G, u) are all of the form (u, v1, . . . , v�) ∼
(u, v1, . . . , v�, v�+1).

The path tree provides a natural relationship between the

roots of the matching polynomial of a graph and the spectral

radius of its universal cover:

Theorem III.4 ([33]). Let P (G, u) be a path tree of G. Then
the matching polynomial of G divides the characteristic
polynomial of the adjacency matrix of P (G, u). In partic-
ular, all of the roots of μG(x) are real and have absolute
value at most ρ(P (G, u)).

Lemma III.5. Let G be a graph and let T be its universal
cover. Then the roots of μG(x) are bounded in absolute value
by ρ(T ).

Proof: Let u be any vertex of G and let P be the

path tree rooted at u. Since the paths that correspond to

the vertices of P are themselves non-backtracking walks (as

defined in Section II-C), P is a finite induced subgraph of

the universal cover T , and AP is a finite submatrix of AT .

By Theorem III.4, the roots of μG are bounded by

‖AP ‖2 = sup
‖x‖2=1

‖APx‖2
≤ sup
‖y‖2=1,supp(y)⊂P

‖AT y‖2
≤ sup
‖y‖2=1

‖AT y‖2 = ρ(T ),

as desired.

We remark that one can directly prove an upper bound of

2
√
d− 1 on the spectral radius of a path tree of d-regular

graph and an upper bound of
√
c− 1 +

√
d− 1 on the
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spectral radius of a path tree of a (c, d)-regular bipartite

graph without considering infinite trees. We point the reader

to Section 5.6 of Godsil’s book [12] for an elementary

argument.

We now recall a theorem of Godsil and Gutman which

says that the matching polynomial of a graph equals the

expected characteristic polynomial of random signing of

the adjacency matrix of that graph. To associate a signing

of the edges of G with a vector in {±1}m, we choose

an arbitrary ordering of the m edges of G, denote the

edges by e1, . . . , em, and a signing of these edges by

s ∈ {±1}m. We then let As denote the signed adjacency

matrix corresponding to s, and define fs(x) = det[xI−As]
to be characteristic polynomial of As.

Theorem III.6 (Corollary 2.2 of Godsil and Gutman [34]).

Es∈{±1}m [fs(x)] = μG(x).

For the convenience of the reader, we present a simple

proof of this theorem in the Appendix.

To prove that a good lift exists, it suffices, by Theorems

III.2 and III.6, to show that there is a signing s so that

the largest root of fs(x) is at most the largest root of

Es∈{±1}m [fs(x)]. To do this, we prove that the polynomials

{fs(x)}s∈{±1}m are what we call an interlacing family. We

define interlacing families and examine their properties in

the next section.

IV. INTERLACING FAMILIES

Definition IV.1. We say that a polynomial g(x) =∏n−1
i=1 (x−αi) interlaces a polynomial f(x) =

∏n
i=1(x−βi)

if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn

We say that polynomials f1, . . . , fk have a common inter-
lacing if there is a polynomial g so that g interlaces fi for

each i.

Let βi,j be the jth smallest root of fi. The polynomials

f1, . . . , fk have a common interlacing if and only if there

are numbers α0 ≤ α1 ≤ · · · ≤ αn so that βi,j ∈ [αj−1, αj ]
for all i and j. The numbers α1, . . . , αn−1 come from the

roots of the polynomial g, and α0 (αn) can be chosen to be

any number that is smaller (larger) than all of the roots of

all of the fi.

Lemma IV.2. Let f1, . . . , fk be polynomials of the same
degree that are real-rooted and have positive leading coef-
ficients. Define

f∅ =
k∑

i=1

fi.

If f1, . . . , fk have a common interlacing, then there exists
an i so that the largest root of fi is at most the largest root
of f∅.

Proof: Let the polynomials be of degree n. Let g be a

polynomial that interlaces all of the fi, and let αn−1 be

the largest root of g. As each fi has a positive leading

coefficient, it is positive for sufficiently large x. As each

fi has exactly one root that is at least αn−1, each fi is non-

positive at αn−1. So, f∅ is also non-positive at αn−1, and

eventually becomes positive. This tells us that f∅ has a root

that is at least αn−1, and so its largest root is at least αn−1.

Let βn be this root.

As f∅ is the sum of the fi, there must be some i for which

fi(βn) ≥ 0. As fi has at most one root that is at least αn−1,

and fi(αn−1) ≤ 0, the largest root of fi is it at least αn−1

and at most βn.

One can show that the assumptions of the lemma imply

that f∅ is itself a real-rooted polynomial. However, we will

not require this fact.

If the polynomials do not have a common interlacing, the

sum may not be real rooted: consider (x+1)(x+2)+ (x−
1)(x−2). Even if the sum of two polynomials is real rooted,

the conclusion of Lemma IV.2 may fail to hold if the interval

containing the largest roots of each polynomial overlaps the

interval containing their second-largest roots. For example,

consider the sum of the polynomials (x+5)(x−9)(x−10)
and (x + 6)(x − 1)(x − 8). It has roots at approximately

−5.3, 6.4, and 7.4, whence its largest root is smaller than

the largest root of both polynomials of which it is the sum.

Definition IV.3. Let S1, . . . , Sm be finite sets and for every

s1 ∈ S1, . . . , sm ∈ Sm let fs1,...,sm(x) be a real-rooted

degree n polynomial with positive leading coefficient. For

every partial assignment s1 ∈ S1, . . . , sk ∈ Sk, define

fs1,...,sk
def
=

∑
sk+1∈Sk+1,...,sm∈Sm

fs1,...,sk,sk+1,...,sm ,

as well as

f∅
def
=

∑
s1∈S1,...,sm∈Sm

fs1,...,sm .

We say that the polynomials {fs1,...,sm}s1,...,sm form an

interlacing family if for all k = 0, . . . ,m− 1, and all s1 ∈
S1, . . . , sk ∈ Sk, the polynomials

{fs1,...,sk,t}t∈Sk+1

have a common interlacing.

Theorem IV.4. Let S1, . . . , Sm be finite sets and let
{fs1,...,sm} be an interlacing family of polynomials. Then,
there exits some s1, . . . , sm ∈ S1 × · · · × Sm so that the
largest root of fs1,...,sm is less than the largest root of f∅.

Proof: From the definition of an interlacing family, we

know that fs1 , . . . , fsk have a common interlacing and that

their sum is f∅. So, Lemma IV.2 tells us that one of the

polynomials {fs1}s1∈S1
has largest root at most the largest

root of f∅. We now proceed inductively. For any s1, . . . , sk,
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we know that the polynomials fs1,...,sk,sk+1
for sk+1 ∈ Sk+1

have a common interlacing and that their sum is fs1,...,sk . So,

for some choice of sk+1 the largest root of the polynomial

fs1,...,sk+1
is at most the largest root of fs1,...,sk .

We will prove that the polynomials {fs}s∈{±1}m defined

in Section III are an interlacing family. Our proof will use

the following result, which seems to have been discovered a

number of times. It appears as Theorem 2.1 of Dedieu [35]

and (essentially) as Theorem 2′ of Fell [36]. In the case

that the roots of f and g are distinct, it appears as Proposi-

tion 1.35 in Fisk [37].

Lemma IV.5. Let f and g be (univariate) polynomials of
the same degree such that, for all λ ∈ [0, 1], λf + (1− λ)g
is real rooted. Then f and g have a common interlacing.

V. THE MAIN RESULT

Our proof that the polynomials {fs}s∈{±1}m are an in-

terlacing family relies on the following generalization of the

fact that the matching polynomial is real-rooted. It amounts

to saying that if we pick each sign independently with

any probabilities, then the resulting polynomial is still real-

rooted.

Theorem V.1. Let p1, . . . , pm be numbers in [0, 1]. Then,
the following polynomial is real-rooted

∑
s∈{±1}m

( ∏
i:si=1

pi

)( ∏
i:si=−1

(1− pi)

)
fs(x).

We will prove this theorem using machinery that we

develop in Section VI.

Theorem V.2. The polynomials {fs}s∈{±1}m are an inter-
lacing family.

Proof: We will show that for every 0 ≤ k ≤ m − 1,

every partial assignment s1 ∈ ±1, . . . , sk ∈ ±1, and every

λ ∈ [0, 1], the polynomial

λfs1,...,sk,1(x) + (1− λ)fs1,...,sk,−1(x)

is real-rooted. The theorem will then follow from

Lemma IV.5.

To show that the above polynomial is real-rooted, we

apply Theorem V.1 with pk+1 = λ, pk+2, . . . , pm = 1/2,

and pi = (1 + si)/2 for 1 ≤ i ≤ k.

Theorem V.3. Let G be a graph with adjacency matrix
A and universal cover T . Then there is a signing s of A
so that all of the eigenvalues of As are at most ρ(T ). In
particular, for d-regular graphs, the eigenvalues of As are
at most 2

√
d− 1.

Proof: The first statement follows immediately from

Theorems IV.4 and V.2 and Lemma III.5. The second

statement follows by noting that the universal cover of a d-

regular graph is a d-regular tree, which has spectral radius

at most 2
√
d− 1, or by directly appealing to Theorem III.2.

Theorem V.4. For every d ≥ 3 there is an infinite sequence
of d-regular bipartite Ramanujan graphs.

Proof: The complete bipartite graph of degree d is

Ramanujan. By Lemma 3.1 of [1] and Theorem V.3, for

every d-regular bipartite Ramanujan graph G, there is a 2-lift

in which every non-trivial eigenvalue is at most 2
√
d− 1. As

the 2-lift of a bipartite graph is bipartite, and the eigenvalues

of a bipartite graph are symmetric about 0, this 2-lift is also

a regular bipartite Ramanujan graph.

Thus, for every d-regular bipartite Ramanujan graph G,

there is another d-regular bipartite Ramanujan graph with

twice as many vertices.

Theorem V.5. For every c, d ≥ 3, there is an infinite
sequence of (c, d)-biregular bipartite Ramanujan graphs.

Proof: Let Kc,d be the complete bipartite graph with c
vertices on one side and d on the other. The adjacency matrix

of this graph has rank 2, so its non-trivial eigenvalues are

zero and it is Ramanujan.

We will construct an infinite sequence of (c, d)-biregular

bipartite graphs. Let G be any (c, d)-biregular bipartite Ra-

manujan graph. As mentioned in Section II-C, the universal

cover of G is the infinite (c, d)-biregular tree, which has

spectral radius
√
c− 1 +

√
d− 1. Thus, Theorem V.3 tells

us that there is a 2-lift of G with all new eigenvalues

at most
√
c− 1 +

√
d− 1. As this graph is bipartite, all

of its non-trivial eigenvalues have absolute value at most√
c− 1 +

√
d− 1. So, the resulting 2-lift is a larger (c, d)-

biregular bipartite Ramanujan graph.

To conclude the section, we remark that repeated applica-

tion of Theorem V.3 can be used to generate an infinite

sequence of irregular Ramanujan graphs from any finite

irregular bipartite Ramanujan graph, since all of the lifts

produced will have (by definition, since they are connected)

the same universal cover. In contrast, Lubotzky and Nag-

nibeda [38] have shown that there exist infinite trees that

cover infinitely many finite graphs but such that none of the

finite graphs are Ramanujan.

VI. REAL STABLE POLYNOMIALS

In this section we will establish the real-rootedness of

a class of polynomials which includes the polynomials of

Theorem V.1. We will do this by considering a multivariate

generalization of real-rootedness called real stability (see,

e.g., the surveys [39], [40]). In particular, we will show

that the univariate polynomials we are interested in are the

images, under a well-behaved linear transformation, of a

multivariate real stable polynomial.

Definition VI.1. A multivariate polynomial

f ∈ R[z1, . . . , zn] is called real stable if it is the
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zero polynomial or if

f(z1, . . . , zn) �= 0

whenever the imaginary part of every zi is strictly positive.

Note that a real stable polynomial has real coefficients,

but may be evaluated on complex inputs.

We begin by considering certain determinantal polyno-

mials whose real stability is guaranteed by the following

lemma, which may be found in Borcea and Brändén [41,

Proposition 2.4].

Lemma VI.2. Let A1, . . . , Am be positive semidefinite
matrices. Then

det [z1A1 + · · ·+ zmAm]

is real stable.

Real stable polynomials enjoy a number of useful

closure properties. In particular, it is easy to see that

if f(x1, . . . , xk) and g(y1, . . . yj) are real stable then

f(x1, . . . , xk)g(y1, . . . , yj) is real stable. One can also

check that the real stability of f(x1, . . . , xk) implies the

real stability of f(x1, . . . , xk−1, c) for every c ∈ R (see,

e.g., Lemma 2.4 in [40]). For a variable xi, we let Zxi
be

the operator on polynomials induced by setting this variable

to zero.

In [42], Borcea and Brändén characterize an entire class of

differential operators that preserve real stability. To simplify

notation, we will let ∂zi denote the operation of partial

differentiation with respect to zi. For α, β ∈ N
n, we use

the notation

zα =
n∏

i=1

zαi
i and ∂β =

n∏
i=1

(∂zi)
βi .

Theorem VI.3 (Theorem 1.3 in [42]).
Let T : R[z1, . . . , zn]→ R[z1, . . . , zn] be an operator of the
form

T =
∑

α,β∈Nn

cα,βz
α∂β

where cα,β ∈ IR and cα,β is zero for all but finitely many
terms. Define

FT (z, w) =
∑
α,β

cα,βz
αwβ

Then T preserves real stability if and only if FT (z,−w) is
real stable.

We will use a special case of this result.

Corollary VI.4. For non-negative real numbers p and q and
variables u and v, the operator T = 1+p∂u+q∂v preserves
real stability.

Proof: We just need to show that the polynomial 1 −
pu − qv is real stable. To see this, consider u and v with

positive imaginary parts. The imaginary part of 1− pu− qv
will then be negative, and so cannot be zero.

We now show how operators of the preceding kind can

be used to generate the expected characteristic polynomials

that appear in Theorem V.1.

Lemma VI.5. For an invertible matrix A, vectors a and b,
and a number p ∈ [0, 1],

ZuZv(1 + p∂u + (1− p)∂v) det
[
A+ uaaT + vbbT

]
= p det

[
A+ aaT

]
+ (1− p) det

[
A+ bbT

]
.

Proof: The matrix determinant lemma (see, e.g., [43])

states that for every nonsingular matrix A and every real

number t,

det
[
A+ taaT

]
= det [A] (1 + taTA−1a).

One consequence of this is Jacobi’s formula for the deriva-

tive of the determinant:

∂t det
[
A+ taaT

]
= det [A] (aTA−1a).

This formula implies that

ZuZv(1 + p∂u + (1− p)∂v) det
[
A+ uaaT + vbbT

]
= det [A]

(
1 + p(aTA−1a) + (1− p)(bTA−1b)

)
.

By the matrix determinant lemma, this equals

p det
[
A+ aaT

]
+ (1− p) det

[
A+ bbT

]
.

Using these tools, we prove our main technical result on

real-rootedness.

Theorem VI.6. Let a1, . . . , am and b1, . . . , bm be vectors
in R

n, and let p1, . . . , pm be real numbers in [0, 1]. Then
every (univariate) polynomial of the form

P (x)
def
=

∑
S⊆[m]

(∏
i∈S

pi

)⎛⎝∏
i 
∈S

1− pi

⎞
⎠

· det
⎡
⎣xI +∑

i∈S
aia

T
i +

∑
i 
∈S

bib
T
i

⎤
⎦

is real-rooted.

Proof: Let u1, . . . , um and v1, . . . , vm be formal vari-

ables and define

Q(x, u1, . . . , um, v1, . . . , vm)

= det

[
xI +

∑
i

uiaia
T
i +

∑
i

vibib
T
i

]
.

Lemma VI.2 implies that Q is real stable.
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We claim that we can rewrite P as

P (x) =

(
m∏
i=1

Zui
Zvi

Ti

)
Q(x, u1, . . . , um, v1, . . . , vm),

where Ti = 1 + pi∂ui
+ (1− pi)∂vi

. To see this, we prove

by induction on k that(
k∏

i=1

ZuiZviTi

)
Q(x, u1, . . . , um, v1, . . . , vm)

equals

∑
S⊆[k]

(∏
i∈S

pi

)⎛⎝ ∏
i∈[k]\S

1− pi

⎞
⎠ ·

det

⎡
⎣xI +∑

i∈S
aia

T
i +

∑
i∈[k]\S

bib
T
i +

∑
i>k

uiaia
T
i + vibib

T
i

⎤
⎦ .

The base case (k = 0) is trivially true, as it is the definition

of Q. The inductive step follows from Lemma VI.5. The

case k = m is exactly the claimed identity.

Starting with Q (a real stable polynomial) we can then

apply Corollary VI.4 and the closure of real stable polyno-

mials under the restrictions of variables to real constants to

see that each of the polynomials above, including P (x), is

also real stable. As P (x) is real stable and has one variable,

it is real-rooted.

Alternatively, one can prove Theorem VI.6 by observing

that P is a mixed characteristic polynomial and then apply-

ing results of our second paper in this series [2].

Proof of Theorem V.1: Let d be the maximum degree

of G. We need to prove that the polynomial

∑
s∈{±1}m

( ∏
i:si=1

pi

)( ∏
i:si=−1

(1− pi)

)
det [xI −As]

is real-rooted. This is equivalent to proving that the the

following polynomial is real-rooted

∑
s∈{±1}m

( ∏
i:si=1

pi

)( ∏
i:si=−1

(1− pi)

)
det [xI + dI −As] ,

(4)

as their roots only differ by d.

We now observe that the matrix dI − As is a signed

Laplacian matrix of G plus a nonnegative diagonal matrix.

For each edge (u, v), define the rank 1-matrices

L1
u,v = (eu − ev)(eu − ev)

T , and

L−1
u,v = (eu + ev)(eu + ev)

T ,

where eu is the elementary unit vector in direction u.

Consider a signing s and let su,v denote the sign it assigns to

edge (u, v). Since the original graph had maximum degree

d, we have

dI −As =
∑

(u,v)∈E
Lsu,v
u,v +D,

for some nonnegative diagonal matrix D =
∑

u∈V dueue
T
u ,

which does not depend on s and which is zero when G is

regular. If we now set au,v = (eu−ev) and bu,v = (eu+ev),
we can express the polynomial in (4) as

∑
s∈{±1}m

( ∏
i:si=1

pi

)( ∏
i:si=−1

(1− pi)

)
·

det

⎡
⎣xI +D +

∑
su,v=1

au,va
T
u,v +

∑
su,v=−1

bu,vb
T
u,v

⎤
⎦ .

The fact that this polynomial is real-rooted now follows from

Theorem VI.6, by creating auxiliary pi’s that are all equal

to one to correspond to any fixed dueue
T
u terms.

VII. CONCLUSION

We conclude by drawing an analogy between our proof

technique and the probabilistic method, which relies on the

fact that for every random variable X : Ω → R, there

is an ω ∈ Ω for which X(ω) ≤ E [X]. We have shown

that for certain special polynomial-valued random variables

P : Ω → R[x], there must be an ω with λmax(P (ω)) ≤
λmax(E [P ]). In fact it is possible to define interlacing

families in greater generality than we have done here, using

probabilistic notation. In particular, we call a polynomial-

valued random variable P useful if P is deterministic

or there exist disjoint non-trivial events E1, . . . , Ek with∑
i≤k Pr [Ei] = 1 such that the polynomials {E [P |Ei]}i≤k

have a common interlacing and each polynomial E [P |Ei]
is itself useful. The conclusion of Theorem IV.4 continues

to hold for this definition, and we suspect it will be useful

in non-product settings. In the case of this paper, the events

Ei are particularly simple: they correspond to setting one

sign of a lift to be +1 or −1, and the resulting sequence

of polynomials f∅, fs1 , . . . , fs1,...,sm forms a martingale (a

fact that we do not use, but may be interesting in its own

right).
Like many applications of the probabilistic method, our

proof does not yield a polynomial-time algorithm. In the

particular case of random lifts, the polynomial f∅ is itself a

matching polynomial, which is #P -hard to compute in gen-

eral. It would certainly be interesting to find computationally

efficient analogues of our method.
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APPENDIX

Let sym(S) denote the set of permutations of a set S
and let (−1)π denote the sign of a permutation π (i.e., the

number of inversions in π). Expanding the determinant as a

sum over permutations σ ∈ sym([n]), we have

Es [det(xI −As)]

= Es

⎡
⎣ ∑
σ∈sym([n])

(−1)σ
n∏

i=1

(xI −As)i,σ(i)

⎤
⎦

=

n∑
k=0

xn−k
∑

S⊂[n],|S|=k

∑
π∈sym(S)

Es

[
(−1)π

∏
i∈S

(As)i,π(i)

]

where π denotes the part of σ with σ(i) �= i

=
n∑

k=0

xn−k
∑

S⊂[n],|S|=k

∑
π∈sym(S)

Es

[
(−1)π

∏
i∈S

si,π(i)

]
.

Observe that since the sij are independent with E [sij ] = 0,

only those products which contain even powers (0 or 2)

of the sij survive. Thus, we may restrict our attention to

the permutations π which contain only orbits of size two.

These are just the perfect matchings on S. There are no

perfect matchings when |S| is odd; otherwise, each matching

consists of |S|/2 inversions. Since Es

[
s2ij
]
= 1, we are left

with

Es [det(xI −As)]

=
n∑

k=0

xn−k
∑
|S|=k

∑
matching π on S

(−1)|S|/2 · 1

= μG(x),

as desired.
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