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Abstract—Let P be a collection of n points in the plane,
each moving along some straight line at unit speed. We obtain
an almost tight upper bound of O(n2+ε), for any ε > 0, on
the maximum number of discrete changes that the Delaunay
triangulation DT(P ) of P experiences during this motion. Our
analysis is cast in a purely topological setting, where we only
assume that (i) any four points can be co-circular at most three
times, and (ii) no triple of points can be collinear more than
twice; these assumptions hold for unit speed motions.
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changes; Voronoi diagram; combinatorial complexity

I. INTRODUCTION

Delaunay triangulations. Let P be a finite set of points
in the plane. Let VD(P ) and DT(P ) denote the Euclidean
Voronoi diagram and Delaunay triangulation of P , respec-
tively. The Delaunay triangulation consists of all triangles
spanned by P whose circumcircles do not contain points of
P in their interior. A pair of points p, q ∈ P are connected
by a Delaunay edge if there is a circle passing through p
and q that does not contain any point of P in its interior.

Delaunay triangulations and their duals, Voronoi diagrams
[10], are among the most extensively and longest studied
constructs in computational geometry, with a wide range
of applications. For a static point set P , both DT(P ) and
VD(P ) have linear complexity and can be computed in
optimal O(n log n) time. See [6], [12], [13] for surveys and
a textbook on these structures. The problem has also been
studied in the dynamic setting; see, e.g., [7].

The kinetic setting: Previous work. In many applications
of Delaunay/Voronoi methods the points of the input set P
are moving continuously. Interest in efficient maintenance of
geometric structures under simple motion1 of P goes back
at least to Atallah [4], [5].

For the purpose of kinetic maintenance, Delaunay triangu-
lations are nice structures, because, as mentioned above, they
admit local certifications associated with individual triangles
(namely, that their circumcircles be P -empty). This makes
it simple to maintain DT(P ) under point motion: an update
is necessary only at critical times when one of these empty

Work on this paper was supported by the Minerval Fellowship Program.
1The simplest way to define this motion is assume that each coordinate

of each point p = p(t) in P is a is fixed-degree polynomial in t.

circumcircle conditions fails—this (typically) corresponds to
co-circularities of certain subsets of four points, where the
relevant circumcircle is P -empty. Whenever such an event,
referred to as a Delaunay co-circularity, happens, a single
edge flip easily restores Delaunayhood.2 In addition, the
Delaunay triangulation changes when some triple of points
of P become collinear on the boundary of the convex hull
of P ; see below for details. Hence, the performance of any
Voronoi- or Delaunay-based kinetic algorithm depends on
the number of the above discrete changes (or critical events).

This paper studies the best-known formulation of the
problem, in which each point of P moves along a straight
line with unit speed; see [11], [13]. In this case, the pre-
viously best-known upper bound on the number of discrete
changes in DT(P ) is O(n3). In the more general setting,
each point of P moves with so-called pseudo-algebraic
motion of constant description complexity, implying that any
four points are co-circular at most s times, and any triple of
points can are collinear at most s′ times, for some constants
s, s′ > 0. Given these (purely topological) restrictions, Fu
and Lee [14], and Guibas et al. [15] established a roughly
cubic upper bound of O(n2λs+2(n)), where λs(n) is the
(almost linear) maximum length of an (n, s)-Davenport-
Schinzel sequence [23]. A substantial gap exists between
these near-cubic upper bounds and the best known quadratic
lower bound [23]. Closing this gap has been in the compu-
tational geometry lore for many years, and is considered as
one of the major open problems in the field. It is listed as
Problem 2 in the TOPP project; see [11]. A recent work [21]
by the author provides an almost tight bound of O(n2+ε),
for any ε > 0, for a more restricted version of the problem,
in which any four points can be co-circular at most twice.

In view of the very slow progress on the above general
problem, a number of alternative structures, with (at most)
near-quadratically many discrete changes, were studied; see,
e.g., [2], [3], [8], [17].

Our result. We study the problem in a purely topological
setup, where we assume that (i) any four points of P are co-
circular at most three times during their (continuous) motion,

2We assume, without loss of generality, that the trajectories of the points
of P satisfy the standard general position assumptions; see, e.g., [21] for
more details. In particular, no five points can become co-circular.
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and (ii) any three points of P can be collinear at most
twice. For any point set P whose motion satisfies these two
axioms, we derive a nearly tight upper bound of O(n2+ε),
for any ε > 0, on the overall number of discrete changes
experienced by DT(P ). As is well known, these properties
hold for points that move along straight lines with a common
(unit) speed, so our near-quadratic bound holds in this case.

Proof ingredients. The majority of the discrete changes
in DT(P ) occur at moments t0 when some four points
p, q, a, b ∈ P are co-circular, and the corresponding cir-
cumdisc contains no other points of P . We refer to these
events as Delaunay co-circularities. Suppose that p, a, q, b
appear along their common circumcircle in this order, so ab
and pq form the chords of the convex quadrilateral spanned
by these points. Right before t0, one of the chords, say
pq, is Delaunay and thus admits a P -empty disc whose
boundary contains p and q. Right after time t0, the edge pq
is replaced in DT(P ) by ab, an operation known as an edge-
flip. Informally, this happens because the Delaunayhood of
pq is violated by a and b: Any disc whose boundary contains
p and q contains at least one of the points a, b. If pq does
not re-enter DT(P ) after time t0, we can charge the event
at time t0 to pq, for a total of O(n2) such events. We thus
assume that pq is again Delaunay at some moment t1 > t0.

It is insightful to note that one of the following always
holds: either the Delaunayhood of pq is interrupted during
(t0, t1) by at least k2 pairs u, v ∈ P , or this edge can be
made Delaunay throughout (t0, t1) by removal of at most
Θ(k) points of P . In the former case, each violating pair u, v
contributes during (t0, t1) either a co-circularity of p, q, u, v,
or a collinearity in which one of u or v crosses pq.

Combinatorial charging. Our goal is to derive a recurrence
for the maximum number N(n) of such Delaunay co-
circularities induced by any set P of n points (whose motion
satisfies the above conditions). Notice that the number of all
co-circularities, each defined by some four points of P , can
be as large as Θ(n4). The challenge is thus to show that the
vast majority of co-circularity events are not Delaunay.

In Section II we study the set of all co-circularities that
involve some disappearing Delaunay edge pq and some other
pair of points of P \ {p, q}, and occur during the period
(t0, t1) when pq is absentfrom DT(P ). A co-circularity
is called k-shallow if its circumdisc contains at most k
points of P . If we find at least Ω(k2) such k-shallow co-
circularities involving p, q, and another pair of points, we
can charge them for the disappearance of pq. We use the
routine probabilistic argument of Clarkson and Shor [9] to
show that the number of Delaunay co-circularities, for which
this simple charging works, is O

(
k2N(n/k)

)
. Informally,

this term that such Delaunay co-circularities contribute to
the overall recurrence formula (see, e.g., [1] and [19]),
yields a near-quadratic bound for N(n). Similarly, if we
find a “shallow” collinearity of p, q and another point (one

halfplane bounded by the line of collinearity contains at most
k points), we can charge the disappearance of pq to this
collinearity. A combination of the Clarkson-Shor technique
with the known near-quadratic bound on the number of
topological changes in the convex hull of P (see [23, Section
8.6.1]) yields an additional near-quadratic term.

Probabilistic refinement. It thus remains to bound the
number of the above Delaunay co-circularities, for which p
and q participate in fewer shallow co-circularities and in no
shallow collinearity during (t0, t1). In this case, we show,
in what follows we refer to as the Red-Blue Theorem (or
Theorem II.2), that one can restore the Delaunayhood of pq
throughout (t0, t1) by removal of some subset A of at most
3k points of P . To bound the maximum number of such
“non-chargeable” events, we incorporate them into more
structured topological configurations (or, more precisely,
processes), which are likely to show up (in the style of
Clarkson and Shor) in a reduced triangulation DT(R),
defined over a random sample R ⊂ P of Θ(n/k) points.

For example, suppose that the above co-circularity at time
t0, is the last co-circularity of p, q, a, b. Then (at least) one
of the points a or b must hit the edge pq before it re-enters
DT(P ) at time t1. Clearly, the point which crosses pq, let
it be a, must belong to A. Notice that the following two
events occur simultaneously, with probability Ω

(
1/k3

)
: (1)

the random sample R contains the crossing triple p, a, q,
and (2) none of the points of A \ {a} belong to R. In such
case, we say that the edge pq undergoes a Delaunay crossing
by a in the refined triangulation DT(R), which takes place
during a certain subinterval I ⊂ [t0, t1] (such that (i) a hits
pq during I , (ii) pq ∈ DT(R) at the beginning and the end of
I , and (iii) pq �∈ DT(R) in the interior of I , but belongs to
DT(R\{a}) throughout I). A symmetric argument applies if
we encounter the first co-circularity of p, q, a, b. As argued in
the predecessor paper [21] (and reviewed in Section IV-A),
Delaunay crossings are especially nice objects due to their
strict structural properties.

The roadmap. In Section III we show that the number of
Delaunay co-circularities is dominated by the maximum pos-
sible number of Delaunay crossings. Notice the previously
sketched argument (which appears in [21]) works only for
the “first” and the “last” Delaunay co-circularities.

To extend the above reduction to the remaining, “middle”
Delaunay co-circularities, we resort in Section III to a fairly
simple argument, expressing the maximum possible number
of such co-circularities in terms of the numbers of extremal
Delaunay co-circularities and Delaunay crossings that arise
in smaller-size subsets of P .

Informally, our goal is to show that, for an average pair
(p, r), the point r is involved in “few” crossings of p-incident
edges. To do so, we express, in Section IV, the number of
Delaunay crossings in terms of the maximum number of
certain quadruples σ = (p, q, a, r), each composed of a pair
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of “consecutive” Delaunay crossings of p-adjacent edges pq
and pa, by the same point r.

Unfortunately, the analysis of quadruples is fairly in-
volved, so we only overview it in Section IV-B; the missing
details are delegated to the full version of this paper.

To bound the number of quadruples, we resort to the rou-
tine “charge-or-refine” strategy (via our Red-Blue Theorem).
This is done in several steps. At each stage we first try to
dispose of as many quadruples as possible by charging each
of them either to sufficiently many “shallow” co-circularities
(or collinearities), or to one of the several kinds of “terminal”
triples, for which we provide back in Section IV a direct
quadratic bound on their number.

There are two main types of terminal triples (p, q, a). In
one of them, we have a double Delaunay crossing—the point
a crosses pq twice during the interval I . In the other the same
triple performs two distinct “single” Delaunay crossings,
where, say, a crosses pq during one crossing, and q crosses
pa during the second one. In both cases the number of such
triples is shown to be only O(n2).
Acknowledgements. I would like to thank my former Ph.D.
advisor Micha Sharir whose dedicated support made this
work possible. In particular, I would like to thank him for
the insightful discussions, and, especially, for his help in the
preparation and careful reading of this paper.

II. GEOMETRIC PRELIMINARIES

Delaunay co-circularities. Let P be a collection of n points
moving along (generic) pseudo-algebraic trajectories in the
plane, so that any four points are co-circular at most three
times, and any three points can be collinear at most twice.

p

a

q

b a
p

b

Figure 1. Left: A Delaunay co-circularity of a, b, p, q. An old Delaunay
edge pq is replaced by the new edge ab. Right: A collinearity of a, p, b
right before p ceases being a vertex on the boundary of the convex hull.

The Delaunay triangulation DT(P ) changes at discrete
time moments t0 when one of the following events occurs:

(i) Some four points a, b, p, q of P become co-circular, so
that the cicrumdisc of p, q, a, b is empty, i.e., does not contain
any point of P in its interior. We refer to such events as
Delaunay co-circularities. See Figure 1 (left). At each such
co-circularity DT(P ) undergoes an edge-flip, where an old
Delaunay edge pq is replaced by the “opposite” edge ab.

(ii) Some three points a, b, p of P become collinear on
the boundary of the convex hull of P . Assume that p
lies between a and b. In this case, if p moves into the
interior of the hull then the triangle abp becomes a new
Delaunay triangle, and if p moves outside and becomes
a new vertex, the old Delaunay triangle abp shrinks to a

segment and disappears. See Figure 1 (right). The number
of such collinearities is known to be at most nearly quadratic;
see, e.g., [23, Section 8.6.1] and below.

In view of the above, it suffices to obtain a near-quadratic
bound on the number of Delaunay co-circularities. Hence,
the rest of this paper is devoted to proving the following
main result:

Theorem II.1. Let P be a collection of n points moving
along pseudo-algebraic trajectories in the plane, so that (i)
any four points of P are co-circular at most three times,
and (ii) no triple of points can be collinear more than twice.
Then P admits at most O(n2+ε) Delaunay co-circularities,
for any ε > 0.

In what follows, we use N(n) to denote the maximum
possible number of Delaunay co-circularities among n points
whose motion satisfies the above assumptions.

Shallow co-circularities. We say that a co-circularity event,
where four points of P become co-circular, has level k if its
corresponding circumdisc contains exactly k points of P in
its interior. In particular, the Delaunay co-circularities have
level 0. The co-circularities having level at most k are called
k-shallow.

We can bound the maximum possible number of k-
shallow co-circularities (for k ≥ 1) in terms of the max-
imum number of Delaunay co-circularities in smaller-size
point sets using the following fairly general argument of
Clarkson and Shor [9]. Consider a random sample R of
Θ(n/k)(< n/2) points of P and observe that any k-shallow
co-circularity in P becomes a Delaunay co-circularity in
R with probability Θ(1/k4). (For this to happen, the four
points of the co-circularity have to be chosen in R, and
the at most k points of P inside the circumdisc must not
be chosen; see [9] for further details.) Hence, the overall
number of k-shallow co-circularities is O(k4N(n/k)).
Shallow collinearities. A collinearity of p, q, r is called k-
shallow if the number of points of P to the left, or to the
right, of the line through p, q, r is at most k. The argument
of Clarkson and Shor implies, in a similar manner, that the
number of such events, for k ≥ 1, is O(k3H(n/k)), where
H(m) denotes the maximum number of discrete changes of
the convex hull of an m-point subset of P . As shown, e.g.,
in [23, Section 8.6.1], H(m) = O(m2β(m)), where β(·) is
an extremely slowly growing function.3 Thus, the number of
k-shallow collinearities is O(kn2β(n/k)) = O(kn2β(n)).

For every ordered pair (p, q) of points of P , denote by
Lpq the line passing through p and q and oriented from p
to q. Define L−pq (resp., L+

pq) to be the halfplane to the left
(resp., right) of Lpq . Notice that Lpq moves continuously
with p and q. Note also that Lpq and Lqp are oppositely

3Specifically, β(n) =
λs+2(n)

n
, where s is the maximum number of

collinearities of any fixed triple of points, and where λs+2(n) is the
maximum length of (n, s + 2)-Davenport-Schinzel sequences [23].
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r
r

p

q

B[p, q, r]

B[p, q, b]

q
f−

b
(t)

r
f+

r (t)

b

L−pq

L+
pq

B[p, q, r]

Lpq

p

Figure 2. Left: The circumdisc B[p, q, r] of p, q and r moves continuously
as long as these three points are not collinear, and then flips over to the
other side of the line of collinearity after the collinearity. Right: A snapshot
at moment t. In the depicted configuration we have f−

b
(t) < 0 < f+

r (t).

oriented and that L+
pq = L−qp and L−pq = L+

qp. We also orient
the edge pq connecting p and q from p to q, so that the
edges pq and qp have opposite orientations.

Any three points p, q, r span a circumdisc B[p, q, r] which
moves continuously with p, q, r as long as p, q, r are not
collinear. See Figure 2 (left). When p, q, r become collinear,
say, when r crosses pq from L−pq to L+

pq, the disc B[p, q, r]
changes instantly from being all of L+

pq to all of L−pq .

The red-blue arrangement. Following [15] and [21], we
use the so called red-blue arrangement to facilitate the
analysis of co-circularities whose corresponding discs touch
the same two points p, q ∈ P .

For a fixed ordered pair p, q ∈ P , we call a point a of
P \ {p, q} red (with respect to the oriented edge pq) if a ∈
L+

pq; otherwise it is blue.
We define, for each r ∈ P \ {p, q}, a pair of partial

functions f+
r , f−r over the time axis as follows. If r ∈ L+

pq

at time t then f−r (t) is undefined, and f+
r (t) is the signed

distance of the center c of B[p, q, r] from Lpq; it is positive
(resp., negative) if c lies in L+

pq (resp., in L−pq). A symmetric
definition applies when r ∈ L−pq. Here too f−r (t) is positive
(resp., negative) if the center of B[p, q, r] lies in L+

pq (resp.,
in L−pq). We refer to f+

r as the red function of r (with respect
to pq) and to f−r as the blue function of r. Note that at all
times when p, q, r are not collinear, exactly one of f+

r , f−r
is defined. See Figure 2 (right).

Let E+ denote the lower envelope of the red functions,
and let E− denote the upper envelope of the blue functions.
The edge pq is a Delaunay edge at time t if and only if
E−(t) < E+(t). Indeed, any disc whose bounding circle
passes through p and q which is centered anywhere in the
interval (E−(t), E+(t)) along the bisector of pq is empty
at time t. If pq is not Delaunay at time t, there is a
“bichromatic” pair r, b ∈ P such that f+

r (t) < f−b (t). In
such a case, we say that the Delaunayhood of pq is violated
by r and b.

Hence, at any time when the edge pq joins or leaves
DT(P ), via a Delaunay co-circularity involving p, q, and
two other points of P , we have E−(t) = E+(t). In this case
the two other points, a, b, are such that one of them, say a,
lies in L+

pq and b lies in L−pq , and E+(t) = f+
a (t), E−(t) =

f−b (t).

r

p

qb

b

p

q

a

a

p

b

q

Figure 3. Left: A snapshot at time t. The red and blue envelopes E+, E−
coincide with the functions f+

r , f−
b

, respectively. The edge pq is not a
Delaunay edge because E+(t) (the hollow center) is smaller than E−(t)
(the shaded center). Center and right: Red-red and red-blue co-circularities.

Let A = Apq denote the arrangement of the 2n − 4
functions f+

r (t), f−r (t), for r ∈ P \ {p, q}, drawn in the
parametric (t, ρ)-plane, where t is the time and ρ measures
signed distance to the midpoint of pq along the perpendicular
bisector of pq. We label each vertex of A as red-red, blue-
blue, or red-blue, according to the colors of the two functions
meeting at the vertex. An intersection between two red
functions f+

a , f+
b corresponds to a co-circularity event which

involves p, q, a and b, occurring when both a and b lie in
L+

pq. Similarly, an intersection of two blue functions f−a , f−b
corresponds to a co-circularity where both a and b lie in
L−pq, and an intersection of a red fuction f+

a and a blue
function f−b represents a co-circularity where a ∈ L+

pq and
b ∈ L−pq. We label these co-circularities as red-red, blue-
blue, and red-blue, depending on the respective colors of a
and b. See Figure 3 (center and right).

Note that in any co-circularity of four points of P there are
exactly two pairs (namely, the opposite pairs) with respect
to which the co-circularity is red-blue, and four pairs (the
adjacent pairs) with respect to which the co-circularity is
“monochromatic”. When the co-circularity is Delaunay, the
two pairs for which the co-circularity is red-blue are those
that enter or leave the Delaunay triangulation DT(P ) (one
pair enters and one leaves). The Delaunayhood of pairs for
which the co-circularity is monochromatic is not affected
by the co-circularity, which appears in the corresponding
arrangement as a breakpoint of either E+(t) or E−(t).

The following useful result on Apq was established in
[21]. (Note that the theorem holds for all pseudo-algebraic
motions of constant description complexity, and the con-
stants in the O(·) and Ω(·) notations do not depend on k.)

Theorem II.2 (Red-blue Theorem). Let P be a collection
of n points moving in the plane as described above. Suppose
that an edge pq belongs to DT(P ) at (at least) one of
the two moments t0 and t1, for t0 < t1. Let k > 12 be
some sufficiently large constant. Then one of the following
conditions holds:

(i) There is a k-shallow collinearity which takes place
during (t0, t1), and involves p, q and another point r.

(ii) There are Ω(k2) k-shallow red-red, red-blue, or blue-
blue co-circularities (with respect to pq) which occur during
(t0, t1).

(iii) There is a subset A ⊂ P of at most 3k points
whose removal guarantees that pq belongs to DT(P \ A)
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throughout (t0, t1).

III. FROM DELAUNAY CO-CIRCULARITIES TO

DELAUNAY CROSSINGS

As before, N(n) denotes the maximum possible number
of Delaunay co-circularities that can arise in a set P of n
points moving as above in R

2. In this section we introduce
the notion of a Delaunay crossing, which plays a central role
both in this paper and in its predecessor [21], and express
the above quantity N(n) in terms of the number of Delaunay
crossings that can arise in smaller sets of moving points.

Delaunay crossings. A Delaunay crossing is a triple
(pq, r, I = [t0, t1]), where p, q, r ∈ P and I is a time
interval, such that

1) pq leaves DT(P ) at time t0, and returns at time t1
(and pq does not belong to DT(P ) during (t0, t1)),

2) r crosses the segment pq at least once (and at most
twice, by assumption) during I , and

3) pq is an edge of DT(P \{r}) during I (i.e., removing
r restores the Delaunayhood of pq during the entire
time interval I).

q
r

B[p, q, r]
p

q

rp

B[p, q, r]

Figure 4. A Delaunay crossing of pq by r from L−pq to L+
pq . Several

snapshots of the continuous motion of B[p, q, r] before and after r crosses
pq are depicted (in the left and right figures, respectively).

It is easy to see that the third condition is equivalent to
the following condition, expressed in terms of the red-blue
arrangementApq associated with pq: The point r participates
only in red-blue co-circularites during the interval I , and
these are the only red-blue co-circularities that occur during
I . More specifically, note that r is red during some portion
of I and is blue during the complementary portion (both
portions are not necessarily connected). During the former
portion the graph of f+

r coincides with the red lower enve-
lope E+ (otherwise E+(t) < E−(t) would hold sometime
during I even after removal of r), so it can only meet the
graphs of blue functions. Similarly, during the latter portion
f−r coincides with the blue upper envelope E−, so it can
only meet the graphs of red functions. When passing from
the former portion to the latter, f+

r goes down to −∞,
meeting all blue functions below it, and then it is replaced by
f−r , which goes down from ∞. See Figure 4 for a schematic
illustration of this behavior.

Notice that no points, other than r, cross pq during I (any
such crossing would clearly contradict the third condition
at the very moment when it occurs). Moreover, r does not

cross Lpq outside pq during I; otherwise pq would belong
to DT(P ) when r belongs to Lpq \ pq.

Types of Delaunay co-circularities. We say that a co-
circularity event at time t0 involving a, b, p, q has index 1, 2,
or 3 if this is, respectively, the first, the second, or the third
co-circularity involving a, b, p, q. A co-circularity is extremal
if its index is 1 or 3, and the co-circularities with index 2
are referred to as middle co-circularities.

Let C(n) denote the maximum possible number of De-
launay crossings that can arise in a set of n moving points
R

2. To bound N(n) in terms of C(n) (or, more precisely,
in terms of C(m), for some m ≤ n), we first develop a
recurrence which expresses the maximum possible number
NE(n) of extremal Delaunay co-circularities in P in terms
of C(n/k). (In [21], there were no middle co-circularities, so
the same argument worked for all Delaunay co-circularities.)
We then express the maximum possible number NM (n) of
middle Delaunay co-circularities in P in terms of C(n/k)
and NE(n/k) (where k is any sufficiently large parameter.)

The number of extremal co-circularities. Consider a
Delaunay co-circularity event at time t0 at which an edge
pq of DT(P ) is replaced by another edge ab, because of
an extremal red-blue co-circularity with respect to pq and
ab. Without loss of generality, assume that the co-circularity
of p, q, a, b has index 3 (the symmetric case of index 1 is
handled by reversing the direction of the time axis).

There are at most O(n2) such events for which the vanish-
ing edge pq never reappears in DT(P ), so we focus on the
Delaunay co-circularities (of index 3) whose corresponding
edge pq rejoins DT(P ) at some future moment t1 > t0. Note
that at least one of the two other points a, b involved in the
co-circularity at time t0 must cross pq at some time between
t0 and t1. Indeed, otherwise p, q, a and b would have to
become co-circular again, in order to “free” pq from its non-
Delaunayhood, which is impossible since our co-circularity
has index 3. More generally, we have the following lemma,
whose easy proof is illustrated in Figure 5:

Lemma III.1. Assume that the Delaunayhood of pq is
violated at time t0 (or rather right after it) by the points
a ∈ L−pq and b ∈ L+

pq. Furthermore, suppose that pq re-
enters DT(P ) at some future time t1 > t0. Then at least
one of the followings occurs during (t0, t1]:

(1) The point a crosses pq from L−pq to L+
pq.

(2) The point b crosses pq from L+
pq to L−pq.

(3) The four points p, q, a, b are involved in a red-blue
co-circularity.

Clearly, the third scenario is not possible if the co-
circularity at time t0 has index 3. A symmetric version of
Lemma III.1 applies if the Delaunayhood of pq is violated
right before time t0 by a and b, and this edge is Delaunay
at an earlier time t1 < t0.

Notice, however, that the points of P can define Ω(n3)
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Figure 5. Proof of Lemma III.1. The Delaunayhood of pq remains violated
by a and b after time t0 as long as none of a, b hits Lpq , and a remains in
B[p, q, b] ∩ L−pq (left). Hence, pq can become free from its violation only
after being hit by a and/or b (center), or after an additional co-circularity
of p, q, a, b (right).

collinearities, so a naive charging of extremal Delaunay co-
circularities to collinearities of type (1) or (2) in Lemma III.1
will not lead to a near-quadratic upper bound. Before we
get to this (major) issue in our analysis, we begin by laying
down the infrastructure of our charging scheme, similar to
the one used in [21].

We fix some sufficiently large constant parameter k > 12
and apply Theorem II.2 to the edge pq over the interval
(t0, t1) of its absense from DT(P ). Assume first that one
of the conditions (i) or (ii) of the theorem holds, so we
can charge the co-circularity of p, q, a, and b either to
Ω(k2) k-shallow co-circularities (each involving p, q, and
some two other points of P ), or to a k-shallow collinearity
(involving p, q, and some third point of P ). As argued in
Section II, the overall number of k-shallow co-circularities
is O(k4N(n/k)). Each k-shallow co-circularity is charged
by only O(1) Delaunay co-circularities in this manner,4 and
it has to “pay” only O(1/k2) units every time it is charged.
Similarly, as already argued, the number of k-shallow
collinearities is O(kn2β(n)), and each such collinearity is
charged by at most O(1) Delaunay co-circularities. Hence,
there are at most O(k2N(n/k) + kn2β(n)) Delaunay co-
circularities for which one of the conditions (i) or (ii) holds.

Assume then that condition (iii) holds for our co-
circularity. By assumption, there is a set A of at most 3k
points (necessarily including at least one of a or b) whose
removal ensures the Delaunayhood of pq throughout (t0, t1).
By Lemma III.1, at least one the two points a, b, let it be a,
crosses pq during (t0, t1). As we will shortly show, in the
reduced triangulation DT(P \ A ∪ {a}), the collinearity of
p, q and a can be turned into a Delaunay crossing.

We now express the number of remaining Delaunay co-
circularities of index 3 in terms of the maximum possible
number of Delaunay crossings. Recall that for each such
co-circularity there is a set A of at most 3k points whose
removal restores the Delaunayhood of pq throughout [t0, t1].
We can assume that a hits pq during (t0, t1], so a ∈ A.

We sample at random a subset R ⊂ P of n/k points, and
notice that the following two events occur simultaneously
with probability at least Ω(1/k3): (1) the points p, q, a
belong to R, and (2) none of the points of A\{a} belong to

4Indeed, there are at most O(1) ways to guess p and q among the four
points of the charged co-circularity, and then the charging co-circularity
corresponds to the latest previous disappearance of pq from DT(P ).

R. Since a crosses pq during [t0, t1], and pq is Delaunay
at times t0 and time t1, the sample R induces at least
one Delaunay crossing (pq, a, I), for some time interval
I ⊂ [t0, t1]. (If a crosses pq twice, we have either two
separate Delaunay crossings, which occur at disjoint sub-
intervals of (t0, t1), or only one Delaunay crossing, during
which a crosses pq twice. This depends on whether pq
manages to become Delaunay in DT(R) in between these
crossings.) We charge the disappearance of pq from DT(P )
to this crossing and note that the charging is unique (i.e.,
every Delaunay crossing (pq, a, I) in DT(R) is charged
by at most one disappearance t0 of the respective edge
pq from DT(P ), which is last such disappearance of pq
before a hits pq in I). Hence, the number of Delaunay co-
circularities of this kind is bounded by O(k3C(n/k)), where
C(n) denotes, as above, the maximum number of Delaunay
crossings induced by any collection P of n points whose
motion satisfies the above assumptions.

We thus obtain the following recurrence for the max-
imum possible number NE(n) of extremal Delaunay co-
circularities:

NE(n) = O
(
k3C(n/k) + k2N(n/k) + kn2β(n)

)
. (1)

The number of middle Delaunay co-circularities. We now
develop a recurrence that expresses the number of middle
Delaunay co-circularities in terms of C(n/k), NE(n/k), and
N(n/k), for an appropriate constant parameter k.

Consider such a middle co-circularity event at time t0,
when an edge pq of DT(P ) is replaced by another edge
ab. As in the previous case, there are at most O(n2) such
events for which the vanishing edge pq never reappears in
DT(P ), so we focus on middle Delaunay co-circularities
whose corresponding edge pq rejoins DT(P ) at some future
moment t1 > t0.

Once again, we fix a sufficiently large constant k > 12
and apply Theorem II.2 to the red-blue arrangement of
pq over the interval (t0, t1). Assume first that one of
the Conditions (i) and (ii) is satisfied, or that one of
the points a, b hits pq during (t0, t1]. Then the preceding
analysis (used for extremal Delaunay co-circularities) can
be applied, essentially verbatim, in this case too, and it
implies that the number of such middle co-circularities is
O

(
k3C(n/k) + k2N(n/k) + kn2β(n)

)
.

Assuming that the above scenario does not occur, the four
points p, q, a, b are involved in an additional red-blue co-
circularity during (t0, t1], which “frees” pq from its violation
by a and b. Moreover, there is a set A of at most 3k points
whose removal restores the Delaunayhood of pq throughout
[t0, t1]. Let t0 ≤ t∗ ≤ t1 be the time of the additional (third)
co-circularity of p, q, a, b, and let B∗ be the corresponding
circumdisc of p, q, a, b at time t∗.

If B∗ contains at most 14k points, we can charge
the disappearance of pq to the resulting 14k-shallow ex-
tremal co-circularity. Clearly, any such co-circularity of
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index 3 is charged for at most one middle Delaunay co-
circularity. Moreover, the number of 14k-shallow extremal
co-circularities is bounded by O

(
k4NE(n/k)

)
using the

standard probabilistic argument of Clarkson and Shor [9].
Hence, this scenario arises for at most O

(
k4NE(n/k)

)

middle Delaunay co-circularities.
Now assume that B∗ contains at least 14k points of P .

Without loss of generality, assume that the cap B ∩ L+
pq

contains at least 7k points of P . That is, the corresponding
red function, say f+

b , has level at least 7k in the red
arrangement at time t∗. Refer to Figure 6 (left). Let r be
a red point whose respective function f+

r lies, at time t∗,
at red level between 3k and 7k − 1. That is, the number
of red points in the circumdisc B[p, q, r] ranges from 3k to
7k − 1. Then the number of blue points in B[p, q, r] is at
most 3k. Indeed, if there were more that 3k blue points in
B[p, q, r] then after removing A this disc would still contain
at least one blue point and at least one red point (possibly
r itself), so pq could not be Delaunay at time t∗. Since
f+

r < f+
b , this disc also contains a (which is still a blue

point on the boundary of B[p, q, b]), so the Delaunayhood
of pq is violated at time t∗ by r and a. Before pq re-
enters DT(P ) at time t1, one of the following must happen,
according to Lemma III.1: Either r hits pq or the points
p, q, r, a are involved in a red-blue co-circularity (when a
leaves B[p, q, r] and before r hits Lpq). A fully symmetric
argument shows that either r hits pq, or p, q, r, a are involved
in a red-blue co-circularity during (t0, t∗) (when a enters
B[p, q, r]). Note, however, that pq is hit by at most 3k points
during (t0, t1], all of them in A. Thus, at least k such points
r do not hit pq during (t0, t1], so each of them is involved
in two co-circularities with p, q, a during (t0, t1]: one before
t∗, and another afterwards.

a

B∗

q

r

bp

r

r

p

q

Figure 6. Left: Analysis of middle Delaunay co-circularities. The four
points p, q, a, b are involved, during [t0, t1], in their third co-circularity,
whose respective circumdisc B∗ contains at least 7k red points. At least
k red points r, whose red level ranges between 3k and 7k, do not hit pq
during [t0, t1]. Right: Lemma IV.1. If (pq, r, I) is a Delaunay crossing,
then each of pr, rq belongs to DT(P ) throughout I .

Fix a point r, as above, which does not cross pq. Notice
that at least one of the two promised co-circularities of
p, q, r, a is extremal. If the above extremal co-circularity
of p, q, r, a, occuring at some t∗∗ ∈ (t0, t1), is (11k)-
shallow, we charge it for the disappearance of pq. As before,
this charging is unique, and the number of charged co-
circularities is O(k4NE(n/k)). Otherwise, the boundary of
B[p, q, r] is crossed during the interval (t∗, t∗∗) (or (t∗∗, t∗))
by at least k points, so the triple p, q, r defines Ω(k) (11k)-
shallow co-circularities involving p, q during (t0, t1).

Repeating the same argument for the (at least) k possible
choices of r, we obtain Ω(k2) (11k)-shallow co-circularities,
each involving p, q and some other pair of points and
occurring during (t0, t1]. As in Case (ii) of Theorem II.2,
we charge these co-circularities for the disappearance of pq.

We have thus established the following recurrence for the
maximum possible number NM (n) of middle Delaunay co-
circularities for a set of n moving points:

NM (n) = (2)

O
(
k4NE(n/k) + k2N(n/k) + kn2β(n) + k3C(n/k)

)
.

IV. THE NUMBER OF DELAUNAY CROSSINGS

The remainder of the paper is devoted to deriving a recur-
rence relation for the maximum number C(n) of Delaunay
crossings induced by any set P of n moving points as
above. In this section we establish several basic properties
of Delaunay crossings, and outline the forthcoming stages
of their analysis. The eventual system of recurrences that
we will derive will express C(n) in terms of the maximum
number of Delaunay co-circularities of smaller-size sets, plus
a nearly quadratic additive term. Plugging that relation into
(1) and (2) will yield the near-quadratic bound on N(n) that
was asserted in Theorem II.1.

A. Delaunay crossings: the key properties

Consider a Delaunay crossing (pq, r, I). Recall that p, q, r
can be collinear at most twice. Moreover, both collinearities
can (but do not have to) occur during the interval I of the
same Delaunay crossing of pq by r. Clearly, r cannot hit Lpq

outside pq during I because, at such an “outer” collinearity,
pq, which is Delaunay when r is removed, would also be
Delaunay in the presence of r.

The Delaunay crossing of pq by r is called single (resp.,
double) if r hits pq exactly once (resp., twice) during the
corresponding interval I of pq’s absence from DT(P ).

The following lemma, whose explicit proof appears in the
predecessor paper [21], holds for both types of Delaunay
crossings (see Figure 6 (right)).

Lemma IV.1. If (pq, r, I = [t0, t1]) is a Delaunay crossing
then each of the edges pr, rq belongs to DT(P ) throughout
I .

In [21], we obtain an upper bound of O(n2) on the
number of double Delaunay crossings. Since the argument
from [21] holds (as is) also in the setting studied by this
paper, we have the following theorem.

Theorem IV.2. Any set P of n moving points, as above,
induces at most O(n2) double Delaunay crossings.

It therefore suffices to establish a suitable recurrence for
the maximum possible number of single Delaunay crossings,
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and this is what is undertaken in the the remainder of the
paper is devoted to the study of the latter crossings.

Single Delaunay crossings: notational conventions. Recall
from Section II that every edge pq is oriented from p to q,
and its corresponding line Lpq splits the plane into the left
halfplane L−pq and the right halfplane L+

pq.
Without loss of generality, we assume in what follows

that, for any single Delaunay crossing (pq, r, I = [t0, t1]),
the point r crosses pq from L−pq to L+

pq during I . Recall that
r cannot cross Lpq outside pq during I , so this is the only
collinearity of p, q, r in I . If r crosses pq in the opposite
direction, we denote this crossing as (qp, r, I = [t0, t1]).

Note that every such Delaunay crossing (pq, r, I) is
uniquely determined by the respective ordered triple (p, q, r),
since there can be at most one collinearity where r crosses
the line Lpq from L−pq to L+

pq (or, else, r would cross Lpq

three times). We label each such crossing (pq, r, I) as a
clockwise (p, r)-crossing, and as a counterclockwise (q, r)-
crossing, with an obvious meaning of these labels.

The following lemma lies at the heart of our analysis.

Lemma IV.3. Let (pq, r, I = [t0, t1]) be a single Delaunay
crossing. Then, with the above conventions, for any s ∈ P \
{p, q, r} the points p, q, r, s define a red-blue co-circularity
with respect to pq, which occurs during I when the point s
either enters the cap B[p, q, r]∩L+

pq , or leaves the opposite
cap B[p, q, r] ∩ L−pq.

Proof: By definition, r crosses pq at some (unique) time
t0 < t∗ < t1 from L−pq to L+

pq. The disc B[p, q, r] is P -empty
at t0 and at t1 and moves continuously throughout [t0, t∗)
and (t∗, t1]. Just before t∗, B[p, q, r] is the entire L+

pq , so ev-
ery point s ∈ P ∩L+

pq at time t∗ must have entered B[p, q, r]
during [t0, t∗), thus forming a co-circularity with p, q, r. See
Figure 7 (left). Clearly, this co-circularity of p, q, r, s is red-
blue with respect to pq, since s can enter B[p, q, r] only
through ∂B[p, q, r]∩L+

pq . A symmetric argument applies to
the points that lie in L−pq at time t∗; see Figure 7 (right).

r

p

B[p, q, r]

q

B[p, q, r] p
r

q

Figure 7. Proof of Lemma IV.3. Left: Right before r crosses pq, the
circumdisc B = B[p, q, r] contains all points in P ∩ L+

pq . Right: Right
after r crosses pq, B contains all points in P ∩ L−pq .

Our local charging schemes “bottom out” when a carefully
chosen triple of points defines two Delaunay crossings
(again, possibly in a triangulation of some smaller-size
sample). Lemma IV.4 takes care of this easy case.

Lemma IV.4. The number of triples of points p, q, r ∈ P for
which there exist two time intervals I1, I2 such that either (i)

both (pq, r, I1) and (qp, r, I2) are Delaunay crossings, (ii)
both (pq, r, I1) and (rq, p, I2) are Delaunay crossings, or
(iii) both (pq, r, I1) and (pr, q, I2) are Delaunay crossings,
is at most O(n2).

Notice that, if some triple of points p, q, r in P performs
two distinct Delaunay crossings, both of these crossings
must necessarily be single Delaunay crossings.

Proof: We claim that every pair p, q ∈ P participates
in at most one triple of each type. Indeed, fix p, q ∈ P and
assume that there exist two points r, s such that the triples
p, q, r and p, q, s are involved in two (single) Delaunay
crossings of the same prescribed order type (i), (ii), or (iii).
By Lemma IV.3, we encounter at least one co-circularity of
p, q, r, s during each of the two Delaunay crossings induced
by p, q, r and the two induced by p, q, s. In the full version,
we argue that these four co-circularities are distinct, contrary
to the fact that any four points can be co-circular at most
three times.

In [21] we establish the following lemma:

Lemma IV.5. Let (pq, r, I) and (pa, r, J) be clockwise
(p, r)-crossings, and suppose that r hits pq (during I)
before it hits pa (during J). Then I begins (resp., ends)
before the beginning (resp., end) of J . Clearly, the converse
statements hold too. Similar statements hold for pairs of
counterclockwise (p, r)-crossings.

Lemma IV.5 implies that, for any pair of points p, r, all
the clockwise (p, r)-crossings can be linearly ordered by the
starting times of their intervals, or by the ending times of
their intervals, or by the times when r hits the corresponding
p-edge, and all three orders are indentical.

B. Quadruples

In Section III we have established a pair of recurrences (1)
and (2), whose combination allows to express the maximum
number N(n) of Delaunay co-circularities in terms of the
maximum number of Delaunay crossings C(m) in smaller-
size subsets, plus the maximum number of Delaunay co-
circularities in smaller-size sets, plus a nearly quadratic
additive term. Furthermore, we have seen that there can be
at most quadratically many double Delaunay crossings, and
quadratically many of pairs of single Delaunay crossings of
the kinds considered in Lemma IV.4.

It therefore suffices to obtain a suitable recurrence, or
a system of such recurrences, that express the maximum
possible number C(n) of (single) Delaunay crossings only in
terms of the maximum number of Delaunay co-circularities
in smaller-size sets, plus a nearly quadratic additive term.
(In order for the solution of such a recurrence to be near-
quadratic, the respective coefficient of each recursive term
of the form N(n/k) must be roughly equal to k2. See, e.g.,
[16], [23, Section 7.3.2], and [20, Section 4.5].)

Informally, the main weakness of Delaunay crossings
stems from the fact that Delaunay crossings involve triples of
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points, whereas our primary topological restriction refers to
quadruples of points of P . Thus, Delaunay crossings are not
“rich” enough to capture the underlying combinatorial struc-
ture of the problem. We therefore consider several additional
types of topological configurations that involve quadruples
of moving points, obtained by combining two Delaunay
crossings with two common points, such as (pq, r, I) and
(pa, r, J). Recall that, for each Delaunay crossing (pq, r, I),
its edge pq is almost Delaunay in I = [t0, t1] (and fully
Delaunay at the endpoints t0, t1), and the other two edges
pr and rq are fully Delaunay in I (by Lemma III.1). The
quadruples that we will shortly introduce, inherit all these
properties of their Delaunay crossings, but will have a
rich structure, due to additional interactions between their
edges and subtriples. These quadruples can be viewed as an
extension of Delaunay crossings, in the sense that their edges
are forced to be either Delaunay, or almost Delaunay, during
various intervals whose endpoints are defined “locally”, in
terms of the points and the edges of the configuration
at hand. Furthermore, by construction, the points of each
quadruple perform at least two Delaunay crossings. The
major goal of the analysis is to obtain configurations with
progressively many Delaunay crossings.

Due to the lack of space, we only review the three types
of quadruples that arise in the course of our analysis, and
highlight the intimate relations between them and Delaunay
crossings. The rest of the details can be found in the full
version of the paper.

r

a

q

p p

a

q

r q

a

q

p

r

Figure 8. A (clockwise) regular quadruple σ = (p, q, a, r), which is
composed of clockwise (p, r)-crossings (pq, r, I) and (pa, r, J). Left and
center: A possible motion of r, with the two co-circularities of p, q, a, r
that occur during I\J and J\I , respectively. Right: The special crossing of
pa by q which we enforce at the end of the analysis of regular quadruples.

Regular quadruples. Four distinct points p, q, a, r ∈ P
form a clockwise regular quadruple (or, simply, a quadru-
ple) σ = (p, q, a, r) in DT(P ) if there exist clockwise (p, r)-
crossings (pq, r, I), (pa, r, J) that appear in this order in the
sequence of clockwise (p, r)-crossings; refer to Figure 8.
We say that the quadruple is consecutive if (pq, r, I) and
(pa, r, J) are consecutive in the order of Lemma IV.5.

Clearly, every clockwise (p, r)-crossing (pq, r, I) forms
the first part of exactly one (clockwise) consecutive quadru-
ple, unless it is the last such (p, r)-crossing (with respect
to the order given by Lemma IV.5). The overall number of
these last crossings is clearly bounded by O(n2). Hence,
the maximum number C(n) of single Delaunay crossings is
asymptotically dominated by the maximum possible number

of consecutive regular quadruples.
Let σ = (p, q, a, r) be a consecutive regular quadruple as

above. By Lemma IV.1, edge pr of σ is Delaunay during
the respective intervals I and J of its two (p, r)-crossings,
whereas each of the edges rq and ra is (provably) Delaunay
in only one of these two intervals. In addition, the edges pq
and pa are almost Delaunay during their respective Delaunay
crossings by r.

Regular quadruples are studied extensively in the full
version of this paper, where we gradually extend the corre-
sponding (almost-)Delaunayhood intervals of the respective
edges pr, rq, ra, pa and pq of each quadruple σ until most
of them cover [I, J ] = conv(I ∪ J), including the possible
gap between I and J . This is achieved by applying Theorem
II.2 in the respective red-blue arrangements of these edges.
Each such application of Theorem II.2 is done over a
carefully chosen interval, which guarantees that any shallow
collinearity or co-circularity, that we encounter in the first
two cases of the theorem, is charged by only few quadruples.

We show (via Lemmas IV.1 and IV.3) that the points
of each regular quadruple σ = (p, q, a, r) are co-circular
exactly once in each of the intervals I\J and J\I; see Figure
8 (left and center). Specifically, the former co-circularity is
red-blue with respect to the edges pq and ra, and the latter
co-circularity is red-blue with respect to pa and rq. Notice
that at least one of these co-circularities, let it be the one in
I \ J , is extremal.

Arguing similarly to Section III, we use the above co-
circularities of p, q, a, r (together with the additional con-
straints on the Delaunayhood of rq, ra and pa) to enforce
a pair of additional Delaunay crossings which occur in
smaller-size point sets (which are random samples of P ,
needed for the application of the Clarkson-Shor argument
[9]) and involve various sub-triples of p, q, a, r. Thr analysis
is fairly involved, due to the fact that neither of the above
two co-circularities of σ has to be Delaunay, or even shallow.
If some sub-triple of σ performs two Delaunay crossings, we
immediately bottom out via Lemma IV.4.

Unfortunately, there may still exist quadruples σ whose
four resulting Delaunay crossings (including (pq, r, I) and
(pa, r, J)) involve four distinct sub-triples p, q, a, r, so
Lemma IV.4 cannot yet be applied. As our analysis shows,
in this only remaining scenario, the edge pa of σ undergoes
a Delaunay crossing (pa, q, I) by q; see Figure 8 (right). We
refer to this latter crossing as a special crossing of pa by q.

Special quadruples. We analyze the number of special
(counterclockwise) crossings by first arranging them into
special quadruples. Informally, each special quadruple χ =
(a, p, w, q) is composed of two special (a, q)-crossings
(pa, q, I) and (wa, q,J ) which are consecutive in the order
of Lemma IV.5. See Figure 9.

The treatment of (counterlockwise) special quadruples is
fairly symmetric to that of (clockwise) regular quadruples,
in the manner in which we extend the Delaunayhood or
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Figure 9. A special quadruple χ = (a, p, w, q), is composed of two
special crossings (pa, q,I) and (wa, q,J ), which respectively correspond
to some (clockwise) regular quadruples (p, q, a, r) and (w, q, a, u).

almost-Delaunayhood of their edges, and enforce additional
(almost-)Delaunay crossings on some of their sub-triples.
However, here we have a richer topological structure, be-
cause the two special crossings (pa, q, I) and (wa, q,J ) of
each special quadruple χ are accompanied by two respective
regular quadruples σ1 = (p, q, a, r) and σ2 = (w, q, a, u).

At the final stage of the analysis, we use the above cor-
respondence with the regular quadruples in order to charge
the surviving special quadruples χ to especially convenient
sub-configurations, referred to as terminal quadruples.

Terminal quadruples. Each terminal quadruple 	 =
(p, q, r, w) is formed by an edge pq, and by a pair of points
r and w that cross pq in opposite directions; see Figure
10. In addition, 	 must satisfy several “local” restrictions
on the Delaunayhood of its various edges, and on the co-
circularities and collinearities among p, q, r, w. We directly
bound the number of such quadruples in terms of simpler
quantities, introduced in Section II, and thereby complete
the proof of Theorem II.1. (The recurrences that bound the
number of terminal quadruples have only “quadratic” terms.)

w

q

p

r

r r
q

p

w

w

Figure 10. A terminal quadruple � = (p, q, r, w). The points r and w
cross pq in opposite directions. The points of � are co-circular three times.
The extremal two co-circularities are red-blue with respect to pq, and the
middle one is monochromatic with respect to pq. The left figure depicts
the first and second co-circularities, and the right figure depicts the second
and third co-circularities.

Informally, the analysis of terminal quadruples manages
to bottom out because each terminal quadruple comes with
three “well-behaved” co-circularities. Specifically, the two
extremal co-circularities are red-blue with respect to the
crossed edge pq (and thus also with respect to rw), and
the middle one is mononochromatic with respect to pq;
see Figure 10. These patterns allow us to use these co-
circularities to enforce three additional Delaunay crossings
among p, q, r, w (in addition to the crossings of pq by r and
w). Thus, some sub-triple among p, q, r, w is involved in two
Delaunay crossings, so Lemma IV.4 can always be invoked.
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