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Abstract—One of the most natural optimization problems is
the k-SET PACKING problem, where given a family of sets of
size at most k one should select a maximum size subfamily of
pairwise disjoint sets. A special case of 3-SET PACKING is the
well known 3-DIMENSIONAL MATCHING problem, which is
a maximum hypermatching problem in 3-uniform tripartite
hypergraphs. Both problems belong to the Karp’s list of
21 NP-complete problems. The best known polynomial time
approximation ratio for k-SET PACKING is (k+ ε)/2 and goes
back to the work of Hurkens and Schrijver [SIDMA’89], which
gives (1.5+ε)-approximation for 3-DIMENSIONAL MATCHING.
Those results are obtained by a simple local search algorithm,
that uses constant size swaps.

The main result of this paper is a new approach to local
search for k-SET PACKING where only a special type of swaps
is considered, which we call swaps of bounded pathwidth. We
show that for a fixed value of k one can search the space
of r-size swaps of constant pathwidth in crpoly(|F|) time.
Moreover we present an analysis proving that a local search
maximum with respect to O(log |F|)-size swaps of constant
pathwidth yields a polynomial time (k+1+ε)/3-approximation
algorithm, improving the best known approximation ratio for
k-SET PACKING. In particular we improve the approximation
ratio for 3-DIMENSIONAL MATCHING from 3/2+ ε to 4/3+ ε.

Keywords-approximation, 3-dimensional matching, k-set
packing, local search, fixed parameter tractability

I. INTRODUCTION

In the SET PACKING problem, also known as HYPER-

GRAPH MATCHING, we are given a family F ⊆ 2U of

subsets of U , and the goal is to find a maximum size

subfamily of F of pairwise disjoint sets. SET PACKING is

a fundamental problem in combinatorial optimization with

various applications. A simple reduction from INDEPEN-

DENT SET (where |F| = |V |) combined with the hardness

result of Håstad [13] makes the SET PACKING problem hard

to approximate. When each set of SET PACKING is of size

at most k the problem is denoted as k-SET PACKING.

k-SET PACKING

Input: A family F ⊆ 2U of sets of size at most k.

Goal: Find a maximum size subfamily of F of pairwise

disjoint sets.

The author is partially supported by Foundation for Polish Science grant
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k-SET PACKING is a generalization of INDEPENDENT

SET in bounded degree graphs, as well as k-DIMENSIONAL

MATCHING and is related to plethora of other problems

(see [6] for a list of connections between k-SET PACK-

ING and other combinatorial optimization problems). In 3-

DIMENSIONAL MATCHING the universe U is partitioned

into U = X � Y � Z and F is a subset of X × Y × Z.

Both 3-DIMENSIONAL MATCHING and SET PACKING are

well studied problems, belonging to Karp’s list of 21 NP-

hard problems [18]. A simple greedy algorithm returning

any inclusionwise maximal subfamily of disjoint subsets of

F gives a k-approximation for k-SET PACKING. One can

consider a local search routine, where as long as it is possible

we remove one set from our current feasible solution and

add two new sets. We say that such an algorithm uses size

2 swaps, as two new sets are involved. It is known that a

local search maximum with respect to size 2 swaps is a

(k+1)/2-approximation for k-SET PACKING. If, instead of

using swaps of size 2 we use swaps of size r for bigger

values of r, then the approximation ratio approaches k/2,

and that is exactly the (k/2 + ε)-approximation algorithm

by Hurkens and Schrijver [16].

Despite significant interest (see Section I-B) for over

20 years no improved polynomial time approximation al-

gorithm was obtained for k-SET PACKING, even for the

special case of 3-DIMENSIONAL MATCHING. Meanwhile

Halldórsson [12] has shown that a local search maximum

with respect to O(log |F|) size swaps gives a (k + 2)/3-

approximation, which was recently improved to (k + 1 +
ε)/3 [8]. Nevertheless enumerating allO(log |F|) size swaps

takes quasipolynomial time.

A. Our results and techniques

Based on the work of Halldórsson [12] a natural path

to transforming a quasipolynomial time approximation into

a polynomial time approximation would be by designing

a crpoly(|F|) time algorithm, where c is a constant. This is

exactly the framework of parameterized complexity1, where

the swap size is a natural parameter. Unfortunately, we

show that this is most likely impossible, i.e. there is no

1For further information about parameterized complexity we defer the
reader to monographs [9], [11], [23].
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such algorithm with f(r)poly(|F|) running time, unless

W[1]=FPT, where f is some computable function, even for

k = 3. We would like to note that W[1] �=FPT is a widely

believed assumption, in particular if W[1]=FPT, then the

Exponential Time Hypothesis of [17] fails.

Theorem I.1. Unless FPT = W [1], there is no
f(r)poly(|F|) time algorithm, that given a family F ⊆ 2U

of sets of size 3 and its disjoint subfamily F0 ⊆ F either
finds a bigger disjoint family F1 ⊆ F or verifies that there is
no disjoint family F1 ⊆ F such that |F0\F1|+|F1\F0| ≤ r,

Therefore trying to find a crpoly(|F|) time algorithm

which searches the whole r-size swaps space is not the

proper path. For this reason we introduce a notion of swaps

(also called improving sets) of bounded pathwidth (see

Section III-A). Intuitively a size r swap is of bounded

pathwidth, if the bipartite graph where vertices represent

sets that are added and removed, and edges correspond to

non-empty intersections, is of constant pathwidth. Using the

color-coding technique of Alon et al. [1] we show that one

can search the space of swaps of size at most r of bounded

pathwidth in crpoly(|F|) time, for a constant c. As the

currently best known analysis of local search maximum with

respect to logarithmic size swaps of [8] relies on swaps of

unbounded pathwidth, we need to develop a different proof

strategy, and the core part of it is contained in Lemma III.8.

The algorithm and its analysis complete the main result

of this paper, that is a polynomial time (k + 1 + ε)/3-

approximation algorithm, for any fixed k and ε.

Theorem I.2. For any ε > 0 and any integer k ≥ 3 there
is a polynomial time (k+1+ ε)/3-approximation algorithm
for k-SET PACKING.

We believe that the usage of parameterized tools such

as color-coding, pathwidth and W[1]-hardness in the setting

of this work is interesting on its own, as to the best of our

knowledge such tools have not been previously used in local

search based approximation algorithms.

B. Related work

Even though there was no improvement in terms of

polynomial time approximation of k-SET PACKING (and 3-

DIMENSIONAL MATCHING) since the work of Hurkens and

Schrijver [16], both problems are well studied.

One can also consider weighted variant of k-SET PACK-

ING, where we want to select a maximum weight disjoint

subfamily of F . Arkin and Hassin [2] gave a (k − 1 + ε)-
approximation algorithm, Chandra and Halldórsson [7] im-

proved it to (2k + 2 + ε)/3-approximation, later improved

by Berman [4] to (k + 1 + ε)/2-approximation. All the

mentioned results are based on local search.

Also for the standard (unweighted) k-SET PACKING

problem Chan and Lau [6] presented a strengthened LP

relaxation, which has integrality gap (k + 1)/2.

On the other hand, Hazan et al [14] have shown that

k-SET PACKING is hard to approximate within a factor

of O(k/ log k). Concerning small values of k, Berman

and Karpinski [5] obtained a 98/97 − ε hardness for 3-

DIMENSIONAL MATCHING, while Hazan et al. [15] ob-

tained 54/53− ε, 30/29− ε, and 23/22− ε hardness for 4,

5 and 6-DIMENSIONAL MATCHING respectively (note that

a hardness result for k-DIMENSIONAL MATCHING directly

gives a hardness for k-SET PACKING).

Recently Sviridenko and Ward [25] have indepen-

dently obtained a (k + 2)/3-approximation algorithm for

k-SET PACKING. They observed that the analysis of

Halldórsson [12] can be combined with a clever application

of the color coding technique. However to the best of our

understanding it is not possible to obtain (k + 1 + ε)/3-

approximation for k-SET PACKING using the tools of [25],

and in particular Sviridenko and Ward do not improve the

approximation ratio for 3-DIMENSIONAL MATCHING. The

main difference between this article and [25] is in handling

sets of the optimum solution, that intersect exactly one set

in a local maximum.

C. Organisation

We start with preliminaries in Section II, where we

recall standard graph notation together with the definition

of pathwidth and path decompositions.

Section III contains the main result of this paper, that

is the (k + 1 + ε)/3-approximation for k-SET PACKING.

First, we introduce the notion of improving set of bounded

pathwidth in Section III-A. In Section III-B we apply

the color coding technique to obtain a polynomial time

algorithm searching an improving set of logarithmic size

of bounded pathwidth. In Section III-C we analyse a local

search maximum with respect to bounded pathwidth improv-

ing sets of logarithmic size. The heart of our analysis is

contained in an abstract combinatorial Lemma III.8 which

is later applied in the proof of Lemma III.11.

The proof of Theorem I.1 is given in Section IV. Finally,

in Section V we conclude with potential future research

directions.

II. PRELIMINARIES

We use standard graph notation. For an undirected graph

G by V (G) and E(G) we denote the set of its vertices

and edges respectively. By NG(v) = {u : uv ∈ E(G)} we

denote the open neighborhood of a vertex v, while the closed

neighborhood is defined as NG[v] = NG(v)∪{v}. Similarly,

for a subset of vertices X we have NG[X] =
⋃

v∈X NG[v]
and NG(X) = NG[X] \X .

By a disjoint family of sets we denote a family, where

each pair of sets is pairwise disjoint. For a positive integer

r by [r] we denote the set {1, . . . , r}.
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Pathwidth and path decompositions: A path decompo-
sition of a graph G = (V,E) is a sequence P = (Bi)

q
i=1,

where each set Bi is a subset of vertices Bi ⊆ V (called a

bag) such that
⋃

1≤i≤q Bi = V and the following properties

hold:

(i) For each edge uv ∈ E(G) there is a bag Bi in P such

that u, v ∈ Bi.

(ii) If v ∈ Bi ∩ Bj then v ∈ B� for each min(i, j) ≤ � ≤
max(i, j).

The width of P is the size of the largest bag minus one, and

the pathwidth of a graph G is the minimum width over all

possible path decompositions of G. Since our focus here is

on path decompositions we only mention in passing that the

related notion of treewidth can be defined similarly, except

for letting the bags of the decomposition form a tree instead

of a path.

In order to make the description easier to follow, it is

common to use path decompositions that adhere to some

simplifying properties. The most commonly used notion is

that of a nice path decompositions, introduced by Kloks [19];

the main idea is that adjacent nodes can be assumed to have

bags differing by at most one vertex.

Definition II.1 (nice path decomposition). A nice path
decomposition is a path decomposition P = (Bi)

q
i=1, where

each bag is of one of the following types:

• First (leftmost) bag: the bag B1 is empty, B1 = ∅.
• Introduce bag: an internal bag Bi of P with prede-

cessor Bi−1 such that Bi = Bi−1 ∪ {v} for some

v /∈ Bi−1. This bag is said to introduce v.

• Forget bag: an internal bag Bi of P with prede-

cessor Bi−1 for which Bi = Bi−1 \ {v} for some

v ∈ Bi−1. This bag is said to forget v.

• Last (rightmost) bag: the bag associated with the

largest index, i.e. q, is empty, Bq = ∅.
It is easy to verify that any given path decomposition

can be transformed in polynomial time into a nice path

decomposition without increasing its width.

III. LOCAL SEARCH ALGORITHM

In this section we present the main result of the paper,

i.e. the (k + 1 + ε)/3-approximation algorithm for k-SET

PACKING, proving Theorem I.2. We start with introducing

the notion of improving set of bounded pathwidth in Sec-

tion III-A. Next, in Section III-B we apply the color coding

technique to obtain a polynomial time algorithm searching

an improving set of logarithmic size of bounded pathwidth.

In Section III-C we analyse a local search maximum with

respect to bounded pathwidth improving sets of logarithmic

size. The heart of our analysis is contained in an abstract

combinatorial Lemma III.8 which is later applied in the

proof of Lemma III.11.

A. Bounded pathwidth improving set

Let us assume that an instance F ⊆ 2U of k-SET

PACKING is given. Moreover by F0 ⊆ F we denote some

disjoint subfamily of F , which we can think of as a current

feasible solution of a local search algorithm. In what follows

we define a conflict graph, which is a bipartite undirected

graph with two independent sets of vertices being F0 and

F \ F0, where an edge reflects non-empty intersection.

Definition III.1 (conflict graph). For a disjoint family F0 ⊆
F by a conflict graph GF0

we denote an undirected bipartite

graph with vertex set F and edge set {S1S2 : S1 ∈ F0, S2 ∈
(F \ F0), S1 ∩ S2 �= ∅}.

Next, we define an improving set X ⊆ F \ F0, which

can be used to increase the cardinality of F0, and then we

introduce a notion of an improving set of bounded pathwidth,

which will be crucial in both the algorithm and the analysis

of its approximation ratio.

Definition III.2 (improving set). For a disjoint family F0 ⊆
F a set X ⊆ F \ F0 is called an improving set, if the

following conditions hold:

• all sets of X are pairwise disjoint,

• |NGF0
(X)| < |X|, i.e. the number of sets of F0 having

a common element with at least one set of X is strictly

smaller than |X|.
Observe, that if we have an improving set X , then (F0 \

NGF0
(X))∪X is a disjoint subfamily of F of size greater

than |F0|, hence the name improving set.

Definition III.3 (improving set of bounded pathwidth).
An improving set X with respect to F0 ⊆ F has pathwidth
at most pw, if the subgraph of the conflict graph GF0

induced

by NGF0
[X] has pathwidth at most pw.

B. Algorithm

To find an improving set of bounded pathwidth we use the

color coding technique of Alon et al. [1], which is by now

a well-established tool in parameterized complexity used

for finding a set consisting of disjoint objects. We use two

random colorings cF0
: F0 → [r−1], cU : U → [rk], where

cU ensures that the sets of X are disjoint, while cF0 is used

not to consider the same set of F0 twice.

Lemma III.4. There is an algorithm, that given a disjoint
family F0 ⊆ F , and two coloring functions cF0 : F0 →
[r − 1], cU : U → [rk] in 2O(rk)|F|O(pw) time determines,
whether there exists an improving set X ⊆ F \ F0 of size
at most r of pathwidth at most pw, such that cF0

is injective
on NGF0

(X) and cU is injective on
⋃

S∈X S.

Proof: For the sake of notation by adding dummy

distinct elements we ensure that each set of F has

size exactly k. Define an auxiliary directed graph D =
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(VD, Aforget ∪Aintroduce), where each vertex is character-

ized by a subset of set colors [r − 1], a subset of element

colors [rk], and a subset of F of size at most pw+ 1, i.e.

VH = {v(CF0
, CU , B) : CF0

⊆ [r − 1], CU ⊆ [rk],

B ⊆ F , |B| ≤ pw+ 1} .
Note that this graph has O(2r(k+1)|F|pw+1) vertices.

Since there will be no possibility of confusion, to make

the proof easier to follow by N [X] for X ⊆ F we denote

NGF0
[X], i.e. we omit the subscript GF0 . The idea behind

the construction is that each vertex of VH describes a poten-

tial prefix of a sequence of bags in a path decomposition of

N [X] for some X ⊆ F \ F0. The set B encodes the set of

vertices of N [X] in the current bag and ensures the bounded

pathwidth property. Instead of storing all the sets of X that

have already appeared in the sequence of bags, we store only

the colors of the elements of
⋃

S∈X S (encoded by CU ), as

it is enough to maintain the disjointness of sets of X and

keep track of the cardinality of X - due to the assumption

that each set of is size exactly k. Similarly instead of storing

all the sets of N [X] that were already introduced, we only

store their colors (encoded by CF0
).

To the set Aintroduce we add the following arcs. For s =
v(CF0 , CU , B) ∈ VD, S ∈ F such that |B| ≤ pw:

• if S ∈ F \ F0, cU (S) ∩ CU = ∅, cF0
is injective on

N(S) and cF0(N(S) \ B) ∩ CF0 = ∅, then add to

Aintroduce an arc (s, v(CF0 , CU ∪ cU (S), B ∪ {S}))
• if S ∈ F0, cF0

(S) �∈ CF0
and for each S′ ∈ B \ F0

either S ∈ N(S′), or cF0
(S) �∈ cF0

(N(S′)), then add

to Aintroduce an arc (s, v(CF0
∪ {cF0

(S)}, CU , B ∪
{S}))

To the set Aforget we add the following arcs. For s =
v(CF0

, CU , B) ∈ VD, S ∈ B add to Aforget an arc

(s, v(CF0 , CU , B \ {S})) if one of the following conditions

holds:

• S ∈ F0,

• S �∈ F0 and cF0(N(S)) ⊆ CF0 .

Claim III.5. There exists a path in the graph D from the
vertex v(∅, ∅, ∅) to a vertex v(CF0

, CU , ∅) ∈ VD for |CF0
| <

|CU |/k iff there exists an improving set X of size at most r
of pathwidth at most pw, such that cF0

is injective on N(X)
and cU is injective on

⋃
S∈X S.

Proof: Assume that there is a path s1, . . . , sq in H ,

where si = (Ci
F0

, Ci
U , Bi), s1 = (∅, ∅, ∅) , |Cq

F0
| < |Cq

U |/k
and Bq = ∅. Let X =

⋃
1≤i≤q Bi \ F0. By construction

of D, we have |X| = |Cq
U |/k ≤ r. By the definition of

Aintroduce and Aforget since Bq = ∅, at the time a vertex

v ∈ X appears for the first time in some Bi we ensure

that all its neighbors in GF0 are either in Bi or are colored

by cF0
with colors not yet in Ci

F0
. Moreover at the time

v ∈ X is forgotten, i.e. removed from some Bi, we ensure

that all of its neighbors in GF0
have been already added

to bags. Therefore N [X] ⊆ ⋃
1≤i≤q Bi and for each edge

e of G[N [X]] the endpoints of e appear in some bag Bi.

Since no set of F0 is added twice, due to the coloring cF0 ,

no set of F \ F0 is added twice, due to the coloring cU ,

(Bi∩N [X])qi=1 is a path decomposition of N [X] of width at

most pw. Finally |N(X)| ≤ |Cq
F0
| < |Cq

U |/k = |X|. Hence

X is an improving set of size at most r and of pathwidth at

most pw.

In the other direction, let X be an improving set of size at

most r such that cF0
is injective on N(X), cU is injective on⋃

S∈X S, and let P = (Bi)
q
i=1 be a nice path decomposition

of N [X] of width at most pw. For 1 ≤ i ≤ q define si ∈ VD

as si = v(cF0(B
′
i∩F0), cU (

⋃
S∈B′i\F0

S), Bi), where B′i =⋃
1≤j≤i Bi. Observe that s1 = (∅, ∅, ∅), sq = (CF0

, CU , ∅)
for |CF0

| = |N(X)| < |X| = |CU |/k and moreover if

Bi+1 is an introduce bag, then (si, si+1) ∈ Aintroduce

while if Bi+1 is a forget bag, then (si, si+1) ∈ Aforget.

Consequently there is a path from s1 to sq in the graph D.

By the above claim it is enough to run a standard

graph search algorithm, to check whether there exists a

path from the vertex v(∅, ∅, ∅) to v(CF0
, CU , ∅) where

|CF0
| < |CU |/k, which finishes the proof of Lemma III.4.

Theorem III.6. There is an algorithm, that given a disjoint
family F0 ⊆ F , in 2O(rk)|F|O(pw) time determines, whether
there exists an improving set X ⊆ F \ F0 of size at most r
of pathwidth at most pw.

Proof: Observe, that if we take cF0 : F0 → [r − 1]
where the color of each set is chosen uniformly and inde-

pendently at random, then for an improving set X of size

at most r the function cF0
is injective on NGF0

(X) with

probability at least

(r−1)!/(r−1)r−1 ≥ ((r−1)/e)r−1/(r−1)r−1 = e−(r−1) .

Similarly, if we assign a color of [rk] to each element

of U , then with probability at least e−rk the function

cU : U → [rk] is injective on
⋃

S∈X S. Therefore invoking

Lemma III.4 with random colorings cF0
, cU at least er−1+rk

times would yield a constant error probability.

To obtain a deterministic algorithm we can use the, by

now standard, technique of splitters. An (n, a, b)-splitter is

a familyH of functions [n]→ [b], such that for any W ⊆ [n]
of size at most a there exists f ∈ H that is injective on W .

What we need is a small family of (n, a, a)-splitters.

Theorem III.7 ([22]). There exists an (n, a, a)-splitter
of size eaaO(log a) log n that can be constructed in
O(eaaO(log a)n log n) time.

Therefore instead of using random colorings cF0 , cU we

can use Theorem III.7 to construct (|F0|, r − 1, r − 1) and

(|U |, rk, rk) splitters, leading to a deterministic algorithm,

which finishes the proof of Theorem III.6.
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C. Analysis

In this subsection we analyze a local search maximum,

with respect to logarithmic size improving sets of constant

pathwidth. It is well known that an undirected graph of

average degree at least 2+ε contains a cycle of length at most

cε log n, where the constant cε depends on ε. This observa-

tion was the base for the quasipolynomial time algorithms

of [8], [12]. Here, however we need to generalize this result

extensively, as the analysis of [8] relies on improving sets

of unbounded pathwidth.

Throughout this subsection we operate on multigraphs, as

there might be several parallel edges in a graph, however

there will be no self-loops.

Lemma III.8. Let H = (V,E) be an n-vertex undirected
multigraph of minimum degree at least 3. Assume that each
edge e ∈ E is associated with a subset of an alphabet we ⊆
Σ of size at most γ, where γ ≥ 1. If each element c ∈ Σ
appears in at most γ sets we, i.e. ∀c∈Σ |{e : e ∈ E, c ∈
we}| ≤ γ, then there exists a tree T0 = (V0, E0), which is
a subgraph of H , and a vertex r0 ∈ V0, such that:
• |V0| ≤ 4(log3/2 n+ 2);
• there exist two edges e1, e2 ∈ E \ E0, e1 �= e2 which

have both endpoints in V0;
• T0 is a tree with at most 4 leaves;
• for each pair of edges e1, e2 ∈ E0 such that we1 ∩

we2 �= ∅ we have |distT0
(r0, e1) − distT0

(r0, e2)| ≤
β, where β = log3/2(12γ2)�, and distT0

(r0, uv) =
min(distT0

(r0, u), distT0
(r0, v)).

Proof: First we deal with some corner cases.

(i) If in H there are three parallel edges ea, eb, ec between

vertices u and v, then as T0 we take ({u, v}, {ea}) and

set e1 = eb, e2 = ec.

(ii) If in H there are three vertices u, v, w, two parallel

edges ea, eb between u and v as well as two parallel

edges ec, ed between v and w, than as T0 we take

({u, v, w}, {ea, ec}) and set e1 = eb, e2 = ed.

(iii) In the last corner case let us assume that for each vertex

v of H there are some two parallel edges ea, eb ∈
E(H) incident to v. Let uv ∈ E(H) be any edge of H
for which there is no parallel edge in H - such an edge

exists, as otherwise (i) or (ii) would hold. Let u′ be a

vertex such that in H there are two parallel edges ea, eb
between u and u′, similarly let v′ be a vertex such that

in H there are two parallel edges ec, ed between v and

v′. Observe that u′ �= v′ as otherwise case (ii) would

hold. In that case T0 = ({u, u′, v, v′}, {ea, uv, ec}),
e1 = eb and e2 = ed.

Assuming that none of (i), (ii), (iii) holds, there is a vertex

r in H , which is adjacent to at least three distinct vertices

v1, v2, v3.

We are going to construct a sequence of logarithmic

number of trees T1, T2, . . . rooted at r, which are subgraphs

of H satisfying two invariants:

• (exponential growth) for any 1 ≤ j ≤ i the number

of vertices in Ti at distance exactly j from r is exactly

�2(3/2)j�, and there are no vertices at distance more

than i,
• (Σ-nearness) for any two edges e1, e2 of Ti if we1 ∩

we2 �= ∅, then |distTi
(r, e1)− distTi

(r, e2)| ≤ β.

We will show, that having constructed a tree Ti for some

i ≥ 1 we can either construct a tree Ti+1 satisfying the two

invariants, or find a tree T0 with edges e1, e2 required by

the claim of the lemma.

Let T1 = ({r, v1, v2, v3}, {rv1, rv2, rv3}) and note that

it satisfies the two invariants. Assume, that Ti (for some

i ≥ 1) was the most recently constructed tree, and we want

to construct Ti+1. Let V ′ be the vertices of Ti at distance

exactly i from the root r. By the exponential growth invariant

we have |V ′| = �2(3/2)i�. Let E′ ⊆ E be the set of edges

of H incident to V ′, but not contained in E(Ti). As each

vertex in H is of degree at least three, we have

|E′| ≥ 2|V ′| ≥ 2�2(3/2)j� . (1)

Let

Ebanned = {e ∈ E′ : ∃e′∈E(Ti−β)we ∩ we′ �= ∅} ,
i.e. the set of edges having a non-empty intersection with

we′ , where e′ is not contained in the last β levels of Ti.

Observe that for i ≤ β the set Ebanned is empty. When

extending the tree Ti to maintain the Σ-nearness invariant,

we use only edges of E′ \ Ebanned.

Let V ′′ =
⋃

uv∈E′\Ebanned
{u, v} \ V (Ti). We consider

two cases: either |V ′′| ≥ �2(3/2)i+1� or not. In the former

case we will show that one can construct a tree Ti+1 sat-

isfying both exponential growth and Σ-nearness invariants.

In the latter case we will show that the required tree T0 and

edges e1, e2 exist.

If |V ′′| ≥ �2(3/2)i+1�, then we select exactly

�2(3/2)i+1� vertices out of V ′′ and extend the tree Ti to

Ti+1 by adding one more layer of vertices (at distance

i + 1 from r), connected to vertices of V ′ by edges of

E′ \ Ebanned. Clearly the exponential growth invariant is

satisfied for Ti+1. Furthermore, since Ti satisfied the Σ-

nearness invariant and by the definition of Ebanned the tree

Ti+1 also satisfies the Σ-nearness invariant.

In the remaining part of the proof we assume

|V ′′| < �2(3/2)i+1� (2)

and show the required tree T0 with edges e1, e2. If at least

two edges of E′ have both endpoints in V (Ti), denote those

edges uv, u′v′ ∈ E′, then as T0 we take the subtree of Ti

induced by vertices on the paths between {u, v, u′, v′} and

their least common ancestor r0 and set e1 = uv, e2 = u′v′

(see Figure 1). Therefore let E′′ ⊆ E′ be the subset of edges
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Figure 1: Edges of the tree T0 are gray, while edges e1 and

e2 are dashed.

Figure 2: Creating the tree T0 assuming |E′′′| ≤ |E′′| − 2.

Notation as in Figure 1.

having exactly one endpoint in V (Ti) (that is in V ′). By (1)

we infer that

|E′′| ≥ |E′| − 1 ≥ 2|V ′| − 1 . (3)

Let E′′′ be a maximum size subset of E′′, such that no

two edges of E′′′ have a common endpoint in V \ V (Ti).
Observe that if |E′′′| ≤ |E′′| − 2, then either:

• there exists three edges ea, eb, ec ∈ E′′ having a

common endpoint in V \ V (Ti), or

• there exist four edges ea, eb, ec, ed ∈ E′′, such that

ea, eb have a common endpoint in V \V (Ti) and ec, ed
have a common endpoint in V \ V (Ti).

In both cases we can extend the tree Ti by one or two edges

to construct T0 and set e1 = eb, e2 = ec (see Figure 2).
Consequently we have |E′′′| ≥ |E′′| − 1, which together

with (3) gives

|E′′′| ≥ 2|V ′| − 2 . (4)

In the last part of the proof we use the following claim.

Claim III.9.

|E′′′ \ Ebanned| ≥ �2(3/2)i+1�
Proof: Recall that if i ≤ β, the set Ebanned is empty.

Hence by inequality (4) in that case |E′′′ \ Ebanned| =
|E′′′| ≥ 2�2(3/2)i�− 2. A direct check shows that for each

1 ≤ i ≤ 4 we have 2�2(3/2)i� − 2 ≥ �2(3/2)i+1�, which

proves the claim in the case i ≤ 4.
When 4 < i ≤ β we have

|E′′′ \ Ebanned| ≥ 2�2(3/2)i� − 2

≥ 2(2(3/2)i − 1)− 2 ≥ 2(3/2)i+1 .

Finally for i > β we upper bound the size of Ebanned

|Ebanned| ≤
i−β∑

j=1

γ22(3/2)j ≤ 3γ2

i−β−1∑

j=0

(3/2)j

≤ 6γ2((3/2)i−β − 1) ≤ (3/2)i

2
− 6 .

The first inequality follows from the assumption, that each

set we is of size at most γ and each element of Σ is contained

in at most γ sets we, hence each of Ti contributes at most

γ2 edges to Ebanned. The last inequality follows from the

choice of β and the assumption γ ≥ 1. Therefore

|E′′′ \ Ebanned| ≥ |E′′′| − |Ebanned|
≥ 2�2(3/2)i� − 2− (

(3/2)i

2
− 6)

≥ 2(3/2)i+1 .

Observe that by the definition of E′′′ we have |V ′′| ≥
|E′′′ \ Ebanned|, but then Claim III.9 contradicts inequal-

ity (2).

Corollary III.10. Let H = (V,E) be an undirected multi-
graph with n vertices and of minimum degree at least 3.
Assume that each edge e ∈ V is associated with a subset
of an alphabet we ⊆ Σ of size at most γ, for some γ ≥ 1,
such that each element of Σ appears in at most γ sets we.
There exists a subgraph H0 = (V0, E0) of H , and a path
decomposition (Bi)

q
i=1 of H0 of width at most 4(β + 3),

where β = log3/2(12γ2)� and
(a) |E0| = |V0|+ 1,
(b) |V0| ≤ 4(log3/2 n+ 2),
(c) for each pair of edges e1, e2 ∈ E0, such that we1 ∩

we2 �= ∅ there exists a bag Bi for some 1 ≤ i ≤ q,
such that all of the endpoints of both e1 and e2 are
contained in Bi,

(d) for each edge uv ∈ E0 the set of indices {i : u, v ∈ Bi}
is an interval.

Proof: First, we use Lemma III.8 to obtain T0 =
(V0, E0), r0 ∈ V0, such that |V0| ≤ 4(log3/2 n + 2), where

for each pair of edges e1, e2 ∈ E0 such that we1 ∩we2 �= ∅
we have |distT0

(r0, e1) − distT0
(r0, e2)| ≤ β. Let e1, e2 ∈

E \ E0 be two edges with both endpoints in V0. Define

H0 = (V0, E0 ∪ {e1, e2}), clearly H0 is a subgraph of H
and the number of edges is the number of vertices plus one.

Therefore properties (a) and (b) are satisfied and it remains

to show that there exists a path decomposition of H0 of

width at most 4(β + 3), satisfying (c) and (d).
Let Di be the set of vertices of V0 at distance exactly

i from r0 in T0. Consider a sequence (Bi)
q
i=0, where q =

4(log3/2 n+ 2), and Bi =
⋃

max(0,i−β−1)≤j≤i Di ∪ e1 ∪
e2. It is straightforward to check that this is in fact a path

decomposition of H0, and since T0 has at most 4 leaves, this
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implies that the size of each Di is upper bounded by 4, and

hence the path decomposition is of width at most 4(β +3).
Observe that property (c) required by the corollary fol-

lows from the last property of Lemma III.8, because all of

the endpoints of edges e1, e2 ∈ E0, such that we1 ∩ we2 �=
∅, are contained in Bmax(distT0

(r0,e1)+1,distT0
(r0,e2)+1). To

prove property (d) let e = uv be an arbitrary edge of E0

and define Iu = {i : u ∈ Bi} and Iv = {i : v ∈ Bi}. As

we already know that (Bi)
q
i=0 is a path decomposition it

follows that both sets Iu, Iv form an interval, hence Iu ∩ Iv
is also an interval, which proves (d).

Lemma III.11. Fix an arbitrary ε > 0. There are constants
c1, c2 (depending on k and ε), such that for any disjoint
family F0 ⊆ F , for which there is no improving set of size
at most c1 log n of pathwidth at most c2 we have |OPT | ≤
((k + 1)/3 + ε)|F0|, where OPT ⊆ F is a maximum size
disjoint subfamily of F .

Proof: Let C = F0 ∩ OPT and denote A0 = F0 \ C,

B0 = OPT \C. Let G0 be the subgraph of GF0
induced by

A0 ∪ B0. We are going to construct a sequence of at most

1/ε subgraphs of G0, namely Gi = G0[Ai ∪Bi] for i ≥ 1,

where Ai ⊆ A0, Bi ⊆ B0, satisfying two invariants:

(a) in Gi there is no subset X ⊆ Bi of size at most 2(k+
1)1/ε−i, such that |NGi(X)| < |X|,

(b) |A0 \Ai| = |B0 \Bi|.
Observe G0 trivially satisfies (b) and in order to make G0

satisfy (a) it is enough to set c1 and c2 so that

c1 ≥ 2(k + 1)1/ε ,

c2 ≥ 4(k + 1)1/ε ,

as there is no improving set of size at most 2(k + 1)1/ε

and pathwidth of an improving set of size x is at most 2x.

Consider subsequent values of i starting from 0. Split the

vertices of Bi into groups B1
i , B

2
i , B

3
i , consisting of vertices

of Bi of degree exactly one, exactly two and at least three

in Gi, respectively. Observe that because of (a) there is no

isolated vertex of Bi in Gi and moreover no two vertices of

B1
i have a common neighbour in Gi. Consider the following

two cases:

• |B1
i | ≥ ε|OPT |: in this case we construct a graph

Gi+1 = G0[Ai+1∪Bi+1], where Ai+1 = Ai\NGi
(B1

i )
and Bi+1 = B2

i ∪ B3
i = Bi \ B1

i . The invariant (a)
is satisfied, as any set X ⊆ Bi+1 of size at most

2(k+1)1/ε−i−1 such that |NGi+1(X)| < |X| would im-

ply existence of a set X ′ = X ∪ (NGi
(NGi

(X))∩B1
i )

of size at most (k+1) · |X| ≤ 2(k+1)1/ε−i, such that

|NGi
(X ′)| < |X ′| (see Figure 3).

• |B1
i | < ε|OPT |: We are going to use the following

claim, which we prove later.

Claim III.12.

|B2
i | ≤ (1 + ε)|Ai|

XX ′ \X

NGi+1
(X)

Figure 3: Lifting an improving set X in Gi+1 to an im-

proving set X ′ in Gi. Gray vertices belong to Gi but not to

Gi+1.

As each vertex of Ai is of degree at most k in Gi,

the number of edges of Gi is at most k|Ai|. At the

same time the number of edges of Gi is at least |B1
i |+

2|B2
i |+ 3|B3

i |, therefore

|B1
i |+ 2|B2

i |+ 3|B3
i | ≤ k|Ai| .

Note that summing the inequalities:

|B1
i | ≤ ε|Ai|

|B1
i | ≤ ε|Ai|

|B2
i | ≤ (1 + ε)|Ai|

|B1
i |+ 2|B2

i |+ 3|B3
i | ≤ k|Ai|

we obtain

|Bi| ≤ ((k + 1)/3 + ε)|Ai| .
However |OPT \Bi| = |C|+ |B0 \Bi| = |C|+ |A0 \
Ai| = |F0\Ai|, where the second equality follows from

invariant (b), hence |OPT | ≤ ((k + 1)/3 + ε)|F0|.
In the second case we have proved the thesis, while the first

case can appear only 1/ε number of times, as in each step we

remove at least ε|OPT | vertices from Bi. Therefore to finish

the proof of Lemma III.11 it suffices to prove Claim III.12.

Proof of Claim III.12: Assume the contrary. Construct

a multigraph H = (Ai, EH), where EH = {ex = uv :
x ∈ B2

i , NGi(x) = {u, v}}. Set Σ = F and for each edge

ex = uv ∈ EH , set as wex the set of all vertices of G0 at

distance at most 2/ε from x. Observe that since G0 is of

maximum degree at most k, we have |wex | ≤ 2k2/ε. For

the same reason each vertex of G0 appears in at most 2k2/ε

sets wex .

In order to use Corollary III.10 we need to reduce the

graph H , in a way ensuring all its vertices are of degree at

least 3. However we know, that the graph H is of average

degree at least 2+2ε, since |EH |/|Ai| = |B2
i |/|Ai| ≥ 1+ε.

Let H ′ = H . As long as there exist an isolated vertex, or

a vertex of degree one in H ′ remove it. Note that such a
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Yi = XYi−1 \ Yi

NGi
(Yi)

a b c

a b c

H0

Figure 4: The right graph is H0 = (V0, E0) provided by

Corollary III.10. The left side depicts the set X correspond-

ing to E0, as well as lifting the set Yi = X to Yi−1. Gray

vertices belong to Gi−1 but not to Gi. The dashed path on

the left between a and b in H ′ is contracted into an edge of

H ′′ on the right.

reduction rule does not decrease the average degree of H ′.
Similarly if H ′ contains a path v0, v1, . . . , v�, v�+1, where

all vertices vj for 1 ≤ j ≤ � are of degree exactly 2 and

� ≥ 1/ε, then remove all the vertices vj for 1 ≤ j ≤ �
from H ′. As this operation removes � vertices, but only

� + 1 edges, and � ≥ 1/ε, the average degree does not

decrease. Finally, we construct H ′′ from H ′ by simultane-

ously considering all the maximal paths v0, v1, . . . , v�, v�+1,

with all internal vertices of degree two, and contracting each

of such paths to a single edge e′ = v0v�+1 and setting

we′ =
⋃

0≤j≤� wvjvj+1
. Observe that for each edge e of

H ′′ the size of we is upper bounded by 2k2/ε(1/ε+ 1), as

a contracted path consist of at most �1/ε+ 1� edges.

As H ′′ is of minimum degree at least 3, we apply

Corollary III.10 to it, where γ = 2k2/ε(1/ε + 1). Let

H0 = (V0, E0) and P = (Bi)
q
i=1 be as defined in Corol-

lary III.10. Let X ⊆ B2
i be the set of all the vertices of

B2
i corresponding to the edges of E0, including the vertices

of B2
i that correspond to edges of H ′ that were contracted

into some edge of E0 (see Figure 4). As |E0| > |V0|
we have |NGi

(X)| < |X|. Clearly X is of size at most

|E0|(1/ε + 1) ≤ (4(log3/2 |F| + 2) + 1)(1/ε + 1), that is

logarithmic in |F|, as ε is a constant. It remains to show that

we can lift X to an improving set of bounded pathwidth,

while increasing its size only by a constant factor.

Let Yi = X . For j = i − 1, . . . , 0 set Yj = Yj+1 ∪
(NGj

(NGj
(Yj))∩B1

j ) (see Figure 4). Observe that at each

step the size of Yj increases by a factor of at most k + 1,

hence |Y0| ≤ |Yi|(k+1)i and moreover Y0 is an improving

set w.r.t. F0. Since Y0 is of size logarithmic in |F| it remains

to show that NGF0
[Y0] is of constant pathwidth.

Create a sequence of subsets P
′ = (B′i)

q
i=1, by taking

as B′i the set (
⋃

e=uv∈E0,u,v∈Bi
we ∩ NGF0

[Y0]). The size

of each B′i is at most (w + 1)2γ, where w is the width

of P, hence it remains to show that P
′ is indeed a path

decomposition. Each vertex of NGF0
[Y0] is within distance

at most 2/ε from some vertex of X , hence each vertex of

NGF0
[Y0] is contained in some set we for e ∈ E0. Similarly

each edge of GF0
[NGF0

[Y0]] is within distance at most 2/ε
from some vertex of X , so it has both its endpoints in some

set we for e ∈ E0. Since P is a path decomposition each

edge e ∈ E0 has both its endpoints in some bag Bi, therefore⋃
1≤i≤q B

′
i = NGF0

[Y0] and each edge of NGF0
[Y0] has

both its endpoints in some bag B′i. Property (d) of Corollary

III.10 implies that each we contributes to B′i for values of i
forming an interval Ie. Moreover if for two edges e1, e2 ∈
E0 the intersection we1∩we2 is non-empty, then by property

(c) of Corollary III.10 we know that the intervals Ie1 and Ie2
have non-empty intersection. This ensures that each vertex v
of NGF0

[Y0] appears in a set of bags B′i forming an interval

in the sequence P
′, as each pair of intervals in {Ie : v ∈ we}

has non-empty intersection.

Therefore Y0 is an improving set of logarithmic size

and of constant pathwidth, which is a contradiction. Con-

sequently |B2
i | ≤ (1 + ε)|Ai|, which finishes the proof of

Claim III.12.

Lemma III.11 together with the algorithm for searching

improving sets of bounded pathwidth from Theorem III.6

gives a polynomial time (k + 1 + ε)/3-approximation al-

gorithm for k-SET PACKING for any constant k, proving

Theorem I.2. In particular there is a (4/3+ε)-approximation

for the 3-DIMENSIONAL MATCHING problem.

IV. LOCAL SEARCH HARDNESS

In this section we are going to show, that there is no

algorithm verifying for a given F0 ⊆ F , whether there exists

an improving set (see Definition III.2) of size at most r in

f(r)poly(|F|) time, even when k = 3. In fact we show a

stronger hardness result, ruling out existence of an algorithm,

that either finds a bigger disjoint family F1 (without any

restriction on its distance from F0), or verifies that there

is no improving set of size at most r. That is exactly the

notion of permissive parameterized local search introduced

by Marx and Schlotter in [21] (for more information about

parameterized local search see [20]).

In our reduction, we use a standard W[1]-hard prob-

lem [10], namely MULTICOLORED CLIQUE parameterized

by the clique size.

MULTICOLORED CLIQUE

Input: An undirected graph G = (V,E), a positive

integer k, and a color function c : V → {0, . . . , k − 1}.
Question: Does the graph G contain a clique of size k,

where each vertex is of different color?

Theorem IV.1. There is a constant α > 0, such that given
an instance I = (G, k, c) of MULTICOLORED CLIQUE one
can in polynomial time construct an instance F ⊆ 2U of 3-

SET PACKING, together with a disjoint subfamily F0 ⊆ F
of size |U |/3− 1, such that:
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• If I is a YES-instance, then there exists a family F1 ⊆
F of disjoint |U |/3 sets, such that |F0\F1|+|F1\F0| ≤
αk2,

• if there exists a disjoint subfamily F1 ⊆ F of size
|U |/3, then I is a YES-instance.

Proof: We start with a definition of a simple gadget,

that will be used a couple of times in the construction.

Definition IV.2. For a positive integer h ≥ 1 and a symbol

x an (x, h)-amplifier is a family Fx ⊆ 2Ux of sets of size 3,

where

Ux = {x1, . . . , x2·4h−1}, and

Fx = {{xi, x2i, x2i+1} : 1 ≤ i < 4h}
Let I = (G = (V,E), k, c) be an instance of MULTI-

COLORED CLIQUE. W.l.o.g. we may assume that k = 4h,

where h is a positive integer, since otherwise we may add

universal vertices (adjacent to all other vertices). We start

with constructing an (x, h)-amplifier, which will be called

the top amplifier, and (v, h)-amplifier for each v ∈ V , called

vertex amplifiers. As the universe U we take

U =Ux ∪ (
⋃

v∈V
Uv) ∪ {v′1, v′′1 : v ∈ V }

∪ {s(i,j) : 0 ≤ i < j < k} ∪ {�i : 1 ≤ i ≤ 2k} .
To the family F we add all the sets of Fx and Fv for v ∈ V ,

as well as:

(i) sets {v1, v′1, v′′1} for v ∈ V ,

(ii) sets {xk+i, v
′
1, v

′′
1} for 0 ≤ i < k for v ∈ c−1(i),

(iii) sets {uk+c(v), vk+c(u), s(c(u),c(v))} for uv ∈ E, c(u) <
c(v),

(iv) sets {vk+c(v), �2c(v)−1, �2c(v)} for v ∈ V ,

(v) sets {�3i−2, �3i−1, �3i} for 1 ≤ i ≤ �2k/3� (note that

2k = 2 · 4h ≡ 2 (mod 3)),
(vi) consider all the elements s(i,j) in lexicographic order

of pairs (i, j), take subsequent triples of elements and

add them to the family F , that is add sets

{s(0,1), s(0,2), s(0,3)}, . . . ,
{s(k−3,k−2), s(k−3,k−1), s(k−2,k−1)}

(note that
(
k
2

) ≡ 0 (mod 3), since (k − 1) ≡ 0
(mod 3)).

To finish the construction we create a disjoint family F0

of size |U |/3− 1 as follows:

• add to F0 sets {xi, x2i, x2i+1} ∈ Fx for 1 ≤ i < k
such that �log2 i� is odd.

• add to F0 sets {vi, v2i, v2i+1} ∈ Fv for v ∈ V and

1 ≤ i < k, such that �log2 i� is odd.

• add to F0 all the sets from points (i), (v), (vi) of the

construction of F .

Note that the size of F0 equals |U |/3 − 1, as the only

elements which are not covered by F0 are x1, �2k−1 and

�2k.

Claim IV.3. If I is a YES-instance, then there exists a
disjoint family F1 ⊆ F of size |U |/3, such that |F1 \F0|+
|F0 \ F1| = O(k2).

Proof: Let K ⊆ V be a solution to I , that is a

multicolored clique of size k. Construct a disjoint family

F1 as follows:

(a) add to F1 sets {xi, x2i, x2i+1} ∈ Fx for each 1 ≤ i <
k, such that �log2 i� is even,

(b) add to F1 sets {vi, v2i, v2i+1} ∈ Fx for v ∈ K and

1 ≤ i < k, such that �log2 i� is even,

(c) add to F1 sets {vi, v2i, v2i+1} ∈ Fx for v ∈ V \K and

1 ≤ i < k, such that �log2 i� is odd,

(d) for 0 ≤ i < k add to F1 the set {xk+i, v
′
1, v

′′
1}, where

v is the unique vertex of K of color i,
(e) add to F1 sets {v1, v′1, v′′1} for v ∈ V \K,

(f) add to F1 sets {uk+c(u), vk+c(v), sc(u),c(v)} for u, v ∈
K, c(u) < c(v),

(g) add to F1 sets {vk+c(v), �2c(v)−1, �2c(v)} for v ∈ K.

A direct check shows that the above family is disjoint and

covers all the elements of U , hence |F1| = |U |/3. Note that

in the above construction of F1 in each of the points (a),

(d), (g) we add to F1 only O(k) sets, while in points (b), (f)

we add to F1 O(k2) sets, whereas in points (c) and (e) we

add to F1 sets that are present in F0. Therefore the number

of sets of F1 which are not present in F0 is upper bounded

by a linear function in k2.

Claim IV.4. If there exists a disjoint family F1 of size |U |/3,
then I is a YES-instance.

Proof: Let F1 ⊆ F be any disjoint family of size

|U |/3. Since the element x1 can be covered only by

the set {x1, x2, x3}, the family F1 contains all the sets

{xi, x2i, x2i+1} ∈ Fx for 1 ≤ i < k, where �log2 i� is

even, and consequently elements xk+i for 0 ≤ i < k are

not covered by sets of Fx. Therefore elements xk+i are

covered by sets from point (ii) of the construction of F ,

hence for each 0 ≤ i < k in F1 there is exactly one set

{v1, v2, v3} ∈ F1 for v ∈ c−1(i), and let K be the set of

those k multicolored vertices.

We want to show that K is a clique. As for each v ∈ K
we have {v1, v2, v3} ∈ F1, the family F1 contains all the

sets {vi, v2i, v2i+1} for 1 ≤ i < k where �log2 i� is even.

Consequently elements vk+i for 0 ≤ i < k, i �= c(v) are

covered by sets from point (iii) of the construction of F .

Consider any pair 0 ≤ i < j < k. Denote as u the unique

vertex of K ∩ c−1(i) and let {uk+j , vk+i, s(i,j)} be the set

of F1 covering uk+j , where v ∈ c−1(j). This implies that

vk+i is not covered by a set of the (v, h)-amplifier, hence

v1 is covered by the (v, h)-amplifier, i.e. by {v1, v2, v3}.
Therefore v ∈ K and the vertices of colors i and j of K
are adjacent. Since i and j were selected arbitrarily, K is a

clique.

The proof of Theorem IV.1 follows from Claim IV.3 and
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Claim IV.4.

Theorem IV.1, together with the well-known fact that

MULTICOLORED CLIQUE is W[1]-hard [10] implies The-

orem I.1.

V. FUTURE WORK AND OPEN PROBLEMS

One can try to continue the research direction of Chan and

Lau [6], who presented a strengthening of the standard LP

relaxation, proving integrality gap of (k+1)/2 using a local

search inspired analysis. We would like to ask a question

whether it is possible to obtain some strengthened LP

relaxation with integrality gap (k+c)/3-for some constant c.
Finally, we believe that it is worth looking into other

problems, where local search algorithms were applied suc-

cessfully, such as k-MEDIAN [3] or RESTRICTED MAX-

MIN FAIR ALLOCATION [24]. A potential goal would be

to design improved approximation local search algorithms

using non-constant size swaps in the spirit of the framework

of this paper.
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