
An O(ckn) 5-Approximation Algorithm for Treewidth

Hans L. Bodlaender∗, Pål Grønås Drange†, Markus S. Dregi†,
Fedor V. Fomin†, Daniel Lokshtanov† and Michał Pilipczuk†

∗ Department of Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands.
Email: h.l.bodlaender@uu.nl

† Department of Informatics, Univerity of Bergen, Bergen, Norway.
Emails: {Pal.Drange, Markus.Dregi, fomin, Daniel.Lokshtanov, Michal.Pilipczuk}@ii.uib.no

Abstract—We give an algorithm that for an input n-vertex
graph G and integer k > 0, in time O(ckn) either outputs
that the treewidth of G is larger than k, or gives a tree
decomposition of G of width at most 5k + 4. This is the
first algorithm providing a constant factor approximation for
treewidth which runs in time single-exponential in k and
linear in n. Treewidth based computations are subroutines of
numerous algorithms. Our algorithm can be used to speed
up many such algorithms to work in time which is single-
exponential in the treewidth and linear in the input size.

Keywords-treewidth, fixed-parameter tractability, approxi-
mation

I. INTRODUCTION

Since its invention in the 1980s, the notion of treewidth has

come to play a central role in an enormous number of fields,

ranging from very deep structural theories to highly applied

areas. An important (but not the only) reason for the impact

of the notion is that many graph problems that are intractable

on general graphs become efficiently solvable when the input

is a graph of bounded treewidth. In most cases, the first step

of an algorithm is to find a tree decomposition of small width

and the second step is to perform a dynamic programming

procedure on the tree decomposition.

In particular, if a graph on n vertices is given together

with a tree decomposition of width k, many problems can

be solved by dynamic programming in time O(ckn), i.e.,

single-exponential in the treewidth and linear in n. Many of

the problems admitting such algorithms have been known

for over thirty years [6] but new algorithmic techniques

on graphs of bounded treewidth [10], [19] as well as new

problems motivated by various applications (just a few of

many examples are [1], [23], [25], [31]) continue to be

discovered. While a reasonably good tree decomposition can

be derived from the properties of the problem sometimes,

in most of the applications the computation of a good tree

decomposition is a challenge. Hence, the natural question

here is what can be done when no tree decomposition is given.

In other words, is there an algorithm that for a given graph

G and integer k, in time O(ckn) either correctly reports that

the treewidth of G is at least k, or finds an optimal solution

The second, fourth and sixth author were supported by the ERC grant
“Rigorous Theory of Preprocessing”, reference 267959.

Table I
OVERVIEW OF TREEWIDTH ALGORITHMS. HERE k IS THE TREEWIDTH

AND n IS THE NUMBER OF VERTICES OF AN INPUT GRAPH G. EACH OF

THE ALGORITHMS OUTPUTS IN TIME f(k) · g(n) A DECOMPOSITION OF

WIDTH GIVEN IN THE APPROXIMATION COLUMN.

Approximation f(k) g(n) Reference

exact O(1) O(nk+2) [4]

4k + 3 O(33k) n2 [33]

8k + 7 2O(k log k) n log2 n [26]

8k +O(1) 2O(k log k) n logn [30]

exact kO(k3) n [9]

4.5k O(23kk3/2) n2 [3]

(3 + 2/3)k O(23.6982kk3) n2 [3]
O(k log k) O(k log k) n4 [3]

O(k
√
log k) O(1) nO(1) [21]

3k + 4 2O(k) n logn This paper

5k + 4 2O(k) n This paper

to our favorite problem (finds a maximum independent set,

computes the chromatic number, decides if G is Hamiltonian,

etc.)? To answer this question it would be sufficient to have

an algorithm that in time O(ckn) either reports correctly

that the treewidth of G is more that k, or construct a tree

decomposition of width at most αk for some constant α.

However, the lack of such algorithms has been a bottle-

neck, both in theory and in practical applications of the

treewidth concept. The existing approximation algorithms

give us the choice of running times of the form O(ckn2),
O(2O(k log k)n log n), or O(kO(k3)n), see Table I. Remark-

ably, the newest of these current record holders is now almost

20 years old. This “newest record holder” is the linear time

algorithm of Bodlaender [7], [9] that given a graph G, decides

if the treewidth of G is at most k, and if so, gives a tree

decomposition of width at most k in O(kO(k3)n) time. The

improvement by Perković and Reed [29] is only a factor

polynomial in k faster, however if the treewidth is larger

than k, it gives a subgraph of treewidth more than k with

a tree decomposition of width at most 2k, leading to an

O(n2) algorithm for the fundamental disjoint paths problem.

Recently, a version running in logarithmic space was found

by Elberfeld et al. [20], but its running time is not linear.

In this paper, we give the first constant factor approxima-

tion algorithm for the treewidth such that its running time is

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.60

499

single exponential in the treewidth and linear in the size of

the input graph. Our main result is the following theorem:

Theorem I. There exists an algorithm, that given an n-vertex
graph G and an integer k, in time O(ckn) for some c ∈ N,
either outputs that the treewidth of G is larger than k, or
constructs a tree decomposition of G of width at most 5k+4.

Of independent interest are a number of techniques that

we use to obtain the result and the intermediate result of an

algorithm that either tells that the treewidth is larger than k
or outputs a tree decomposition of width at most 3k + 4 in

time O(ckn log n).
Related results and techniques: The basic shape of our

algorithm is along the same lines as most of the treewidth

approximation algorithms [3], [13], [21], [26], [30], [33],

i.e., a specific scheme of repeatedly finding separators. If

we ask for polynomial time approximation algorithms, the

currently best result is that of Feige et al. [21], which gives in

polynomial (but not linear) time a tree decomposition of width

O(k
√
log k) where k is the treewidth of the graph. Their

work also gives a polynomial time approximation algorithm

with ratio O(|VH |2) for H-minor free graphs. By Austrin et

al. [5], assuming the Small Set Expansion Conjecture, there

is no polynomial time approximation algorithm for treewidth

with a constant performance ratio.

An important element in our algorithms is the use of a

data structure that allows performing various queries in time

O(ck log n) each, for some constant c. This data structure

is obtained by adding various new techniques to old ideas

from the area of dynamic algorithms for graphs of bounded

treewidth [8], [16], [17], [18], [24].

A central element in the data structure is a tree decomposi-

tion of the input graph of bounded (but too large) width such

that the tree used in the tree decomposition is binary and

of logarithmic depth. To obtain this tree decomposition, we

combine the following techniques: following the scheme of

the exact linear time algorithms [9], [29], but replacing the

call to the dynamic programming algorithm of Bodlaender

and Kloks [15] by a recursive call to our algorithm, we

obtain a tree decomposition of G of width at most 10k + 9
(or 6k + 9, in the case of the O(ckn log n) algorithm of

Section II-C). Then, we use a result by Bodlaender and

Hagerup [14] that this tree decomposition can be turned

into a tree decomposition with a logarithmic depth binary

tree in linear time, or more precisely, in O(log n) time and

O(n) operations on an EREW PRAM. The cost of this

transformation is increasing the width of the decomposition

roughly three times. The latter result is an application of

classic results from parallel computing for solving problems

on trees, in particular Miller-Reif tree contraction [27], [28].

Using the data structure to “implement” the algorithm of

Robertson and Seymour [33] already gives an O(ckn log n)
3-approximation for treewidth (Section II-C). Additional

techniques are needed to speed this algorithm up. We

build a series of algorithms, with running times of the

forms O(ckn log log n), O(ckn log log log n), . . ., etc. Each

algorithm “implements” Reed’s algorithm [30], but with

a different procedure to find balanced separators of the

subgraph at hand, and stops when the subgraph at hand

has size O(log n). In the latter case, we call the previous

algorithm of the series on this subgraph.

Finally, to obtain a linear time algorithm, we consider two

cases, one case for when n is “small” (compared to k), and

one case when n is “large”. We consider n to be small if

n ≤ 22
c0k3

, for some constant c0. For small values of n, we

apply the O(ckn log(2) n) algorithm from Section II-G. This

will yield a running time linear in n since log(2) n = O(k3).
For larger values of n, we show that the linear time algorithms

of [9] or [29] can be implemented in truly linear time, without

any overhead depending on k. This seemingly surprising

result can be roughly obtained as follows: We explicitly

construct the finite state tree automaton of the dynamic

programming algorithm in sublinear time before processing

the graph, and then view the dynamic programming routine as

a run of the automaton, where transitions are implemented as

constant time table lookups. Viewing a dynamic programming

algorithm on a tree decomposition as a finite state automaton

traces back to early work by Fellows and Langston [22],

see also [2]. Our algorithm assumes the RAM model of

computation [34], and the only aspect of the RAM model

which we exploit is the ability to look up an entry in a

table in constant time, independently of the size of the table.

This capability is essential in almost every linear time graph

algorithm including breadth first search and depth first search.

Notation: We give some basic definitions and notation,

used throughout the paper. For α ∈ N, by log(α) n we denote

α-times folded function log n. For the presentation of our

results, it is more convenient to regard tree decompositions

as rooted. Henceforth, a tree decomposition of a graph G =
(V,E) is a pair T = ({Bi | i ∈ I}, T = (I, F)) where

T = (I, F) is a rooted tree, and {Bi | i ∈ I} is a family

of subsets of V , called bags, with the usual properties. The

width of T = ({Bi | i ∈ I}, T = (I, F)), denoted w(T) is

maxi∈I |Bi| − 1. The treewidth of a graph G, denoted by

tw(G), is the minimum width of a tree decomposition of G.

II. PROOF OUTLINE

This is an extended abstract. The full version can be found

on arXiv.org [11]. In this section we give only an outline of

the main ideas behind the results and refer to the full version

where necessary. Our algorithm builds on the constant factor

approximation algorithm for treewidth described in Graph

Minors XIII [33] with running time O(ckn2). We start with

a brief explanation of a variant of this algorithm.

500

A. The O(33kn2) time 4-approximation algorithm from
Graph Minors XIII

The engine behind the algorithm is a lemma that states that

graphs of treewidth k have balanced separators of size k+1.

In particular, for any way to assign non-negative weights to

the vertices there exists a set X of size at most k + 1 such

that the total weight of any connected component of G \X
is at most half of the total weight of G. We use the variant

of the lemma where vertices have weights 0 or 1.

Lemma II.1 (Graph Minors II [32]). If tw(G) ≤ k and
S ⊆ V (G), then there exists X ⊆ V (G) with |X| ≤ k + 1
such that every component of G\X has at most 1

2 |S| vertices
which are in S.

The set X with properties ensured by Lemma II.1 will be

called a balanced S-separator. If we omit the set S, i.e., talk

about separators instead of S-separators, we mean S = V (G)
and balanced separators of the entire vertex set.

The proof of Lemma II.1, which can be found in the

full version, is constructive if one has access to a tree

decomposition of G of width less than k. More precisely, for

any such decomposition one of its bags satisfies the condition

on S. Since we are trying to compute a decomposition

of G of small width, the algorithm does not have such a

decomposition at hand. We therefore have to settle for the

following algorithmic variant of Robertson and Seymour [32].

Lemma II.2 ([33]). There is an algorithm that given a graph
G, a set S and a k ∈ N either concludes that tw(G) > k
or outputs a set X of size at most k + 1 such that every
component of G \X has at most 2

3 |S| vertices which are in
S and runs in time O(3|S|kO(1)(n+m)).

The proof of Lemma II.2 uses Lemma II.1 to certify

existence of X such that |X| ≤ k + 1 and every component

of G \X has at most 1
2 |S| vertices of S. A simple packing

argument shows that the components can be assigned to

left or right such that at most 2
3 |S| vertices of S go left

and at most 2
3 |S| go right. Hence, it suffices to guess the

intersection of S with the left side, the right side and with

X (3|S| choices), and check existence of an appropriate

separator X extending the guessed intersection with S using

one run of max-flow.

The algorithm takes as input G,S, k, with S a set with at

most 3k+4 vertices, and either concludes that the treewidth

of G is larger than k or finds a tree decomposition of width

at most 4k + 4 such that the top bag of the decomposition

contains S. On input G, S, k the algorithm starts by ensuring

that |S| = 3k + 4. If |S| < 3k + 4 the algorithm just adds

arbitrary vertices to S until equality is obtained. Then the

algorithm applies Lemma II.2 and finds a set X of size at

most k + 1 such that each component Ci of G \X satisfies

|Ci∩S| ≤ 2|S|
3 , so since |S| = 3k+4 then |Ci∩S| ≤ 2k+2.

Note that this means that there are at least two components

Ci. Also, for each Ci we have |(S∩Ci)∪X| ≤ (2k+2)+(k+
1) < 3k+4. For each component Ci of G\X the algorithm

runs itself recursively on (G[Ci ∪X], (S ∩ Ci) ∪X, k).
If either of the recursive calls returns that the treewidth

is more than k then the treewidth of G is more than k as

well. Otherwise we have for every component Ci a tree

decomposition of G[Ci ∪X] of width at most 4k + 4 such

that the top bag contains (S ∩ Ci) ∪ X . To make a tree

decomposition of G we make a new root node with bag X∪S,

and connect this bag to the roots of the tree decompositions

of G[Ci ∪ X] for each component Ci. It is easy to verify

that this is indeed a tree decomposition of G. The top bag

contains S and its size is at most |S|+ |X| ≤ 4k+5, and so

the width of the decomposition is at most 4k+4 as claimed.

The running time of the algorithm is governed by the

recurrence T (n, k) ≤ O(3|S|kO(1)(n+m)) +
∑

Ci
T (|Ci ∪

X|, k), which solves to T (n, k) ≤ (33kkO(1)n(n+m)) since

|S| = 3k+4 and there are at least two non-empty components

of G \X . Finally, since any graph of size n of treewidth k
has at most nk edges [12], the algorithm can safely output

that tw(G) > k if |E| > nk. Thus the algorithm runs in

O(33kkO(1)n(n+m)) = O(33kkO(1)n2) time.

B. The O(kO(k)n log n) time algorithm of Reed

Reed [30] observed that the running time of the algorithm

of Robertson and Seymour [33] can be sped up from O(n2)
to O(n log n) for fixed k, at the cost of a worse (but still

constant) approximation ratio, and a kO(k) dependence on k
in the running time, rather than the 33k factor in the algorithm

of Robertson and Seymour. We remark here that Reed [30]

states neither the dependence on k of his algorithm nor

the approximation ratio, but a careful analysis shows that

this dependence and the approximation ratio are kO(k) and

8k +O(1), respectively. The main idea of this algorithm is

that the recurrence above only solves to O(n2) for fixed k
if one of the components of G \X contains almost all of

the vertices of G. If one ensured that each component Ci

of G \ X had at most λ · n vertices for some λ < 1, the

recurrence above solves to O(n log n) for fixed k. To see

this consider simply the recursion tree. The total amount

of work done at any level of the recursion tree is O(n) for

a fixed k. Since the size of the components considered at

one level is a constant factor smaller than the size of the

components considered in the previous level, the number of

levels is O(log n) and we have O(n log n) work in total.

By using Lemma II.1 with S = V (G) we see that if G
has treewidth ≤ k, then there is a set X of size at most

k + 1 such that each component of G \X has size at most
n
2 . Unfortunately if we try to apply Lemma II.2 to find an

X which splits G in a balanced way using S = V (G), the

algorithm of Lemma II.2 takes time O(3|S|kO(1)(n+m)) =
O(3nnO(1)), which is exponential in n. Reed [30] gave an

algorithmic variant of Lemma II.1 especially tailored for the

case where S = V (G).

501

Lemma II.3 ([30]). There is an algorithm that given G
and k, runs in time O(kO(k)n) and either concludes that
tw(G) > k or outputs a set X of size at most k + 1 such
that every component of G \ X has at most 3

4 |S| vertices
which are in S.

Let us remark that Lemma II.3 as stated here is never

explicitly proved in [30], but it follows easily from the

arguments given there.

Using Lemmata II.2 and II.3, we can obtain an 8-

approximation of the treewidth of G in time O(kO(k)n log n).
The algorithm takes as input G,S, k, where S is a set of at

most 6k + 6 vertices, and either concludes that tw(G) > k,

or finds a tree decomposition of width at most 8k+7 where

the top bag of the decomposition contains S.

The algorithm is similar to the one in Section II-A, except

that we let |S| = 6k + 6 and that we find two separators,

X1 and X2 instead of just one, using first Lemma II.2 and

then Lemma II.3. The algorithm runs itself recursively on

(G[Ci ∪X], (S ∩Ci) ∪X, k), where X = X1 ∪X2 and Ci

are the connected components of G \X . The running time

of the algorithm is governed by the recurrence T (n, k) ≤
O

(
kO(k)(n+m)

)
+

∑
Ci

T (|Ci ∪X|, k), which solves to

T (n, k) ≤ O(kO(k)(n + m) log n) since each Ci has size

at most 3
4n. Again, since m ≤ nk, the running time of the

algorithm is upper bounded by O(kO(k)n log n).

C. A new O(ckn log n) time 3-approximation algorithm

In this section we sketch a proof of the following theorem,

whose full proof can be found in the full version.

Theorem II. There exists an algorithm which given a graph
G and an integer k, either computes a tree decomposition
of G of width at most 3k + 4 or correctly concludes that
tw(G) > k, in time O(ckn log n) for some c ∈ N.

The algorithm employs the same recursive compression

scheme which is used in Bodlaender’s linear time algo-

rithm [7], [9] and the algorithm of Perković and Reed [29].

The idea is to solve the problem recursively on a smaller

instance, expand the obtained tree decomposition of the

smaller graph to a “good, but not quite good enough” tree

decomposition of the instance in question, and then use this

tree decomposition to either conclude that tw(G) > k or

find a decomposition of G which is good enough. A central

concept in the recursive approach of Bodlaender [9] is the

definition of an improved graph:

Definition II.4. Given a graph G = (V,E) and an integer k,

the improved graph of G, denoted GI , is obtained by adding

an edge between each pair of vertices with at least k + 1
common neighbors of degree at most k in G.

Intuitively, adding the edges during construction of the

improved graph cannot spoil any tree decomposition of G
of width at most k, as the pairs of vertices connected by the

new edges will need to be contained together in some bag

anyway. This is captured in the following lemma.

Lemma II.5. Given a graph G and an integer k ∈ N,
tw(G) ≤ k if and only if tw(GI) ≤ k.

If m = O(kn), which is the case in graphs of treewidth at

most k, the improved graph can be computed in O(kO(1)n)
time using radix sort [9].

A vertex v ∈ G is simplicial if its neighborhood is a clique,

and is called I-simplicial, if it is simplicial in the improved

graph GI . The intuition is as follows: all the neighbors of

an I-simplicial vertex must be simultaneously contained in

some bag of any tree decomposition of GI of width at most

k, so we can safely remove such vertices from the improved

graph, compute the tree decomposition, and reintroduce the

removed I-simplicial vertices. The crucial observation is that

if no large set of I-simplicial vertices can be found, then

one can identify a large matching, which can be also used

for a robust recursion step. The following lemma, which

follows from the work of Bodlaender [9], encapsulates all

the ingredients that we use.

Lemma II.6. There is an algorithm running in O(kO(1)n)
time that, given a graph G = (V,E) and an integer k, either

(i) returns a maximal matching in G of cardinality at least
|V |

O(k6) ,

(ii) returns a set of at least |V |
O(k6) I-simplicial vertices, or

(iii) correctly concludes that the treewidth of G is larger
than k.

Moreover, if a set X of at least |V |
O(k6) I-simplicial vertices is

returned, and the algorithm is in addition provided with some
tree decomposition TI of GI \X of width at most k, then in
O(kO(1)n) time one can turn TI into a tree decomposition
T of G of width at most k, or conclude that the treewidth
of G is larger than k.

Lemma II.6 allows us to reduce the problem to a com-
pression variant where we are given a graph G, an integer k
and a tree decomposition of G of width O(k); the goal is to

either conclude that the treewidth of G is at least k or find

a tree decomposition of width at most 3k + 4. The proof of

Theorem II has two parts: an algorithm for the compression

step and an algorithm for the general problem that uses the

algorithm for the compression step together with Lemma II.6

as black boxes. We now state the properties of our algorithm

for the compression step in the following lemma.

Lemma II.7. There exists an algorithm which on input
G, k, S0, Tapx, where (i) S0 ⊆ V (G), |S0| ≤ 2k + 3, (ii)
G and G \ S0 are connected, and (iii) Tapx is a tree
decomposition of G with w(Tapx) = O(k), in O(ckn log n)
time for some c ∈ N either computes a tree decomposition
T of G with w(T) ≤ 3k + 4 and S0 as the root bag, or
correctly concludes that tw(G) > k.

502

We now give an algorithm proving Theorem II assuming

the correctness of Lemma II.7, which we argue in the

subsequent sections. The algorithm will in fact solve a slightly

more general problem. Here we are given a graph G, an

integer k and a set S0 on at most 2k + 3 vertices, with the

property that G \ S0 is connected. The algorithm will either

conclude that tw(G) > k or output a tree decomposition of

width at most 3k + 4 such that S0 is the root bag. To get a

tree decomposition of any (possibly disconnected) graph it is

sufficient to run this algorithm on each connected component

with S0 = ∅. The algorithm proceeds as follows. It first

applies Lemma II.6 on (G, 3k + 4). If the algorithm of

Lemma II.6 concludes that tw(G) > 3k + 4 the algorithm

reports that tw(G) > 3k + 4 > k.

If the algorithm finds a matching M in G with at least
|V |

O(k6) edges, it contracts every edge in M and obtains a

graph G′. Since G′ is a minor of G we know that tw(G′) ≤
tw(G). The algorithm runs itself recursively on (G′, k, ∅),
and either concludes that tw(G′) > k (implying tw(G) > k)

or outputs a tree decomposition of G′ of width at most

3k+4. Uncontracting the matching in this tree decomposition

yields a tree decomposition Tapx of G of width at most

6k+9 [9]. Now we can run the algorithm of Lemma II.7 on

(G, k, S0, Tapx) and either obtain a tree decomposition of G
of width at most 3k+ 4 and S0 as the root bag, or correctly

conclude that tw(G) > k.

If the algorithm finds a set X of at least
|V |

O(k6) I-simplicial

vertices, it constructs the improved graph GI and runs itself

recursively on (GI \X, k, ∅). If the algorithm concludes that

tw(GI \ X) > k then tw(GI) > k implying tw(G) > k
by Lemma II.5. Otherwise we obtain a tree decomposition

of GI \ X of width at most 3k + 4. We may now apply

Lemma II.6 and obtain a tree decomposition Tapx of G
with the same width. Note that we can not just output Tapx

directly, since we can not be sure that S0 is the top bag of

Tapx. However we can run the algorithm of Lemma II.7 on

(G, k, S0, Tapx) and either obtain a tree decomposition of G
of width at most 3k+ 4 and S0 as the root bag, or correctly

conclude that tw(G) > k.

It remains to analyze the running time of the algorithm.

Suppose the algorithm takes time at most T (n, k) on input

(G, k, S0) where n = |V (G)|. Running the algorithm of

Lemma II.6 takes O(kO(1)n) time. Then the algorithm

either halts, or calls itself recursively on a graph with

at most n − n
O(k6) = n(1 − 1

O(k6)) vertices taking time

T (n(1− 1
O(k6)), k). Then the algorithm takes time O(kO(1)n)

to either conclude that tw(G) > k or to construct a

tree decomposition Tapx of G of width O(k). In the latter

case we finally run the algorithm of Lemma II.7, taking

time O(ckn log n). This gives the following recurrence:

T (n, k) ≤ O
(
ckn log n

)
+ T

(
n
(
1− 1

O(k6)

)
, k

)
. The

recurrence leads to a geometric series and solves to T (n, k) ≤
O(ckkO(1)n log n), completing the proof. For a thorough

analysis, see the full version.

D. A compression algorithm

We now proceed to give a sketch of a proof for a slightly

weakened form of Lemma II.7. The goal is to give an

algorithm that given as input a graph G, an integer k, a

set S0 of size at most 6k + 6 such that G \ S0 is connected,

and a tree decomposition Tapx of G, runs in time O(ckn log n)
and either correctly concludes that tw(G) > k or outputs a

tree decomposition of G of width at most 8k+7. The paper

does not contain a full proof of this variant of Lemma II.7—

we will discuss the proof of Lemma II.7 in Section II-E.

The aim of this section is to demonstrate that the recursive

scheme of Section II-C together with a nice trick for finding

balanced separators is already sufficient to obtain a factor 8
approximation for treewidth running in time O(ckn log n).
A variant of this trick is used in our final O(ckn) time

5-approximation algorithm.

The route we follow here is to apply the algorithm of Reed

described in Section II-B, but instead of using Lemma II.3 to

find a set X of size k+1 such that every connected component

of G \ X is small, finding X by dynamic programming

over the tree decomposition Tapx in time O(ckn). There are,

however, a few technical difficulties with this approach.

The most serious issue is that to the best of our knowl-

edge, the only known dynamic programming algorithms

for balanced separators in graphs of bounded treewidth

take time O(ckn2) rather than O(ckn): in the state we

also need to store the cardinalities of the sides which

gives us another dimension of size n. We now explain

how to overcome this issue. We first mimic the proof

of Lemma II.1 on the tree decomposition Tapx and get

in time O(kO(1)n) a partition of V (G) into L0, X0 and

R0 such that there are no edges between L0 and R0,

max(|L0|, |R0|) ≤ 3
4n and |X0| ≤ w(Tapx) + 1. For every

way of writing kL+ kX + kR = k+1 and every partition of

X0 into XL∪XX ∪XR with |XX | = kX , we do as follows:

First we find in time O(ckn) using dynamic programming

over the tree decomposition Tapx a partition of L0 ∪X0 into

L̂L ∪ R̂L ∪ X̂L such that there are no edges from L̂L to R̂L,

|X̂L| ≤ kL + kX , XX ⊆ X̂L, XR ⊆ R̂L and XL ⊆ L̂L and

the size |L̂L| is maximized. Then we find in time O(ckn)
using dynamic programming over the tree decomposition

Tapx a partition of R0∪X0 into L̂R∪R̂R∪X̂R such that there

are no edges from L̂R to R̂R, |X̂R| ≤ kR + kX , XX ⊆ X̂R,

XR ⊆ R̂R and XL ⊆ L̂R and the size |R̂R| is maximized.

Let L = LL ∪ LR, R = RL ∪RR and X = XL ∪XR. The

sets L, X , R form a partition of V (G) with no edges from

L to R and |X| ≤ kL + kX + kR + kX − kX ≤ k + 1.

It is possible to show using a combinatorial argument (see

the full version) that if tw(G) ≤ k then there exists a choice

of kL, kX , kR such that kL+kX +kR = k+1 and partition

of X0 into XL ∪XX ∪XR with |XX | = kX such that the

above algorithm will output a partition of V (G) into X ,

503

L and R such that max(|L|, |R|) ≤ 8n
9 . Thus we have an

algorithm that in time O(ckn) either finds a set X of size at

most k + 1 such that each connected component of G \X
has size at most 8n

9 or correctly concludes that tw(G) > k.

The second problem with the approach is that the algorithm

of Reed is an 8-approximation algorithm rather than a 3-

approximation. Thus, even the sped up version does not

quite prove Lemma II.7. It does however yield a version

of Lemma II.7 where the compression algorithm is an 8-

approximation. In the proof of Theorem II there is nothing

special about the number 3 and so one can use this weaker

variant of Lemma II.7 to give an 8-approximation algorithm

for treewidth in time O(ckn log n). We will not give complete

details of this algorithm, as we will shortly describe a proof

of Lemma II.7 using a quite different route.

It looks difficult to improve the algorithm above to an

algorithm with running time O(ckn). The main hurdle is the

following: both the algorithm of Robertson and Seymour [33]

and the algorithm of Reed [30] find a separator X and

proceed recursively on the components of G \X . If we use

O(ckn) time to find the separator X , then the total running

time must be at least O(cknd) where d is the depth of the

recursion tree of the algorithm. It is easy to see that the

depth of the tree decomposition output by the algorithms

equals (up to constant factors) the depth of the recursion tree.

However there exist graphs of treewidth k such that no tree

decomposition of depth o(log n) has width O(k) (take for

example powers of paths). Thus the depth of the constructed

tree decompositions, and hence the recursion depth of the

algorithm must be at least Ω(log n). We now give a proof

of Lemma II.7 that almost overcomes these issues.

E. A better compression algorithm

We give a sketch of the proof of Lemma II.7. The goal is

to give an algorithm that given as input a connected graph

G, an integer k, a set S0 of size at most 2k + 3 such that

G \ S0 is connected, and a tree decomposition Tapx of G,

runs in time O(ckn log n) and either correctly concludes that

tw(G) > k or outputs a tree decomposition of G of width at

most 3k + 4 with top bag S0. Our strategy is to implement

the O(ckn2) time 4-approximation algorithm described in

Section II-A, but make some crucial changes in order to (a)

make the implementation run in O(ckn log n) time, and (b)

make it a 3-approximation rather than a 4-approximation. We

first turn to the easier of the two changes, namely making

the algorithm a 3-approximation.

To get an algorithm that satisfies all of the requirements

of Lemma II.7, but runs in time O(ckn2) rather than

O(ckn log n) we run the algorithm described in Section II-A

setting S = S0 in the beginning. Instead of using Lemma II.2

to find a set X such that every component of G \X has at

most 2
3 |S| vertices which are in S, we apply Lemma II.1

to show the existence of an X such that every component

of G \X has at most 1
2 |S| vertices which are in S, and do

dynamic programming over the tree decomposition Tapx in

time O(ckn) to find such an X . Going through the analysis

of Section II-A but with X satisfying that every component

of G \X has at most 1
2 |S| vertices which are in S shows

that the algorithm does in fact output a tree decomposition

with width 3k + 4 and top bag S0 whenever tw(G) ≤ k.

It is somewhat non-trivial to do dynamic programming

over the tree decomposition Tapx in time O(ckn) to find an X
such that every component of G\X has at most 1

2 |S| vertices

which are in S. The problem is that G \X could potentially

have many components and we cannot store information

about each of these components individually. The following

lemma, whose proof appears in the full version, shows how

to deal with this problem.

Lemma II.8. Let G be a graph and S ⊆ V (G). Then a set
X is a balanced S-separator if and only if there exists a
partition (M1,M2,M3) of V (G) \X , such that there is no
edge between Mi and Mj for i 	= j, and |Mi ∩ S| ≤ |S|/2
for i = 1, 2, 3.

Lemma II.8 shows that when looking for a balanced S-

separator we can just look for a partition of G into four sets

X,M1,M2,M3 such that there is no edge between Mi and

Mj for i 	= j, and |Mi∩S| ≤ |S|/2 for i = 1, 2, 3. This can

easily be done in time O(ckn) by dynamic programming

over the tree decomposition Tapx. This yields the promised

algorithm that satisfies all of the requirements of Lemma II.7,

but runs in time O(ckn2) rather than O(ckn log n).

We now turn to the most difficult part of the proof of

Lemma II.7, namely how to improve the running time of the

algorithm above from O(ckn2) to O(ckn log n) in a way that

gives hope of a further improvement to running time O(ckn).
The O(ckn log n) time algorithm we describe now is based

on the following observations: (a) In any recursive call of the

algorithm above, the considered graph is an induced subgraph

of G. Specifically the considered graph is always G[C ∪ S]
where S is a set with at most 2k + 3 vertices and C is a

connected component of G\S. (b) The only computationally

hard step, finding the balanced S-separator X , is done by

dynamic programming over the tree decomposition Tapx.

Observations (a) and (b) give some hope that one can reuse

the computations done in the dynamic programming when

finding a balanced S-separator for G during the computation

of balanced S-separators in induced subgraphs of G. This

plan can be carried out in a surprisingly clean manner and

we now give a rough sketch of how it can be done.

The following proposition lets us assume that the tree

decomposition Tapx has depth O(log n):

Proposition II.9 (Bodlaender and Hagerup [14]). There is
an algorithm that, given a tree decomposition of width k
with O(n) nodes of a graph G, finds a rooted binary tree
decomposition of G of width at most 3k + 2 with depth
O(log n) in O(kn) time.

504

In Section II-F we will describe a data structure with

the following properties. The data structure takes as input

a graph G, an integer k and a tree decomposition Tapx of

width O(k) and depth O(log n). After an initialization step

which takes O(ckn) time the data structure allows us to do

certain operations and queries. At any point of time the data

structure is in a certain state. The operations allow us to

change the state of the data structure. Formally, the state of

the data structure is a quadruple (S,X, F, π), where S, X
and F are subsets of V (G) and π is a vertex called the “pin”,

with the restriction that π /∈ S. The initial state of the data

structure is that S = S0, X = F = ∅, and π is an arbitrary

vertex of G \ S0. The data structure allows operations that

change S, X or F by inserting/deleting a specified vertex,

and move the pin to a specified vertex in time O(ck log n).
For a fixed state of the data structure, the active component

U is the component of G \ S which contains π. Given

S and π /∈ S, the set U is uniquely defined. The data

structure allows the query findSSeparator (is defined in the

next section), which outputs in time O(ck log n) either a

balanced S-separator X̂ of G[U ∪ S] of size at most k + 1,

or ⊥, which means that tw(G[S ∪ U]) > k.

The algorithm of Lemma II.7 runs the O(ckn2) time

algorithm described above, but uses the data structure to

find the balanced S-separator in time O(ck log n) instead of

doing dynamic programming over Tapx. All we need to make

sure is that the S in the state of the data structure is always

equal to the set S for which we want to find the balanced

separator, and that the active component U is set such that

G[U ∪ S] is equal to the induced subgraph we are working

on. Since we always maintain that |S| ≤ 2k + 3 we can

change the set S to anywhere in the graph (and specifically

into the correct position) by doing kO(1) operations taking

O(ck log n) time each.

At a glance, it appears that if we assume the data structure

as a black box, this is sufficient to obtain the desired

O(ckn log n) time algorithm. However, we haven’t even used

the sets X and F ! The reason for this is that there is a

complication. In particular, after the balanced S-separator X̂
is found—how can we recurse into the connected components

of G[S ∪ U] \ (S ∪ X̂)? We need to move the pin into each

of these components one at a time, but if we want to use

O(ck log n) time in each recursion step, we cannot afford to

spend O(|S∪U |) time to compute the connected components

of G[S ∪ U] \ (S ∪ X̂). We resolve this issue by pushing

the problem into the data structure, and showing that the

appropriate queries can be implemented there. This is where

the sets X and F in the state of the data structure come in.

The role of X in the data structure is that when queries

to the data structure depending on X are called, X equals

the set X̂ , i.e., the balanced S-separator found by the query

findSSeparator. The set F is a set of “finished pins”: when

the algorithm calls itself recursively on a component U ′ of

G[S ∪ U] \ (S ∪ X̂) after it has finished computing a tree

decomposition of G[U ′ ∪N(U ′)] with N(U ′) as its top bag,

it selects an arbitrary vertex of U ′ and inserts it into F . The

queries are explained in the next section.

At this point it is possible to convince oneself that

the O(ckn2) time algorithm described in the beginning

of this section can be implemented using O(kO(1)) calls

to the data structure in each recursive step, thus spending

only O(ck log n) time in each recursive step. Pseudocode

for this algorithm can be found in the full version. The

recurrence bounding the running time of the algorithm then

becomes T (n, k) ≤ O(ck log n)+
∑

Ui
T (|Ui∪ X̂|, k). Here

U1, . . . , Uq are the connected components of G[S ∪ U] \
(S ∪ X̂). This recurrence solves to O(ckn log n), proving

Lemma II.7. A full proof of Lemma II.7 assuming the data

structure as a black box may be found in the full version.

F. The data structure

We sketch the main ideas in the implementation of the

data structure. The goal is to set up a data structure that takes

as input a graph G, an integer k and a tree decomposition

Tapx of width O(k) and depth O(log n), and initializes in

time O(ckn). The state of the data structure is a quadruple

(S,X, F, π) where S, X and F are vertex sets in G and

π ∈ V (G) \ S. The initial state of the data structure is

(S0, ∅, ∅, v) where v is an arbitrary vertex in G \ S0. The

data structure should support operations that insert (delete)

a single vertex to (from) S, X and F , and an operation

to change the pin π to a specified vertex. These operations

should run in time O(ck log n). The data structure should

also support the following queries in time O(ck log n):

findSSeparator

Assuming that |S| ≤ 2k + 3, return a set X̂ of

size at most k + 1 such that every component of

G[S ∪ U] \ X̂ contains at most 1
2 |S| vertices of S,

or conclude that tw(G) > k.

findNextPin

Return a vertex π′ in a component U ′ of G[S ∪
U] \ (S ∪ X̂) that is disjoint with F .

findNeighborhood

Return N(U) ∩ S if |N(U) ∩ S| < 2k + 3 and a

marker ’�’ otherwise,

where U is the component of G \ S containing π.

Suppose for now that we want to set up a much simpler

data structure. Here the state is just the set S and the only

query we want to support is findSSeparator which returns a

set X̂ such that every component of G \ (S ∪ X̂) contains

at most 1
2 |S| vertices of S, or conclude that tw(G) > k. At

our disposal we have the tree decomposition Tapx of width

O(k) and depth O(log n). To set up the data structure we run

a standard dynamic programming algorithm for finding X̂
given S. Here we use Lemma II.8 and search for a partition of

V (G) into (M1,M2,M3, X) such that |X| ≤ k+1, there is

no edge between Mi and Mj for i 	= j, and |Mi∩S| ≤ 1
2 |S|

505

for i = 1, 2, 3. This can be done in time O(ckkO(1)n) and

the tables stored at each node of the tree decomposition have

size O(ckkO(1)). This finishes the initialization step of the

data structure. The initialization step took time O(ckkO(1)n).
We assume without loss of generality that the top bag of the

decomposition is empty. The data structure will maintain the

following invariant: after every change has been performed

the tables stored at each node of the tree decomposition

correspond to a valid execution of the dynamic programming

algorithm on input (G,S, k). If we are able to maintain

this invariant, then answering findSSeparator queries is easy:

assuming that each cell of the dynamic programming table

also stores solution sets (whose size is at most k+1) we can

just output in time kO(1) the content of the top bag of the

decomposition! But how to maintain the invariant and support

changes in time O(ck log n)? If the dynamic program is

done carefully, one can ensure that adding/removing a vertex

to/from S affects only the dynamic programming tables for

a single node t in the decomposition, together with all of

its O(log n) ancestors. Performing the changes thus takes

time O(ckkO(1) log n), since for each update we recompute

O(log n) dynamic programming tables. There are several

technical difficulties, the main one is how to ensure that the

computation is done in the connected component U of G\S
without storing “all possible ways the vertices in a bag could

be connected below the bag”. A complete exposition of the

data structure can be found in the full version.

G. Approximating treewidth in O(ckn log(α) n) time

We now sketch how the algorithm of the previous section

can be sped up, at the cost of increasing the approximation

ratio from 3 to 5. In particular we give a proof outline for

the following theorem.

Theorem III. For every α ∈ N, there exists an algorithm
which, given a graph G and an integer k, in O(ckn log(α) n)
time for some c ∈ N either computes a tree decomposition
of G of width at most 5k + 3 or correctly concludes that
tw(G) > k.

The algorithm of Theorem II satisfies the conditions of

Theorem III for α = 1. We will show how one can use

the algorithm for α = 1 in order to obtain an algorithm for

α = 2. In particular we aim at an algorithm which given a

graph G and an integer k, in O(ckn log log n) time for some

c ∈ N either computes a tree decomposition of G of width

at most 5k + 3 or correctly concludes that tw(G) > k.

We inspect the O(ckn log n) algorithm for the compression

step described in Section II-E. It uses the data structure of

Section II-F in order to find balanced separators in time

O(ck log n). The algorithm uses O(ck log n) time on each

recursive call regardless of the size of the induced subgraph

of G it is currently working on. When the subgraph we work

on is big this is very fast. However, when we get down

to induced subgraphs of size O(log log n) the algorithm of

Robertson and Seymour described in Section II-A would

spend O(ck(log log n)2) time in each recursive call, while

our algorithm still spends O(ck log n) time. This suggests

that there is room for improvement in the recursive calls

where the considered subgraph is very small compared to n.
The overall structure of our O(ck log log n) time algorithm

is identical to the structure of the O(ck log n) time algorithm

of Theorem II. The only modifications happen in the

compression step. The compression step is also similar to the

O(ckn log n) algorithm described in Section II-E, but with

the following caveat. The data structure query findNextPin

finds the largest component where a new pin can be placed,

returns a vertex from this component, and also returns the

size of this component. If a call of findNextPin returns that

the size of the largest yet unprocessed component is less than

log n, the algorithm does not process this component, nor any

of the other remaining components in this recursive call. This

ensures that the algorithm is never run on instances where it

is slow. Of course, if we do not process the small components

we do not find a tree decomposition of them either. A bit of

inspection reveals that what the algorithm will do is either

conclude that tw(G) > k or find a tree decomposition of

an induced subgraph of G′ of width at most 3k + 4 such

that for each connected component Ci of G \ V (G′), (a)

|Ci| ≤ log n, (b) |N(Ci)| ≤ 2k + 3, and (c) N(Ci) is fully

contained in some bag of the tree decomposition of G′.
How much time does it take the algorithm to produce

this output? Each recursive call takes O(ck log n) time and

adds a bag to the tree decomposition of G′ that contains

some vertex which was not yet in V (G′). Thus the total time

of the algorithm is bounded by O(|V (G′)| · ck log n). What

happens if we run this algorithm, then run the O(ckn log n)
time algorithm of Theorem II on each of the connected

components of G \ V (G′)? If either of the recursive calls

return that the treewidth of the component is more than k
then tw(G) > k. Otherwise we have a tree decomposition

of each of the connected components with width 3k + 4.

With a little bit of extra care we find tree decompositions

of the same width of Ci ∪N(Ci) for each component Ci,

such that the top bag of the decomposition contains N(Ci).
Then all of these decompositions can be glued together with

the decomposition of G′ to yield a decomposition of width

3k + 4 for the entire graph G.
The running time of the above algorithm can be bounded as

follows. It takes O(|V (G′)| · ck log n) time to find the partial

tree decomposition of G′, and O(
∑

i c
k|Ci| log |Ci|) ≤

O(ck log log n · ∑i |Ci|) ≤ O(ckn log log n) time to find

the tree decompositions of all the small components. Thus,

if |V (G′)| ≤ O(n
logn) the running time of the first part

would be O(ckn) and the total running time would be

O(ckn log log n).
How big can |V (G′)| be? In other words, if we inspect the

algorithm described in Section II-A, how big part of the graph

does the algorithm see before all remaining parts have size

506

less than log n? The bad news is that the algorithm could see

almost the entire graph. Specifically if we run the algorithm

on a path it could well be building a tree decomposition

of the path by moving along the path and only terminating

when reaching the vertex which is log n steps away from

from the endpoint. The good news is that the algorithm of

Reed described in Section II-B will get down to components

of size log n after decomposing only O(n
logn) vertices of G.

The reason is that the algorithm of Reed also finds balanced

separators of the considered subgraph, ensuring that the size

of the considered components drop by a constant factor for

each step down in the recursion tree.

Thus, if we augment the algorithm that finds the tree

decomposition of the subgraph G′ such that it also finds

balanced separators of the active component and adds them to

the top bag of the decomposition before going into recursive

calls, this will ensure that |V (G′)| ≤ O(n
logn) and that

the total running time of the algorithm described in the

paragraphs above will be O(ckn log log n). The algorithm of

Reed described in Section II-B has a worse approximation

ratio than the algorithm of Robertson and Seymour described

in Section II-A. The reason is that we also need to add the

balanced separator to the top bag of the decomposition. When

we augment the algorithm that finds the tree decomposition

of the subgraph G′ in a similar manner, the approximation

ratio also gets worse. If we are careful about how the

change is implemented we can still achieve an algorithm with

running time O(ckn log log n) that meets the specifications

of Theorem III for α = 2.

The approach used to improve the running time from

O(ckn log n) to O(ckn log log n) also works for improving

the running time from O(ckn log(α) n) to O(ckn log(α+1) n).
Running the algorithm that finds in O(ckn) time the tree

decomposition of the subgraph G′ such that all components

of G\V (G′) have size log n and running the O(ckn log(α) n)
time algorithm on each of these components yields an

algorithm with running time O(ckn log(α+1) n).

In the above discussion we skipped over the following

issue: How can we compute a small balanced separator for

the active component in time O(ck log n)? It turns out that

also this can be handled by the data structure. The main

idea here is to consider the dynamic programming algorithm

used in Section II-D to find balanced separators in graphs of

bounded treewidth, and show that this algorithm can be turned

into an O(ck log n) time data structure query. We would like

to remark here that the implementation of the trick from

Section II-D is significantly more involved than the other

queries: we need to use the approximate tree decomposition

not only for fast dynamic programming computations, but

also to locate the separation (L0, X0, R0) on which the trick

is employed. A detailed explanation of how this is done,

together with a full proof can be found in the full version of

this article. This completes the proof sketch of Theorem III.

H. 5-approximation in O(ckn) time

The algorithms of Section II-G are in fact already O(ckn)
algorithms unless n is astronomically large compared to k.

If, for example, we have n ≤ 22
2k

then log(3) n ≤ k and so

O(ckn log(3) n) ≤ O(ckkn) = O(ckn) since we can assume

that k ≤ n. Thus, to get an algorithm which runs in O(ckn)
it is sufficient to consider the cases when n is much greater
than k. The recursive scheme of Section II-C allows us to

only consider the case where (a) n is much greater than k
and (b) we have at our disposal a tree decomposition Tapx

of G of width O(k).
For this case, consider the dynamic programming algorithm

of Bodlaender and Kloks [15] that given G and a tree

decomposition Tapx of G of width O(k) either computes a tree

decomposition of G of width k or concludes that tw(G) > k
in time O(2O(k3)n). The dynamic programming algorithm

can be turned into a tree automata based algorithm [2], [22]

with running time O(22
O(k3)

+ n) if one can inspect an

arbitrary entry of a table of size O(22
O(k3)

) in constant time.

If n ≥ Ω(22
O(k3)

) then inspecting an arbitrary entry of a

table of size O(22
O(k3)

), means inspecting an arbitrary entry

of a table of size O(n), which one can do in constant time

in the RAM model. Thus, when n ≥ Ω(22
O(k3)

) we can

find an optimal tree decomposition in time O(n). When

n ≤ O(22
O(k3)

), the O(ckn log(3) n) time algorithm of

Theorem III runs in time O(ckkn). This concludes the outline

of the proof of Theorem I. A full explanation of how to handle

the case where n is much greater than k can be found in the

full version of this article.

REFERENCES

[1] Ittai Abraham, Moshe Babaioff, Shaddin Dughmi, and Tim
Roughgarden. Combinatorial auctions with restricted comple-
ments. In EC’12, pp. 3–16, 2012.

[2] Karl R. Abrahamson and Michael R. Fellows. Finite automata,
bounded treewidth and well-quasiordering. In Proc. of the
AMS Summer Workshop on Graph Minors, Graph Structure
Theory, Contemporary Mathematics vol. 147, pp. 539–564,
1993.

[3] Eyal Amir. Approximation algorithms for treewidth. Algorith-
mica, 56:448–479, 2010.

[4] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski.
Complexity of finding embeddings in a k-tree. SIAM Journal
on Algebraic and Discrete Methods, 8:277–284, 1987.

[5] Per Austrin, Toniann Pitassi, and Yu Wu. Inapproximability
of treewidth, one-shot pebbling, and related layout problems.
In APPROX’12 and RANDOM’12, pp. 13–24, 2012.

[6] Hans L. Bodlaender. Dynamic programming algorithms on
graphs with bounded tree-width. In ICALP’88, pp. 105–119,
1988.

507

[7] Hans L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. In STOC’93, pp. 226–234,
1993.

[8] Hans L. Bodlaender. Dynamic algorithms for graphs with
treewidth 2. In WG’93, pp. 112–124, 1994.

[9] Hans L. Bodlaender. A linear time algorithm for finding
tree-decompositions of small treewidth. SIAM Journal on
Computing, 25:1305–1317, 1996.

[10] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper
Nederlof. Deterministic single exponential time algorithms
for connectivity problems parameterized by treewidth. In
ICALP’13 (1), pp. 196–207, 2013.

[11] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi,
Fedor V. Fomin, Daniel Lokshtanov, and Michał Pilipczuk.
An O(ckn) 5-approximation algorithm for treewidth. Report
on arXiv 1304.6321, 2013.

[12] Hans L. Bodlaender and Fedor V. Fomin. Equitable colorings
of bounded treewidth graphs. Theoretical Computer Science,
349:22–30, 2005.

[13] Hans L. Bodlaender, John R. Gilbert, H. Hafsteinsson, and
Ton Kloks. Approximating treewidth, pathwidth, frontsize,
and minimum elimination tree height. Journal of Algorithms,
18:238–255, 1995.

[14] Hans L. Bodlaender and Torben Hagerup. Parallel algorithms
with optimal speedup for bounded treewidth. SIAM Journal
on Computing, 27:1725–1746, 1998.

[15] Hans L. Bodlaender and Ton Kloks. Efficient and constructive
algorithms for the pathwidth and treewidth of graphs. Journal
of Algorithms, 21:358–402, 1996.

[16] Shiva Chaudhuri and Christos D. Zaroliagis. Shortest paths
in digraphs of small treewidth. Part II: Optimal parallel
algorithms. Theoretical Computer Science, 203:205–223,
1998.

[17] Shiva Chaudhuri and Christos D. Zaroliagis. Shortest paths
in digraphs of small treewidth. Part I: Sequential algorithms.
Algorithmica, 27:212–226, 2000.

[18] Robert F. Cohen, S. Sairam, Roberto Tamassia, and J. S. Vitter.
Dynamic algorithms for optimization problems in bounded
tree-width graphs. In IPCO’93, pp. 99–112, 1993.

[19] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast
Hamiltonicity checking via bases of perfect matchings. In
STOC’13, pp. 301–310, 2013.

[20] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace
versions of the theorems of Bodlaender and Courcelle. In
FOCS’10, pp. 143–152, 2010.

[21] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee.
Improved approximation algorithms for minimum weight
vertex separators. SIAM Journal on Computing, 38:629–657,
2008.

[22] Michael R. Fellows and Michael A. Langston. An analogue
of the Myhill-Nerode theorem and its use in computing finite-
basis characterizations. In FOCS’89, pp. 520–525, 1989.

[23] Daniel Gildea. Grammar factorization by tree decomposition.
Computational Linguistics, 37:231–248, 2011.

[24] Torben Hagerup. Dynamic algorithms for graphs of bounded
treewidth. Algorithmica, 27:292–315, 2000.

[25] Arie M. C. A. Koster, Stan P. M. van Hoesel, and Antoon
W. J. Kolen. Solving partial constraint satisfaction problems
with tree decomposition. Networks, 40(3):170–180, 2002.

[26] Jens Lagergren. Efficient parallel algorithms for graphs of
bounded tree-width. Journal of Algorithms, 20:20–44, 1996.

[27] Gary L. Miller and John Reif. Parallel tree contraction.
Part 1: Fundamentals. In Advances in Computing Research 5:
Randomness and Computation, pp. 47–72, 1989.

[28] Gary L. Miller and John Reif. Parallel tree contraction. Part 2:
Further applications. SIAM Journal on Computing, 20:1128 –
1147, 1991.

[29] Ljubomir Perković and Bruce Reed. An improved algorithm
for finding tree decompositions of small width. International
Journal of Foundations of Computer Science, 11:365–371,
2000.

[30] Bruce Reed. Finding approximate separators and computing
tree-width quickly. In STOC’92, pp. 221–228, 1992.

[31] Rhilipped Rinaudo, Yann Ponty, Dominique Barth, and Alain
Denise. Tree decomposition and parameterized algorithms
for RNA structure-sequence alignment including tertiary
interactions and pseudoknots (extended abstract). In WABI’12,
pp. 149–164, 2012.

[32] Neil Robertson and Paul D. Seymour. Graph minors. II.
Algorithmic aspects of tree-width. Journal of Algorithms,
7:309–322, 1986.

[33] Neil Robertson and Paul D. Seymour. Graph minors. XIII.
The disjoint paths problem. Journal of Combinatorial Theory,
Series B, 63:65–110, 1995.

[34] John E. Savage. Models of computation - exploring the power
of computing. Addison-Wesley, 1998.

508

