
Strong Backdoors to Bounded Treewidth SAT

Serge Gaspers

The University of New South Wales and NICTA
Sydney, Australia

Email: sergeg@cse.unsw.edu.au

Stefan Szeider

Vienna University of Technology
Vienna, Austria

Email: stefan@szeider.net

Abstract—There are various approaches to exploiting “hid-
den structure” in instances of hard combinatorial problems
to allow faster algorithms than for general unstructured or
random instances. For SAT and its counting version #SAT,
hidden structure has been exploited in terms of decomposability
and strong backdoor sets. Decomposability can be considered
in terms of the treewidth of a graph that is associated with
the given CNF formula, for instance by considering clauses
and variables as vertices of the graph, and making a variable
adjacent with all the clauses it appears in. On the other hand,
a strong backdoor set of a CNF formula is a set of variables
such that each assignment to this set moves the formula into a
fixed class for which (#)SAT can be solved in polynomial time.

In this paper we combine the two above approaches. In
particular, we study the algorithmic question of finding a small
strong backdoor set into the class W≤t of CNF formulas whose
associated graphs have treewidth at most t. The main results
are positive:

(1) There is a cubic-time algorithm that, given a CNF
formula F and two constants k, t ≥ 0, either finds a
strong W≤t-backdoor set of size at most 2k, or concludes
that F has no strong W≤t-backdoor set of size at most k.

(2) There is a cubic-time algorithm that, given a CNF for-
mula F , computes the number of satisfying assignments
of F or concludes that sbt(F) > k, for any pair of
constants k, t ≥ 0. Here, sbt(F) denotes the size of a
smallest strong W≤t-backdoor set of F .

We establish both results by distinguishing between two cases,
depending on whether the treewidth of the given formula is
small or large. For both results the case of small treewidth can
be dealt with relatively standard methods. The case of large
treewidth is challenging and requires novel and sophisticated
combinatorial arguments. The main tool is an auxiliary graph
whose vertices represent subgraphs in F ’s associated graph. It
captures various ways to assemble large-treewidth subgraphs in
F ’s associated graph. This is used to show that every backdoor
set of size k intersects a certain set of variables whose size
is bounded by a function of k and t. For any other set of k
variables, one can use the auxiliary graph to find an assignment
τ to these variables such that the graph associated with F [τ]
has treewidth at least t+ 1.

The significance of our results lies in the fact that they allow
us to exploit algorithmically a hidden structure in formulas
that is not accessible by any one of the two approaches
(decomposability, backdoors) alone. Already a backdoor size 1
on top of treewidth 1 (i.e., sb1(F) = 1) entails formulas of
arbitrarily large treewidth and arbitrarily large cycle cutsets
(variables whose deletion makes the instance acyclic).

Keywords-algorithms; #SAT; parameterized complexity;
graph minors;

I. INTRODUCTION

Background: Satisfiability (SAT) is probably one of the

most important NP-complete problems [1], [2]. Despite the

theoretical intractability of SAT, heuristic algorithms work

surprisingly fast on real-world SAT instances. A common

explanation for this discrepancy between theoretical hard-

ness and practical feasibility is the presence of a certain

“hidden structure” in industrial SAT instances [3], [4]. There

are various approaches to capturing the vague notion of a

“hidden structure” with a mathematical concept.

One widely studied approach is to consider the hidden

structure in terms of decomposability. The basic idea is

to decompose a SAT instance into small parts that can

be solved individually, and to put solutions for the parts

together to a global solution. The overall complexity de-

pends only on the maximum overlap of the parts, the width
of the decomposition. Treewidth and branchwidth are two

decomposition width measures (related by a constant factor)

that have been applied to SAT. The width measures are either

applied to the primal graph of the formula (variables are

vertices, two variables are adjacent if they appear together in

a clause) or to the incidence graph (a bipartite graph on the

variables and clauses, a clause is incident to the variables it

contains). If the treewidth or branchwidth of any of the two

graphs is bounded, then SAT can be decided in polynomial

time; in fact, the number of satisfying assignments can

even be counted in polynomial time. This result has been

obtained in various contexts, e.g., resolution complexity [5]

and Bayesian Inference [6] (branchwidth of primal graphs),

and Model Checking for Monadic Second-Order Logic [7]

(treewidth of incidence graphs).

A complementary approach is to consider the hidden

structure of a SAT instance in terms of a small set of key

variables, called backdoor set, that when instantiated moves

the instance into a polynomial class. More precisely, a

strong backdoor set of a CNF formula F into a polynomially

solvable class C (or strong C-backdoor set, for short) is a

set B of variables such that for all partial assignments τ to

B, the reduced formula F [τ] belongs to C (weak backdoor

sets apply only to satisfiable formulas and will not be

considered in this paper). Backdoor sets where introduced

by Williams et al. [8] to explain fast running times and the

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.59

489

heavy-tailed behavior of SAT and CSP solvers on practical

instances. In fact, real-world instances tend to have small

backdoor sets (see [9] and references). Of special interest

are base classes for which we can find a small backdoor set

efficiently if one exists. This is the case, for instance, for

the base classes based on the tractable cases in Schaefer’s

dichotomy theorem [10]. In fact, for any constant b one can

decide in linear time whether a given CNF formula has a

backdoor set of size b into any Schaefer class [11].

Contribution: In this paper we combine the two above

approaches. Namely, we study the algorithmic question

of finding a small strong backdoor set into a class of

formulas of bounded treewidth. Let W≤t denote the class

of CNF formulas whose incidence graph has treewidth at

most t. Since SAT and #SAT can be solved in linear time

for formulas in W≤t [7], [12], we can also solve these

problems efficiently for a formula F if we know a strong

W≤t-backdoor set of F of small size k.

However, finding a small strong backdoor set into the

class W≤t is a challenging problem. What makes the prob-

lem difficult is that applying partial assignments to variables

is a much more powerful operation than just deleting the

variables from the formula, as setting a variable to true may

remove a large set of clauses, setting it to false removes a

different set of clauses, and for a strong backdoor set B we

must ensure that for all the 2|B| possible assignments the

resulting formula is in W≤t. The brute force algorithm tries

out all possible sets B of at most k variables, and checks

for each set whether all the 2|B| reduced formulas belong

to W≤t. The number of membership checks is of order

2knk for an input formula with n variables. This number is

polynomial for constant k, but the order of the polynomial

depends on the backdoor size k. Is it possible to get k
out of the exponent and to have the same polynomial for

every fixed k and t? Our main result provides an affirmative

answer to this question. We show the following.

Theorem 1. There is a cubic-time algorithm that, given a
CNF formula F and two constants k, t ≥ 0, either finds a
strong W≤t-backdoor set of size at most 2k, or concludes
that F has no strong W≤t-backdoor set of size at most k.

Our algorithm distinguishes for a given CNF formula be-

tween two cases: (A) the formula has small treewidth, or

(B) the formula has large treewidth. In Case A we use model

checking for monadic second order logic (MSO) [13] to find

a smallest backdoor set. Roberson and Seymour’s theory of

graph minors [14] guarantees a finite set of forbidden minors

for every minor-closed class of graphs. Although their proof

is non-constructive, for the special case of bounded treewidth

graphs the forbidden minors can be computed in constant

time [15], [16]. The forbidden minors are used in our MSO

sentence to describe a strong backdoor set to the base class

W≤t. A model checking algorithm [13] then computes a

strong W≤t-backdoor set of size k if one exists.

Whereas Case A is relatively standard, completely new

combinatorial methods are needed in Case B. First, we

compute many vertex-disjoint obstructions in the incidence

graph, so-called wall-obstructions, whose existence is guar-

anteed by a theorem by Robertson and Seymour [17]. A

backdoor set needs to “kill” all these obstructions, where

an obstruction is killed either internally because it contains

a backdoor variable, or externally because it contains two

clauses containing the same backdoor variable with opposite

signs. We exhibit an extremely helpful combinatorial beast,

combining one so-called obstruction-template for each wall-

obstruction. We prove that, once we have found the beast,

we can easily derive a small set of variables intersecting

each strong W≤t-backdoor set of size at most k. Fortu-

nately, we can actually compute the beast in quadratic time.

The obstruction-template is a bipartite graph with external

killers on one side and vertices representing vertex-disjoint

connected subgraphs of a wall-obstruction on the other side

of the bipartition. It is used to guarantee that for sets of k
variables excluding a bounded set S∗, every assignment to

these k variables produces a formula whose incidence graph

has treewidth at least t+1. Thus, the algorithm can use S∗

to guide its branching strategy.

Combining both cases leads to an algorithm producing a

strong W≤t-backdoor set of a given formula F of size at

most 2k if F has a strong W≤t-backdoor set of size k.

For our main applications of Theorem 1, the problems

SAT and #SAT, we can solve Case A actually without re-

curring to the list of forbidden minors of bounded treewidth

graphs and to model checking for monadic second order

logic. Namely, when the formula has small treewidth, we

can directly apply one of the known linear-time algorithms

to count the number of satisfying truth assignments [7], [12],

thus avoiding the issue of finding a backdoor set.

We arrive at the following statement where sbt(F) de-

notes the size of a smallest strong W≤t-backdoor set of a

formula F .

Theorem 2. There is a cubic-time algorithm that, given
a CNF formula F , computes the number of satisfying
assignments of F or concludes that sbt(F) > k, for any
pair of constants k, t ≥ 0.

This is a robust algorithm in the sense of [18] since for

every instance, it either solves the problem or concludes that

the instance is not in the class of instances that need to be

solved (the CNF formulas F with sbt(F) ≤ k). In general,

a robust algorithm solves the problem on a superclass of

those instances that it guarantees to solve, and it does not

necessarily check whether the given instance is in this class.

Theorem 2 applies to formulas of arbitrarily large tree-
width. We would like to illustrate this with the following

example. Take a CNF formula Fn whose incidence graph

is obtained from an n × n square grid containing all the

variables of Fn by subdividing each edge by a clause of Fn.

490

It is well-known that the n×n grid, n ≥ 2, has treewidth n
and that subdividing edges does not decrease the treewidth.

Hence Fn /∈ W≤n−1. Now take a new variable x and add

it positively to all horizontal clauses and negatively to all

vertical clauses. Here, a horizontal (resp., a vertical) clause

is one that subdivides a horizontal (resp., a vertical) edge

in the natural layout of the grid. Let F x
n denote the new

formula. Since the incidence graph of Fn is a subgraph

of the incidence graph of F x
n , we have F x

n /∈ W≤n−1.

However, setting x to true removes all horizontal clauses

and thus yields a formula whose incidence graph is acyclic,

hence F x
n [x = 1] ∈ W≤1. Similarly, setting x to false

yields a formula F x
n [x = 0] ∈ W≤1. Hence {x} is a strong

W≤1-backdoor set of F x
n . Conversely, it is easy to construct,

for every t ≥ 0, formulas that belong to W≤t+1 but require

arbitrarily large strong W≤t-backdoor sets.

One can also define a deletion C-backdoor set B of a CNF

formula F by requiring that deleting all literals x,¬x with

x ∈ B from F produces a formula that belongs to the base

class [19]. For many base classes, deletion backdoor sets

are a strong backdoor sets, but in most cases, including the

base class W≤t, the reverse is not true. In fact, it is easy to

see that if a CNF formula F has a deletion W≤t-backdoor

set of size k, then F ∈ Wt+k. In other words, the parameter

“size of a smallest deletion W≤t-backdoor set” is dominated

by the parameter “treewidth of the incidence graph” and

therefore of limited theoretical interest, except for reducing

the space requirements of dynamic programming proce-

dures [20] and analyzing the effectiveness of polynomial

time preprocessing [21], [22].

A common approach to solve #SAT is to find a small

cycle cutset (or feedback vertex set) of variables of the

given CNF formula, and by summing up the number of

satisfying assignments of all the acyclic instances one gets

by setting the cutset variables in all possible ways [23].

We would like to note that such a cycle cutset is nothing

but a deletion W≤1-backdoor set. By considering strong

W≤1-backdoor sets instead, one can get super-exponentially

smaller backdoor sets, and hence a more powerful method.

A strong W≤1-backdoor set can be considered as a an

implied cycle cutset as it cuts cycles by removing clauses

that are satisfied by certain truth assignments to the backdoor

variables. By increasing the treewidth bound from 1 to some

fixed t > 1 one can further dramatically decrease the size

of a smallest backdoor set.

Our results can also be phrased in terms of Parameterized
Complexity [24], [25]. Theorem 2 states that #SAT is

uniformly fixed-parameter tractable (FPT) for parameter

(t, sbt). Theorem 1 states that there is a uniform FPT-

approximation algorithm for the detection of strong W≤t-

backdoor sets of size k, for parameter (t, k), as it is a

fixed-parameter algorithm that computes a solution that

approximates the optimum with an error bounded by a

function of the parameter [26].

Related work: Williams et al. [8] introduced the notion

of backdoor sets and the parameterized complexity of finding

small backdoor sets was initiated by Nishimura et al. [27].

They showed that with respect to the classes of Horn

formulas and of 2CNF formulas, the detection of strong

backdoor sets is fixed-parameter tractable. Their algorithms

exploit the fact that for these two base classes strong and

deletion backdoor sets coincide. For other base classes,

deleting literals is a less powerful operation than applying

partial truth assignments. This is the case, for instance, for

RHORN, the class of renamable Horn formulas. In fact,

finding a deletion RHORN-backdoor set is fixed-parameter

tractable [28], but it is open whether this is the case for

the detection of strong RHORN-backdoor sets. For the base

class Q-HORN, which generalizes RHORNand 2CNF, an

FPT-approximation algorithm is known for the detection of

deletion backdoor sets [29]. For clustering formulas, detec-

tion of deletion backdoor sets is fixed-parameter tractable,

detection of strong backdoor sets is most probably not [19].

Very recently, the authors of the present paper showed [30],

[31] that there are FPT-approximation algorithms for the

detection of strong backdoor sets with respect to (i) the

base class of formulas with acyclic incidence graphs, i.e.,

W≤1, and (ii) the base class of nested formulas (a proper

subclass of W≤3 introduced by Knuth [32]). The present

paper generalizes this approach to base classes of bounded

treewidth which requires new ideas and significantly more

involved combinatorial arguments.

We conclude this section by referring to a recent survey

on the parameterized complexity of backdoor sets [11].

II. PRELIMINARIES

Graphs: Let G be a simple, undirected, finite graph

with vertex set V = V (G) and edge set E = E(G). Let

S ⊆ V be a subset of its vertices and v ∈ V be a vertex. We

denote by G − S the graph obtained from G by removing

all vertices in S and all edges incident to vertices in S.

We denote by G[S] the graph G − (V \ S). The (open)
neighborhood of v in G is NG(v) = {u ∈ V : uv ∈ E}, the

(open) neighborhood of S in G is NG(S) =
⋃

u∈S NG(u)\
S, and their closed neighborhoods are NG[v] = NG(v)∪{v}
and NG[S] = NG(S) ∪ S, respectively. The degree of v in

G is dG(v) = |NG(v)|. Subscripts may be omitted if the

graph is clear from the context.

A tree decomposition of G is a pair ({Xi : i ∈ I}, T)
where Xi ⊆ V , i ∈ I , and T is a tree with elements of I
as nodes such that:

1) for each edge uv ∈ E, there is an i ∈ I such that

{u, v} ⊆ Xi, and

2) for each vertex v ∈ V , T [{i ∈ I : v ∈ Xi}] is a

(connected) tree with at least one node.

The width of a tree decomposition is maxi∈I |Xi| − 1. The

treewidth [33] of G is the minimum width taken over all

tree decompositions of G and it is denoted by tw(G).

491

For other standard graph-theoretic notions not defined

here, we refer to [34].
CNF formulas and satisfiability: We consider propo-

sitional formulas in conjunctive normal form (CNF) where

no clause contains a complementary pair of literals. For

a clause c, we write lit(c) and var(c) for the sets of

literals and variables occurring in c, respectively. For a

CNF formula F we write cla(F) for its set of clauses,

lit(F) =
⋃

c∈cla(F) lit(c) for its set of literals, and var(F) =⋃
c∈cla(F) var(c) for its set of variables. The size of F is

|F | = |var(F)|+∑
c∈cla(F)(1 + |lit(c)|).

For a set X ⊆ var(F) we denote by 2X the set of all

mappings τ : X → {0, 1}, the truth assignments on X .

A truth assignment τ ∈ 2X can be extended to the literals

over X by setting τ(¬x) = 1 − τ(x) for all x ∈ X . The

formula F [τ] is obtained from F by removing all clauses c
such that τ sets a literal of c to 1, and removing the literals

set to 0 from all remaining clauses.

A CNF formula F is satisfiable if there is some τ ∈
2var(F) with cla(F [τ]) = ∅. SAT is the NP-complete

problem of deciding whether a given CNF formula is

satisfiable [1], [2]. #SAT is the #P-complete problem of

determining #(F), the number of distinct τ ∈ 2var(F) with

cla(F [τ]) = ∅ [35].
Formulas with bounded incidence treewidth: The in-

cidence graph of a CNF formula F is the bipartite graph

inc(F) = (V,E) with V = var(F) ∪ cla(F) and for a

variable x ∈ var(F) and a clause c ∈ cla(F) we have

xc ∈ E if x ∈ var(c). The sign of the edge xc is

positive if x ∈ lit(c) and negative if ¬x ∈ lit(c). Note that

|V |+ |E| = |F |.
The class W≤t contains all CNF formulas F with

tw(inc(F)) ≤ t. For any fixed t ≥ 0 and any CNF formula

F ∈ W≤t, a tree decomposition of inc(F) of width at most t
can be found by Bodlaender’s algorithm [36] in time O(|F |).
Given a tree decomposition of width at most t of inc(F), the

number of satisfying assignments of F can be determined

in time O(|F |) [7], [12].

Finally, note that, if τ ∈ 2X is a partial truth assignment

for a CNF formula F , then inc(F [τ]) is an induced subgraph

of inc(F), namely inc(F [τ]) is obtained from inc(F)−X by

removing each vertex corresponding to a clause that contains

a literal � with τ(�) = 1.
Backdoors: Backdoor sets are defined with respect to

a fixed class C of CNF formulas, the base class. Let F be

a CNF formula and B ⊆ var(F). The set B is a strong
C-backdoor set of F if F [τ] ∈ C for each τ ∈ 2B . The

set B is a deletion C-backdoor set of F if F − B ∈ C,

where F −B is obtained from F by removing all literals in

{x,¬x : x ∈ B} from its clauses.

If we are given a strong C-backdoor set of F of size k,

we can reduce the satisfiability of F to the satisfiability of

2k formulas in C. If C is clause-induced (i.e., F ∈ C implies

F ′ ∈ C for every CNF formula F ′ with cla(F ′) ⊆ cla(F)),

any deletion C-backdoor set of F is a strong C-backdoor set

of F . The interest in deletion backdoor sets is motivated

for base classes where they are easier to detect than strong

backdoor sets. The challenging problem is to find a strong or

deletion C-backdoor set of size at most k if it exists. Denote

by sbt(F) the size of a smallest strong W≤t-backdoor set.

Graph minors: The operation of merging a subgraph

H or a vertex subset V (H) of a graph G into a vertex v
produces the graph G′ such that G′ − {v} = G − V (H)
and NG′(v) = NG(H). The contraction operation merges a

connected subgraph. The dissolution operation contracts an

edge incident to a vertex of degree 2.

A graph H is a minor of a graph G if H can be obtained

from a subgraph of G by contractions. If H is a minor of G,

then one can find a model of H in G. A model of H in G
is a set of vertex-disjoint connected subgraphs of G, one

subgraph Cu for each vertex u of H , such that if uv is an

edge in H , then there is an edge in G with one endpoint in

Cu and the other in Cv .

A graph H is a topological minor of a graph G if H
can be obtained from a subgraph of G by dissolutions. If

H is a topological minor of G, then G has a topological

model of H . A topological model of H in G is a subgraph

of G that can be obtained from H by replacing its edges

by independent paths. A set of paths is independent if none

of them contains an interior vertex of another. We also say

that G contains a subdivision of H as a subgraph.

Obstructions to small treewidth: It is well-known that

tw(G) ≥ tw(H) if H is a minor of G. We will use

the following three (classes of) graphs to lower bound the

treewidth of a graph containing any of them as a minor. See

Figure 1. The complete graph Kr has treewidth r− 1. The

complete bipartite graph Kr,r has treewidth r. The r-wall
is the graph Wr = (V,E) with vertex set V = {(i, j) : 1 ≤
i ≤ r, 1 ≤ j ≤ r} in which two vertices (i, j) and (i′, j′) are

adjacent iff either j′ = j and i′ ∈ {i − 1, i + 1}, or i′ = i
and j′ = j + (−1)i+j . We say that a vertex (i, j) ∈ V
has horizontal index i and vertical index j. The r-wall has

treewidth at least 	 r2
 (it is a minor of the 	 r2
 × r-grid,

which has treewidth 	 r2
 [37]).

We will also need to find a large wall as a topological

minor if the formula has large incidence treewidth. Its exis-

tence is guaranteed by a result of Robertson and Seymour.

Theorem 3 ([17]). For every positive integer r, there exists
a constant f(r) such that if a graph G has treewidth at least
f(r), then G contains an r-wall as a topological minor.

By [38], f(r) ≤ 2064r
5

. For any fixed r, we can use the

cubic algorithm by Grohe et al. [39] to find a topological

model of an r-wall in a graph G if G contains an r-wall as

a topological minor.

Proofs of statements marked with (�) can be found in [41].

492

W8

(1, 1)

(1, 8)

(8, 1)

(8, 8)

K5

K4,4

Figure 1. Some graphs with treewidth 4.

III. THE ALGORITHMS

We start with the overall outline of our algorithms. We

rely on the following two lemmas whose proofs we defer to

the next two subsections.

Lemma 1. There is a quadratic-time algorithm that, given
a CNF formula F , two constants t ≥ 0, k ≥ 1, and a
topological model of a wall(k, t)-wall in inc(F), computes
a set S∗ ⊆ var(F) of constant size such that every strong
W≤t-backdoor set of size at most k contains a variable
from S∗.

Lemma 2 (�). There is a linear-time algorithm that, given a
CNF formula F , a constant t ≥ 0, and a tree decomposition
of inc(F) of constant width, computes a smallest strong
W≤t-backdoor set of F .

Lemma 2 can be proved using Arnborg et al.’s extension

[13] of Courcelle’s Theorem [40]; see [41]. The lemma will

be invoked with a tree decomposition of inc(F) of width

at most tw(k, t). The functions wall(k, t) and tw(k, t) are

related by the bound from [38], implying that every graph

either has treewidth at most tw(k, t), or it has a wall(k, t)-
wall as a topological minor. Here,

tw(k, t) := 2064·(wall(k,t))
5

,

wall(k, t) := (2t+ 2) · (1 +
√
obs(k, t)),

obs(k, t) := 2k · same(k, t) + k,

same(k, t) := 3(nb(t))2t22k, and

nb(t) := �16(t+ 2) log(t+ 2)�.
The other functions of k and t will be used in Subsec-

tion III-A.

Theorem 1 can now be proved as follows.

Proof of Theorem 1: Let t, k ≥ 0 be constants, let F be

the given CNF formula, with |F | = n and let G := inc(F).
Using Bodlaender’s algorithm [36] we can decide in linear

time whether tw(G) ≤ tw(k, t), and if so, compute a tree

decomposition of G of smallest width in linear time. If

indeed tw(G) ≤ tw(k, t), we use Lemma 2 to find a smallest

strong W≤t-backdoor set B of F . If |B| ≤ k we output B,

otherwise we output NO.

If tw(G) > tw(k, t) then we proceed as follows. If k =
0, we output NO. Otherwise, by [38], G has a wall(k, t)-
wall as a topological minor, and by means of Grohe et al.’s
algorithm [39], we can compute a topological model of a

wall(k, t)-wall in G in time O(n3). By Lemma 1, we can

find in time O(n2) a set S∗ ⊆ var(F) of constant size

such that every strong W≤t-backdoor set of F of size at

most k contains a variable from S∗. For each x ∈ S∗, the

algorithm recurses on both formulas F [x = 0] and F [x = 1]
with parameter k − 1. If both recursive calls return strong

W≤t-backdoor sets B¬x and Bx, then {x} ∪ Bx ∪ B¬x is

a strong W≤t-backdoor set of F . We can upper bound its

size s(k) by the recurrence s(k) ≤ 1 + 2 · s(k − 1), with

s(0) = 0 and s(1) = 1. The recurrence is satisfied by setting

s(k) = 2k−1. In case a recursive call returns NO, no strong

W≤t-backdoor set of F of size at most k contains x. Thus,

if for some x ∈ S∗, both recursive calls return backdoor

sets, we obtain a backdoor set of F of size at most 2k − 1,

and if for every x ∈ S∗, some recursive call returns NO, F
has no strong W≤t-backdoor set of size at most k.

The number of nodes of the search tree modeling the

recursive calls of this algorithm is a function of k and t only

(and therefore constant), and at each node, the algorithm

performs O(n2) steps. Grohe et al.’s algorithm takes cubic

time. Hence, we arrive at a total running time of O(n3).

Theorem 2 follows easily from Theorem 1, by computing

first a backdoor set and evaluating the number of satisfy-

ing assignments for all reduced formulas. We present an

alternative proof that does not rely on Lemma 2. Instead of

computing a backdoor set, one can immediately compute

the number of satisfying assignments of F by dynamic

programming if tw(inc(F)) ≤ tw(k, t).

Proof of Theorem 2: Let k, t ≥ 0 be two integers

and assume we are given a CNF formula F with |F | = n
and sbt(F) ≤ k. We will compute the number of satisfying

truth assignments of F , denoted #(F). As before we use

Bodlaender’s linear-time algorithm [36] to decide whether

tw(G) ≤ tw(k, t), and if so, to compute a tree decomposi-

tion of smallest width. If tw(G) ≤ tw(k, t) then we use the

tree decomposition and, for instance, the algorithm of [12]

to compute #(F) in time O(n).

If tw(G) > tw(k, t) then we compute, as in the proof of

Theorem 1, a strong W≤t-backdoor set B of F of size at

most 2k in time O(n3). For each τ ∈ 2B we have F [τ] ∈
W≤t. Hence we can compute #(F [τ]) in time O(n) by first

computing a tree decomposition of width at most t, and

then applying the counting algorithm of [12]. We obtain

#(F) by taking
∑

τ∈2B 2d(F,τ) #(F [τ]) where d(F, τ) =
|var(F) \ (B ∪ var(F [τ]))| denotes the number of variables

that disappear from F [τ] without being instantiated.

493

A. The incidence graph has a large wall as a topological
minor

This subsection is devoted to the proof of Lemma 1 and

contains the main combinatorial arguments of this paper.

Let G = (V,E) = inc(F) and suppose we are given a

topological model of a wall(k, t)-wall in G. We start with

the description of the algorithm.

A wall-obstruction is a subgraph of G that is a subdivision

of a (2t+ 2)-wall. Since a wall-obstruction, and any graph

having a wall-obstruction as a subgraph, has treewidth at

least t+1, we have that for each assignment to the variables

of a strong W≤t-backdoor set, at least one vertex from

each wall-obstruction vanishes in the incidence graph of the

reduced formula. Using the wall(k, t)-wall, we now find a

set O of obs(k, t) vertex-disjoint wall-obstructions in G.

Lemma 3 (�). Given a topological model of a wall(k, t)-
wall in G, a set of obs(k, t) vertex-disjoint wall-obstructions
can be found in linear time.

Denote by O a set of obs(k, t) vertex-disjoint wall-obstruc-

tions obtained via Lemma 3. A backdoor variable can

destroy a wall-obstruction either because it participates in

the wall-obstruction, or because every setting of the variable

satisfies a clause that participates in the wall-obstruction.

Definition 1. Let x be a variable and W a wall-obstruction
in G. We say that x kills W if neither inc(F [x = 1]) nor
inc(F [x = 0]) contains W as a subgraph. We say that
x kills W internally if x ∈ V (W), and that x kills W
externally if x kills W but does not kill it internally. In the
latter case, W contains a clause c containing x and a clause
c′ containing ¬x and we say that x kills W (externally) in

c and c′.

Our algorithm will perform a series of 3 nondeterministic

steps to guess some properties about the strong W≤t-back-

door set it searches. Each such guess is made out of a num-

ber of choices that is upper bounded by a function of k and t.
At any stage of the algorithm, a valid strong W≤t-backdoor

set is one that satisfies all the properties that have been

guessed. For a fixed series of guesses, the algorithm will

compute a set S ⊆ var(F) such that every valid strong

W≤t-backdoor set of size at most k contains a variable

from S. To make the algorithm deterministic, execute each

possible combination of nondeterministic steps. The union

of all S, taken over all combinations of nondeterministic

steps, forms a set S∗ and each strong W≤t-backdoor set of

size at most k contains a variable from S∗. Bounding the

size of each S by a function of k and t enables us to bound

|S∗| by a function of k and t, and this will prove Lemma 1.

For each strong W≤t-backdoor set of size at most k, at

most k wall-obstructions from O are killed internally since

they are vertex-disjoint. The algorithm guesses a set O′′ of

k wall-obstructions from O that may be killed internally.

Let O′ := O \ O′′. All wall-obstructions in O′ need to be

killed externally by any valid strong W≤t-backdoor set.

Suppose F has a valid strong W≤t-backdoor set B of

size k. Then, B defines a partition of O′ into 2k parts where

for each part, the wall-obstructions contained in this part are

killed externally by the same set of variables from B. Since

|O′| = obs(k, t)− k = 2k · same(k, t), at least one of these

parts contains at least same(k, t) wall-obstructions from O′.
The algorithm guesses a subset Os ⊆ O′ of same(k, t) wall-

obstruction from this part and it guesses how many variables

from the strong W≤t-backdoor set kill the wall-obstructions

in this part externally.

Suppose each wall-obstruction in Os is killed externally

by the same set of � backdoor variables, and no other back-

door variable kills any wall-obstruction from Os. Clearly,

1 ≤ � ≤ k. Compute the set of external killers for each wall-

obstruction in Os. Denote by Z the common external killers

of the wall-obstructions in Os. The presumed backdoor set

contains exactly � variables from Z and no other variable

from the backdoor set kills any wall-obstruction from Os.

We will use the following lemma to compute a small set

S such that every valid strong W≤t-backdoor set of size at

most k contains a variable from S. The lemma will follow

from Lemma 9 and contains the main arguments of this

paper.

Lemma 4. There is a quadratic time algorithm, that, given
a propositional formula F , a set Os of same(k, t) vertex-
disjoint wall-obstructions in inc(F), and a set Z of vertices
such that for each z ∈ Z and each W ∈ Os, the vertex z
is an external killer of W but not an internal killer of W ,
finds a set S ⊆ var(F) of size at most 6knb(t) such that
every strong W≤t-backdoor set B that contains � variables
from Z and no other variable that externally kills a wall-
obstruction from Os, also contains a variable from S.

Lemma 4 will enable us to compute S, and thereby S∗. The

number of choices the algorithm has in the nondeterministic

steps is upper bounded by
(
obs(k,t)

k

) · (2k·same(k,t)
same(k,t)

) · k, and

each series of guesses leads to a set S of at most 6knb(t)
variables. Thus, the set S∗, the union of all such S,

contains 2O(t3·k·4k·polylog(t)) variables, where polylog is a

polylogarithmic function. Each set S is computed in O(n2)
time, by Lemma 4. Thus, the running time of the algorithm

is O(n2). This proves Lemma 1.

Finding the beast, and taming it

We will now introduce graph-theoretic tools based on the

theory of graph minors that we need for the algorithm of

Lemma 4. We will give a polynomial-time algorithm for

a more general problem (Lemma 9) defined in terms of

colorings of graphs. It can handle general graphs instead

of bipartite incidence graphs, instead of instantiations of

boolean variables it allows for coloring vertices by an

494

arbitrary constant number of colors, and apart from wall-

obstruction it supports any degree-bounded vertex-disjoint

subgraphs with treewidth at least t+ 1.

Let t ≥ 0, k ≥ 1, κ ≥ 2, and Δ ≥ 3 be integers. A κ-edge

coloring χ′ : E → {0, . . . , κ− 1} of a graph G = (V,E) is

a function assigning one of κ possible colors to the edges

of G. Let us now define the concepts of obstructions and

external killers in this more general setting.

Definition 2. A (t,Δ)-obstruction set Os of a graph G is a
set of vertex-disjoint connected subgraphs of G, each with
treewidth at least t+ 1 and maximum degree at most Δ1.

The elements of Os will simply be called obstructions.

Definition 3. A common external Os-killer in a κ-edge
colored graph G = (V,E) is a vertex z ∈ V such that
for each obstruction W ∈ Os, we have that z /∈ V (W) and
G has at least two edges with distinct colors from z to a
vertex in W .

Recall the definition of the function nb(t),

nb(t) := �16(t+ 2) log(t+ 2)�.
The following function is equal to same(k, t) when κ = 2
and Δ = 3,

same(k, t, κ,Δ) := Δ(nb(t))2tκ2k.

Suppose we know a (t,Δ)-obstruction set Os of size

same(k, t, κ,Δ) and a set Z of common external Os-killers

of a κ-edge colored graph G. We will be interested in

partial colorings of Z and the treewidth of the subgraphs

of G resulting from applying these partial colorings to G
as follows. A coloring of a set B ⊆ Z is a function

χ : B → {0, . . . , κ − 1} and the graph reduced by this

coloring, G[χ], is the graph G induced on the vertex set

(V \B) \ {v ∈ V : ∃u ∈ B ∩NG(v) s.t. χ′(uv) �= χ(v)},
i.e., for every vertex u ∈ B, we remove u and those

neighbors that are connected to u by an edge whose color

differs from u’s color. The aim is to design a polynomial

time algorithm finding a small subset S ⊆ Z such that at

least one coloring of every set B ⊆ Z \S of size at most k
reduces G to a graph with treewidth at least t+ 1. We call

such a set a relevant vertex set.
RELEVANT VERTEX SET

Input: A graph G = (V,E), a κ-edge coloring

χ′ : E → {0, . . . , κ−1} of G, a (t,Δ)-obstruction

set Os of G of size same(k, t, κ,Δ), and a set Z
of common external Os-killers.

Output: A relevant vertex set of size at most

2Δknb(t), i.e., a set S ⊆ Z of at most 2Δknb(t)

1Alternatively, it would suffice to require that each W ∈ Os has a
spanning tree with maximum degree at most Δ that can be computed in
polynomial time.

vertices such that for every B ⊆ Z \ S of size at

most k, there exists a coloring χB for B such that

the treewidth of G[χB] is at least t+ 1.

Note that the problem is trivial if |Z| ≤ 2Δknb(t) because

then Z is a relevant vertex set. Therefore, we assume from

now on that |Z| > 2Δknb(t).
In terms of Lemma 4, G will correspond to inc(F), κ = 2,

Δ = 3, and an edge is colored 0 if its sign is positive and

colored 1 if its sign is negative. Then, a coloring χ of a set

B ⊆ Z corresponds to a partial truth assignment in F , and

we have that G[χ] = inc(F [χ]).
We come now to the definition of a central combinatorial

object that we use to find a relevant vertex set.

Definition 4. An obstruction-template OT(W) of an ob-
struction W ∈ Os is a triple (B(W), P,R), where

• B(W) is a bipartite graph whose vertex set is biparti-
tioned into the two independent sets Z and QW , where
QW is a set of new vertices,

• P is a partition of V (W) into regions such that for
each region A ∈ P , we have that W [A] is connected,
and

• R : QW → P is a function associating a region of P
with each vertex in QW .

Definition 5. An obstruction-template OT(W) =
(B(W), P,R) of an obstruction W ∈ Os is valid if
it satisfies the following properties:

1) only existing edges: for each q ∈ QW we have that
NB(W)(q) ⊆ NG(R(q)),

2) private neighbor: for each q ∈ QW , there is a vertex
z ∈ NB(W)(q), called q’s private neighbor, such that
there is no other q′ ∈ NB(W)(z) with R(q′) = R(q),

3) degree-Z: for each z ∈ Z we have that dB(W)(z) ≥ 1,
4) degree-QW :] for each q ∈ QW we have that nb(t) ≤

dB(W)(q) ≤ Δnb(t), and
5) vulnerable vertex: for each q ∈ QW , there is at most

one vertex v ∈ R(q), called q’s vulnerable vertex, such
that NG(v) ∩ Z �⊆ NB(W)(q).

We will use the obstruction-templates to identify a relevant

vertex set S. Intuitively, an obstruction-template chops up

the vertex set of an obstruction into regions. We will suppose

the existence of a set B ⊆ Z \ S of size at most k such

that G[χ] has treewidth at most t for every coloring χ of

B and then derive a contradiction using the obstruction-

templates. This is done by showing that for at least one

coloring of B, many regions remain in G[χ], so that we can

contract each of them and construct a treewidth obstruction

using the contracted vertices. Each vertex from QW models

a contraction of a region, and its neighborhood models

vertices that could potentially hinder the contraction of the

region. This explains Property (1). Property (2) becomes

handy when a region has many vertices from QW that are

associated with it. Namely, when we contract regions, we

495

would like to be able to guarantee a lower bound on the

number of edges of the resulting graph in terms of |QW |. To

ensure that this lower bound translates into a lower bound in

terms of |Z|, we need Property (3). The degree lower bound

of Property (4) will be needed so we can patch together

a treewidth obstruction out of the pieces modeled by the

vertices in QW . The upper bound on the degree is required

to guarantee that sufficiently many vertices from QW are

not neighboring B. Finally, the last property will be used

to guarantee that for every q ∈ QW , if B ∩NB(W)(q) = ∅,
then there is a coloring χ of B such that no vertex from q’s

region is removed from G by reducing the graph according

to χ (see Lemma 6).

In the following lemma, we give a procedure to compute

valid obstruction-templates.

Lemma 5. For each obstruction W ∈ Os, a valid
obstruction-template can be computed in time O(|V (W)|2+
|V (W)| · |Z|).

Proof: We describe a procedure to compute a valid

obstruction-template (B(W), P,R). It starts with QW ini-

tially empty. Compute an arbitrary rooted spanning tree T
of W . For a node v from T , denote by Tv the subtree of T
rooted at v. The set of children in T of a node v is denoted

CT (v) and its parent pT (v). For a subforest T ′ ⊆ T , denote

by Z(T ′) = Z ∩ NG(T
′) the subset of vertices from Z

that have a neighbor from T ′ in G. The weight w(T ′) of

T ′ is |Z(T ′)|. We denote by Bv = Z(Tv) \ Z(Tv − {v})
the vertices from Z that are incident to v in G but to no

other node from Tv . If uv ∈ E(T), then denote by Tu(uv)
the subtree obtained from T by removing all nodes that are

closer to v than to u in T (removing the edge uv decomposes

T into Tu(uv) and Tv(uv)).

(A) If w(T) > Δnb(t), then set the root r(T) of T
such that for every child c ∈ CT (r(T)) of r(T)
we have that w(T − V (Tc)) ≥ nb(t).

(B) Select a node v in T as follows. If w(T) ≤
Δnb(t), then set v := r(T). Otherwise, select

the node v at maximum depth in T such that

w(Tv) ≥ nb(t). The vertices from Tv will

constitute one region Av of P . Denoting s =
Δnb(t)− w(Tv − {v}), we will now add a set of⌈
|Bv|
s

⌉
vertices to QW . All of them are associated

with the region Av . Denote these new vertices

q1, . . . , q�|Bv|/s�, and denote the vertices in Bv by

b1, . . . , b|Bv|. For each i, 1 ≤ i ≤ �|Bv|/s�, we

set N(qi) := Z(Tv−{v})∪{b(i−1)·s+1, . . . , bi·s};
indices are taken modulo |Bv|. If v �= r(T), then

set T := TpT (v)(vpT (v)) (i.e., remove V (Tv) from

T) and go to Step (A).

For a proof that this procedure computes a valid obstruction-

template in time O(|V (W)| · (|V (W)| + |Z|)), we refer to

[41].

The following lemma shows that Property (5) ensures that

a region R(q) is unaffected by at least one coloring of any

subset of Z containing no neighbor of q.

Lemma 6. Let W ∈ Os be an obstruction, OT(W) be a
valid obstruction-template of W and q ∈ QW . Let B ⊆
Z \NB(W)(q). There is a coloring χ of B such that G[χ]
contains all vertices from R(q).

Proof: By definition B contains no vertex from R(q).
A coloring χ removes a vertex c ∈ R(q) from G iff c has an

edge to a vertex b ∈ B with χ(b) �= χ′(bc). We will show

that no vertex from B has two edges with distinct colors to

vertices in R(q). Therefore there is a coloring χ of B such

that G[χ] contains all vertices from R(q).
For the sake of contradiction, assume there is a vertex

b ∈ B with two neighbors c, c′ ∈ R(q) such that χ′(bc) �=
χ′(bc′). Since b ∈ (NG(R(q))∩Z)\NB(W)(q), we conclude

that q has a vulnerable vertex v. But, since v is the only

vulnerable vertex of q, by Property (5), v = c = c′. We

arrive at a contradiction, since G has no multiedges.
The bipartite graph Bm(Os) is obtained by taking the union

of all B(W), W ∈ Os. Its subgraphs B(W), W ∈ Os,

share the same vertex subset Z but the vertex subsets QW ,

W ∈ Os, are pairwise disjoint. The vertex set of Bm(Os)
is Z �Qm, where Qm =

⋃
W∈Os

QW .
The bipartite graph B(Os) is obtained from Bm(Os)

by repeatedly and exhaustively deleting vertices from Qm

whose neighborhood equals the neighborhood of some other

vertex from Qm. Denote the vertex set of the resulting

graph B(Os) by Z � Q. The multiplicity μ(q) of a vertex

q ∈ Q is the number of distinct vertices q′ ∈ Qm such that

NBm(Os)(q
′) = NB(Os)(q).

Lemma 7 (�). If there is a vertex q ∈ Q with μ(q) ≥
t · κk + 1, then NB(Os)(q) is a relevant vertex set.

Lemma 8. If every vertex from Q has multiplicity at most
t · κk, then the 2Δknb(t) vertices from Z of highest degree
in B(Os) (ties are broken arbitrarily) form a relevant vertex
set.

We will prove the lemma with the use of a theorem by

Mader.

Theorem 4 ([42]). Every graph G = (V,E) with |E| ≥
c(x) · |V | has a Kx-minor, where c(x) = 8x log x.

For large x, the function c(x) can actually be improved

to c(x) = (α + o(1))x
√
log x where α = 0.319 . . . is an

explicit constant, and random graphs are extremal [43].
Proof of Lemma 8: Denote by S the set of 2Δknb(t)

vertices from Z of highest degree in B(Os). Suppose B ⊆
Z \S is a set of size at most k such that each coloring χ of

B reduces G to a graph with treewidth at most t. To arrive

at a contradiction, we exhibit a coloring χ to B such that

G[χ] has treewidth at least t+ 1.

496

Claim 1 (�). There is a coloring χ of B and a set Q′ ⊆ Q
with |Q′| ≥ |Z|·|Os|

2Δnb(t)tκ2k such that G[χ] contains all vertices
from

⋃
q∈Q′ R(q).

Let H ′ := B(Os)[Z
′∪Q′] where Z ′ := Z\B and Q′ is as in

Claim 1. Thus, no vertex from Z ′∪⋃
q∈Q′ R(q) is removed

from G by applying the coloring χ. We will now merge

vertices from H ′ in such a way that we obtain a minor of

G[χ]. To achieve this, we repeatedly merge a part A ∈ P
into a vertex z ∈ Z such that z has a neighbor q in H ′

such that R(q) = A. In G, this corresponds to contracting

R(q) ∪ {z} into the vertex z. After having contracted all

vertices from Q′ into vertices from Z ′, we obtain therefore

a minor of G[χ]. Our objective will be to show that the

treewidth of this minor is at least t+ 1, which implies that

G[χ] has treewidth at least t+ 1 as well.

Claim 2 (�). G[χ] has a Kt+2-minor.

Claim 2 entails that G[χ] has treewidth at least t+ 1. This

proves the lemma.

The following lemma summarizes these results.

Lemma 9. The RELEVANT VERTEX SET problem can be
solved in O(n2) time, where n = |V |.

Proof: If |Z| ≤ 2Δknb(t), then Z is a relevant vertex

set of size at most 2Δknb(t). Suppose from now on that

|Z| > 2Δknb(t).
Compute an obstruction-template for each obstruction in

Os by Lemma 5. Since Os = O(1), this takes time O(n2).
Compute Bm(Os) and B(Os). The construction of B(Os)
needs to compare the neighborhoods of a quadratic number

of vertices from Qm. Since each vertex from Qm has a

constant sized neighborhood, this takes O(n2) time.

If there is a vertex q ∈ Q with μ(q) ≥ t · κk + 1,

then, by Lemma 7, NB(Os)(q) is a relevant vertex set

and |NB(Os)(q)| ≤ Δnb(t). Otherwise, by Lemma 8 the

2Δknb(t) vertices from Z of highest degree in B(Os) form

a relevant vertex set.

Lemma 4 will now follow as a special case of Lemma 9.

Proof of Lemma 4: We reduce the problem to the

RELEVANT VERTEX SET problem whose input is defined

as follows. Let G = inc(F)[Z ∪ V (Os)], where V (Os) =⋃
W∈Os

V (W). Note that G is a simple graph since no

clause contains a variable and its negation. Let κ = 2 and

Δ = 3. If xc ∈ E(G) with x ∈ var(F) and c ∈ cla(F),
then set

γ′(xc) :=

{
0 if x ∈ lit(c), and

1 if ¬x ∈ lit(c).
(1)

The set Os is a (t,Δ)-obstruction set of G of size

same(k, t, κ,Δ) = same(k, t), and the set Z is a set of

common external Os-killers.

Now, since G[χ] is a subgraph of inc(F [χ]) for every 2-

coloring χ of every B ⊆ Z, a solution to the RELEVANT

VERTEX SET problem is a set S ⊆ Z of size at most 6knb(t)
such that for every B ⊆ Z \S of size at most k, there exists

a partial truth assignment τ ∈ 2B such that the treewidth

of inc(F [τ]) is at least t + 1. Since � ≤ k, every strong

W≤t-backdoor set B that contains � variables from Z and

no other variable that externally kills a wall-obstruction from

Os, also contains a variable from S.

IV. CONCLUSION

We have combined two very prominent (#)SAT solving

techniques in a new way, using the advantages of both

methods to efficiently solve a much larger class of instances.

Our cubic-time algorithm solves SAT and #SAT for those

CNF formulas F that have a strong backdoor set of size at

most k into the class of formulas with incidence treewidth

at most t, where k and t are constants. Our algorithm can

be seen as an efficient way to compute a “super” feedback

vertex set, where “super” stands for a generalization in

several ways: (i) instead of producing a forest, it produces a

graph of bounded treewidth, (ii) instead of deleting vertices

to kill the cycles, it applies partial assignments, which is a

much stronger operation, as demonstrated in the introduction

(cf. the discussion of implied cycle cutsets).

We also designed an approximation algorithm for finding

an actual strong backdoor set. Can our backdoor detection

algorithm be improved to an exact algorithm? In other

words, is there an O(nc)-time algorithm finding a k-sized

strongW≤t-backdoor set of any formula F with sbt(F) ≤ k
where k, t are two constants and c is an absolute constant

independent of k and t? This question is even open for

t = 1. An orthogonal question is how far one can generalize

the class of tractable (#)SAT instances. For example,

improving the dependence on t of the running time of our

algorithm could significantly enlargen the class of known

subexponential-time solvable (#)SAT instances.

ACKNOWLEDGMENTS

Both authors acknowledge support by the European

Research Council (ERC), project COMPLEX REASON

239962. Serge Gaspers acknowledges support by the Aus-

tralian Research Council, grant DE120101761.

REFERENCES

[1] S. A. Cook, “The complexity of theorem-proving procedures,”
in Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing (STOC 1971), 1971, pp. 151–158.

[2] L. Levin, “Universal sequential search problems,” Problems
of Information Transmission, vol. 9, no. 3, pp. 265–266, 1973.

[3] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satis-
fiability solvers,” in Handbook of Knowledge Representation.
Elsevier, 2008, vol. 3, pp. 89–134.

[4] L. A. Hemaspaandra and R. Williams, “SIGACT News Com-
plexity Theory Column 76: an atypical survey of typical-case
heuristic algorithms,” SIGACT News, vol. 43, no. 4, pp. 70–
89, 2012.

497

[5] M. Alekhnovich and A. A. Razborov, “Satisfiability, branch-
width and Tseitin tautologies,” in Proc. FOCS 2002, 2002,
pp. 593–603.

[6] F. Bacchus, S. Dalmao, and T. Pitassi, “Algorithms and
complexity results for #SAT and Bayesian inference,” in Proc.
FOCS 2003, 2003, pp. 340–351.

[7] E. Fischer, J. A. Makowsky, and E. R. Ravve, “Counting truth
assignments of formulas of bounded tree-width or clique-
width.” Discr. Appl. Math., vol. 156, no. 4, pp. 511–529,
2008.

[8] R. Williams, C. Gomes, and B. Selman, “Backdoors to typical
case complexity,” in Proc. IJCAI 2003, 2003, pp. 1173–1178.

[9] Z. Li and P. van Beek, “Finding small backdoors in SAT
instances,” in Proc. Canadian AI 2011, ser. LNCS, vol. 6657.
Springer, 2011, pp. 269–280.

[10] T. J. Schaefer, “The complexity of satisfiability problems,” in
Proc. STOC 1978). ACM, 1978, pp. 216–226.

[11] S. Gaspers and S. Szeider, “Backdoors to satisfaction,” in The
Multivariate Algorithmic Revolution and Beyond, ser. LNCS,
H. L. Bodlaender, R. G. Downey, F. V. Fomin, and D. Marx,
Eds. Springer Verlag, 2012, vol. 7370, pp. 287–317.

[12] M. Samer and S. Szeider, “Algorithms for propositional
model counting,” J. Discrete Algorithms, vol. 8, no. 1, pp.
50–64, 2010.

[13] S. Arnborg, J. Lagergren, and D. Seese, “Easy problems for
tree-decomposable graphs,” J. Algorithms, vol. 12, no. 2, pp.
308–340, 1991.

[14] N. Robertson and P. D. Seymour, “Disjoint paths—a survey,”
SIAM J. Algebraic Discrete Methods, vol. 6, no. 2, pp. 300–
305, 1985.

[15] I. Adler, M. Grohe, and S. Kreutzer, “Computing excluded
minors,” in Proceedings of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2008). SIAM,
2008, pp. 641–650.

[16] J. Lagergren, “Upperbounds on the size of obstructions and
intertwines,” Journal of Combinatorial Theory, Series B,
vol. 73, no. 1, pp. 7–40, 1998.

[17] N. Robertson and P. D. Seymour, “Graph minors. V. Exclud-
ing a planar graph,” J. Combin. Theory Ser. B, vol. 41, no. 1,
pp. 92–114, 1986.

[18] J. P. Spinrad, Efficient Graph Representations, ser. Fields
Institute Monographs. AMS, 2003.

[19] N. Nishimura, P. Ragde, and S. Szeider, “Solving #SAT using
vertex covers,” Acta Informatica, vol. 44, no. 7-8, pp. 509–
523, 2007.

[20] B. Bidyuk and R. Dechter, “Cutset sampling for Bayesian
networks,” J. Artif. Intell. Res., vol. 28, pp. 1–48, 2007.

[21] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh, “On the hardness of losing width,” in Proc. IPEC
2011, ser. LNCS, D. Marx and P. Rossmanith, Eds., vol. 7112.
Springer, 2012, pp. 159–168.

[22] E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith,
I. Sau, and S. Sikdar, “Linear kernels and single-exponential
algorithms via protrusion decompositions,” in Proc. ICALP
2013, Part I, ser. LNCS, F. V. Fomin, R. Freivalds, M. Z.
Kwiatkowska, and D. Peleg, Eds., vol. 7965. Springer, 2013,
pp. 613–624.

[23] R. Dechter, Constraint Processing. Morgan Kaufmann, 2003.

[24] R. G. Downey and M. R. Fellows, Parameterized Complexity.
New York: Springer Verlag, 1999.

[25] J. Flum and M. Grohe, Parameterized Complexity Theory.
Berlin: Springer Verlag, 2006, vol. XIV.

[26] D. Marx, “Parameterized complexity and approximation al-
gorithms,” The Computer Journal, vol. 51, no. 1, pp. 60–78,
2008.

[27] N. Nishimura, P. Ragde, and S. Szeider, “Detecting backdoor
sets with respect to Horn and binary clauses,” in Proc. SAT
2004, 2004, pp. 96–103.

[28] I. Razgon and B. O’Sullivan, “Almost 2-SAT is fixed param-
eter tractable,” Journal of Computer and System Sciences,
vol. 75, no. 8, pp. 435–450, 2009.

[29] S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and
S. Szeider, “Backdoors to q-Horn,” in Proc. STACS 2013,
ser. LIPIcs, vol. 20. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2013, pp. 67–79.

[30] S. Gaspers and S. Szeider, “Backdoors to acyclic SAT,” in
Proc. ICALP 2012, ser. LNCS, vol. 7391. Springer, 2012,
pp. 363–374.

[31] ——, “Strong backdoors to nested satisfiabiliy,” in Proc. SAT
2012, ser. LNCS, vol. 7317. Springer, 2012, pp. 72–85.

[32] D. E. Knuth, “Nested satisfiability,” Acta Informatica, vol. 28,
no. 1, pp. 1–6, 1990.

[33] N. Robertson and P. D. Seymour, “Graph minors. II. Algo-
rithmic aspects of tree-width,” J. Algorithms, vol. 7, no. 3,
pp. 309–322, 1986.

[34] R. Diestel, Graph Theory, 4th ed., ser. Graduate Texts in
Mathematics. New York: Springer Verlag, 2010, vol. 173.

[35] L. G. Valiant, “The complexity of computing the permanent,”
Theoretical Computer Science, vol. 8, no. 2, pp. 189–201,
1979.

[36] H. L. Bodlaender, “A linear-time algorithm for finding
tree-decompositions of small treewidth,” SIAM J. Comput.,
vol. 25, no. 6, pp. 1305–1317, 1996.

[37] N. Robertson and P. D. Seymour, “Graph minors X. Ob-
structions to tree-decomposition,” J. Combin. Theory Ser. B,
vol. 52, no. 2, pp. 153–190, 1991.

[38] N. Robertson, P. Seymour, and R. Thomas, “Quickly exclud-
ing a planar graph,” J. Combin. Theory Ser. B, vol. 62, no. 2,
pp. 323–348, 1994.

[39] M. Grohe, K. ichi Kawarabayashi, D. Marx, and P. Wollan,
“Finding topological subgraphs is fixed-parameter tractable,”
in Proceedings of the 43rd ACM Symposium on Theory of
Computing, (STOC 2011). ACM, 2011, pp. 479–488.

[40] B. Courcelle, “Graph rewriting: an algebraic and logic
approach,” in Handbook of theoretical computer science, Vol.
B. Amsterdam: Elsevier Science Publishers, North-Holland,
1990, pp. 193–242.

[41] S. Gaspers and S. Szeider, “Strong backdoors to bounded
treewidth SAT,” arXiv CoRR, Tech. Rep. 1204.6233, 2012.

[42] W. Mader, “Homomorphiesätze für Graphen,” Mathematische
Annalen, vol. 178, pp. 154–168, 1968.

[43] A. Thomason, “The extremal function for complete minors,”
Journal of Combinatorial Theory, Series B, vol. 81, no. 2,
pp. 318–338, 2001.

498

