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Abstract—We give a nontrivial algorithm for the satisfiability
problem for threshold circuits of depth two with a linear
number of wires which improves over exhaustive search by
an exponential factor. The independently interesting problem
of the feasibility of sparse 0-1 integer linear programs is a
special case. To our knowledge, our algorithm is the first to
achieve constant savings even for the special case of Integer
Linear Programming. The key idea is to reduce the satisfiability
problem to the Vector Domination problem, the problem of
checking whether there are two vectors in a given collection of
vectors such that one dominates the other component-wise.

Our result generalizes to formulas of arbitrary constant
depth. We also provide a satisfiability algorithm with constant
savings for depth two circuits with symmetric gates where
the total weighted fan-in is at most linear in the number of
variables.

One of our motivations is proving strong lower bounds
for TC0 circuits, exploiting the connection (established by
Williams) between satisfiability algorithms and lower bounds.
Our second motivation is to explore the connection between
the expressive power of the circuits and the complexity of the
corresponding circuit satisfiability problem.
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I. INTRODUCTION

Satisfiability testing is both a canonical NP-complete

problem [1], [2] and one of the most successful gen-

eral approaches to solving real-world constraint satisfaction

problems. In particular, optimized CNFSAT heuristics are

used to address a variety of combinatorial search problems

successfully in practice, such as circuit and protocol design

verification. The exact complexity of the satisfiability prob-

lem is also central to complexity theory, as demonstrated by

Williams [3], who has shown that any improvement (by even

a superpolynomial factor compared to exhaustive search) for

the satisfiability problem for general circuits implies circuit

lower bounds. Furthermore he has successfully used the

connection to prove superpolynomial size bounds for ACC0

circuits using a novel nontrivial satisfiability algorithm for

ACC0 circuits, solving a long standing open problem [4].

This raises the questions: For which circuit models do

nontrivial satisfiability algorithms exist? How does the

amount of improvement over exhaustive search relate to the

expressive power of the model (and hence to lower bounds)?

Can satisfiability heuristics for stronger models than CNF be

useful for real-world instances?

Both the connection to circuit lower bounds and to heuris-

tic search algorithms point to threshold circuits as the model

to study next. Bounded depth polynomial size threshold

circuits TC0 are the next natural circuit class stronger than

ACC0. TC0 is a powerful bounded depth computational

model. It has been shown that basic operations like addition,

multiplication, division, and sorting can be performed by

bounded depth polynomial size threshold circuits [5], [6]. In

contrast, unbounded fan-in bounded depth polynomial size

circuits over the standard basis (even when supplemented

with mod p gates for prime p) cannot compute the majority

function [6]. However, our understanding of the limitations

of bounded depth threshold circuits is extremely weak.

Exponential lower bounds for such circuits are only known

for the special case of depth two and bounded weight [7].

For larger depth circuits, barely superlinear lower bounds

are known on the number of wires [8].

Satisfiability for depth two threshold circuits contains as

special cases some well known problems of both theoretical

and practical significance. CNFSAT is one such special case,

since both conjunctions and disjunction are a special case

of threshold gates. MAX-k-SAT, the optimization form of

k-CNF satisfiability, is another special case, since the top

threshold gate can count the number of satisfied clauses for

an assignment. Even for MAX-3-SAT, no algorithms with a

constant factor savings over exhaustive search are known (al-

though such an algorithm is provided for MAX-2-SAT in [9]).

Another special case is Integer Linear Programming (ILP), a

problem that is very useful in expressing optimization prob-

lems both in theory and practice. Testing the feasibility for a

0-1 ILP is equivalent to testing the satisfiability of a circuit

with two levels, the bottom consisting of threshold gates

and the top level being a conjunction. So both theoretical

and real-world motivation points us to trying to understand

the satisfiability problem for depth two threshold circuits.

Santhanam [10] gives an algorithm with constant savings

for linear size formulas of AND and OR gates with fan-

in two. However, this does not directly give an algorithm

for depth two threshold circuits, as converting a linear size

threshold circuit into a formula over AND and OR gates

gives quadratic size.

In all of these related problems, a key distinction is

between the cases of linear size and superlinear size circuits.

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.58

479



In particular, an algorithm with constant savings for depth

two threshold circuits of superlinear size would refute the

Strong Exponential Time Hypothesis (SETH) [11], since

k-CNF for all k can be reduced (via Sparsification Lemma

[12]) to superlinear size depth two threshold circuits [13].

(SETH says that for every δ < 1, there is a k such

that k-SAT cannot be solved in time O(2δn).) However, for

CNFSAT and MAXSAT, algorithms with constant savings are

known when the formula is linear size [14], [15], [16]. So,

short of refuting SETH, the best we could hope for is to

extend such an improvement to the linear size depth two

threshold circuit satisfiability problem.

In this paper, we give the first improved algorithm, which

obtains a constant savings in the exponent over exhaustive

search for the satisfiability of cn-wire, depth two threshold

circuits for every constant c. As a consequence, we also get

a similar result for linear-size ILP. In follow-up work [17]

we extend our algorithm for the special case of 0-1 ILP

to a linear number of constraints (as opposed to a linear

number of wires). The algorithm can also be extended to

threshold formulas of constant depth. Under SETH, this

is qualitatively the best we could hope for, but we expect

that further work will improve our results quantitatively. For

example, our savings is exponentially small in c, whereas

in, e.g., the satisfiability algorithm of [18] for constant

depth and-or circuits, it is polylogarithmic in c. We consider

this just a first step towards a real understanding of the

satisfiability problem for threshold circuits, and hope that

future work will get improvements both in depth and in

savings.

In the second part of this paper, we give a satisfiability al-

gorithm for depth two circuits consisting of symmetric gates.

While symmetric gates are more expressive than threshold

gates, our algorithm requires that the weights are small

integers. In particular, the algorithm requires the weighted
number of wires, the sum of the absolute weights, to be

linearly bounded. Note that a single symmetric gate with

exponential weights can represent any Boolean function. It is

therefore natural to consider symmetric gates with bounded

weights.

While we do not obtain any new circuit lower bounds,

there is some chance that this line of work could eventually

yield such bounds. For example, if there is an algorithm

for any constant depth threshold circuit with super-inverse-

polynomial savings in c, then NEXP �∈ TC0 by applying

[3].

Our main sub-routine is an algorithm for the Vector
Domination Problem: given n vectors in R

d, is there a pair

of vectors so that the first is larger than the second in every

coordinate? We show that, when d < c log n for a constant c,
this problem can be solved in subquadratic time. In contrast,

Williams [9] shows that solving even the Boolean special

case of vector domination with a subquadratic algorithm

when d = ω(log n) would refute SETH. We think the

Vector Domination Problem may be of independent interest,

and might be used to reason about the likely complexities

of other geometric problems within polynomial time.

II. NOTATION

Let V be a set of variables with |V | = n. An assignment
on V is a function V → {0, 1} that assigns every variable

a Boolean value. A restriction is an assignment on a set

U ⊆ V . For an assignment α and a variable x, α(x) denotes

the value of x under the assignment α.

A threshold gate on n variables x1, . . . , xn is defined

by weights wi ∈ R for 1 ≤ i ≤ n and a threshold t.
The output of the gate is 1, if

∑n
i=1 wixi ≥ t and 0

otherwise. The fan-in of the threshold gate is the number

of nonzero weights. We call a variable an input to a gate

if the corresponding weight is nonzero. We also extend the

definition of a threshold gate to d-ary symmetric gates whose

inputs and outputs are d-ary.

For a collection of threshold gates, the number of wires
is the sum of their fan-ins. A depth two threshold circuit
consists of a collection of m threshold gates (called the

bottom-level gates) on the same n variables and a threshold

gate (called the top-level gate) on the outputs of the bottom-

level gates plus the variables. The output of the circuit is the

output of the top-level gate. We call a variable with nonzero

weight at the top-level gate a direct wire. For a d-ary depth

two threshold circuit, the gates are d-ary gates and the top-

level gate only outputs Boolean values. The number of wires

of a depth two threshold circuit is the number of wires of

the bottom-level gates. We call a threshold circuit sparse if

the the number of wires is linear in the number of variables.

A satisfiability algorithm for depth two threshold circuits

is an algorithm that takes as input a depth two threshold

circuit and outputs an assignment such that the circuit

evaluates to 1 under the assignment.

A linear function on a variable set x1, . . . , xn is a function

g(x1, . . . , xn) =
∑n

i=1 wixi, where wi ∈ R are called the

coefficients. The size of a linear function is the number of

nonzero coefficients. A linear inequality is an inequality of

the form g(x1, . . . , xn) ≥ t.

An algorithm for the Integer Linear Programming prob-
lem (ILP) takes as input a collection of linear inequal-

ities on variables x1, . . . , xn and outputs an assignment

{x1, . . . , xn} → Z such that all inequalities are satisfied.

We call an inequality of the form 0 ≤ xi ≤ d − 1 a

capacity constraint. In a 0-1 ILP problem each variables

is constrained to be 0 or 1.

We use Õ(f(n)) to denote the asymptotic growth of a

function f ignoring polynomial factors. Informally, we say

an algorithm is nontrivial, if its time is significantly better

than exhaustive search. If A is a satisfiability algorithm for

circuits with n variables with run time Õ
(
2(1−s)n

)
, we call

s the savings of the algorithm over exhaustive search.
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III. RESULTS AND TECHNIQUES

The main contribution of this paper is a nontrivial satisfi-

ability algorithm for sparse threshold circuits of depth two.

More precisely, we prove the following:

Theorem III.1. There is a satisfiability algorithm for depth
two threshold circuits on n variables with cn wires that runs
in time Õ

(
2(1−s)n

)
where

s =
1

cO(c2)

While the proof in Section V assumes Boolean inputs for

simplicity, the proof easily extends to threshold circuits with

d-ary inputs, yielding the following corollary.

Corollary III.2. There is a satisfiability algorithm for depth
two threshold circuits on n d-ary variables with cn wires
that runs in time Õ

(
d(1−s)n

)
where

s =
1

cO(c2)

In the following, we provide a high level description of

our algorithm. Intuitively, there are two extreme cases for

the bottom layer of a linear size threshold circuits of depth

two.

The first extreme case is when we have a linear number

of gates each with bounded fan-in k. This case is almost

equivalent to MAX-k-SAT and can be handled in a way

similar to [19], [16]. Consider the family of k-sets of

variables given by the support of each bottom-level gate.

A probabilistic argument shows that, for some constant c,
there exists a subset of about n−n/(ck) variables U so that

at most one element from each of the k-sets in the family is

outside of U . Then for any assignment to the variables in U ,

each bottom-level gate becomes either constant or a single

literal, and the top-level gate becomes a threshold function

of the remaining inputs. To check if a threshold function is

satisfiable, we set each variable according to the sign of its

weight.

The second extreme case is when we have a relatively

small number of bottom-level gates, say, at most εn, but

some of them might have a large fan-in. In this case, we

could first reduce the problem to 0-1 ILP by guessing the

truth value of all bottom-level gates and the top gate, and

then verifying the consistency of our guesses. Each of our

guesses are threshold functions of the variables, so testing

consistency of our guesses is equivalent to testing whether

the feasible region of about εn linear inequalities has a

Boolean solution.

We then reduce such an ILP to the Vector Domination

problem. To do this, we partition the variables arbitrarily

into two equal size sets. For each assignment to the first set,

we compute a vector where the i’th component corresponds

to the weighted sum contributed by the first set of variables

to the i’th threshold gate. For the second set of variables, we

do the same, but subtract the contribution from the threshold

for the gate. It is easy to see that the vectors corresponding to

a satisfying assignment are a dominating pair. Since there

are N = O(2n/2) vectors in our set, and each vector is

of dimension d = εn = 2ε logN , to get constant savings,

we need a Vector Domination algorithm that is subquadratic

when the dimension is much less than the logarithm of the

number of vectors. The last step is to give such an algorithm,

using a simple but delicate divide-and-conquer strategy.

Finally, to put these pieces together, we need to reduce

the arbitrary case to a “convex combination” of the two

extreme cases mentioned above. To do this, we use the Fan-

In Separation Lemma which asserts that there must be a

relatively small value of k so that there are relatively few

gates of fan-in bigger than k but less than ck, for some

constant c. We show that, as in the first extreme case, for a

random subset U of variables, the gates with fan-in less or

equal to k almost entirely simplify to constants or literals

after setting the variables in U . Our selection of k ensures

that the number of gates of fan-in greater than k is small

relative to the number of remaining variables. So we can

apply the method outlined for the second extreme case. The

Fan-In Separation Lemma is where our savings becomes

exponentially small. Unfortunately, this lemma is essentially

tight, so a new method of handling this step would be needed

to make the savings polynomially small.

The results translate directly to the feasibility version

of sparse integer linear programs with capacity constraints,

since it can be expressed as a depth two threshold circuit

with an AND gate as the top-level gate. In this formulation,

the number of wires are equivalent to the number of nonzero

coefficients. We get

Corollary III.3. Let {g1 ≥ a1, . . . , gm ≥ am} be a
collection of linear inequalities in variables x1, . . . , xn with
at most cn nonzero coefficients total. There is an algorithm
that finds an integer solution to the linear inequalities with
capacity constraints 0 ≤ xi ≤ d − 1 for all i in time
Õ

(
d(1−s)n

)
for

s =
1

cO(c2)

The following two sections contain the details of the

proof. Section IV defines the Vector Domination problem
and, for small dimension, gives an algorithm faster than the

trivial quadratic time. The feasibility of a 0-1 ILP with a

small number of inequalities is then reduced to the Vector

Domination problem, yielding an algorithm for such 0-1 ILP

with constant savings. A reduction from depth two threshold

circuits to 0-1 ILP concludes that section. In Section V, we

show how to reduce the cn-wire depth two threshold circuits

satisfiability problem to the special case with a small number

of bottom-level gates relative to the number of variables.

Section VI discussed a generalization of the algorithm to

formulas of arbitrary constant depth.
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Section VII considers a generalization of our result to

symmetric gates. The satisfiability algorithm for depth two

circuits consisting of symmetric gates uses a random re-

striction technique similar to the algorithm for depth two

threshold circuits. However, instead of reducing the problem

to 0-1 ILP, the satisfiability problem is reduced to a system

of linear equations. While this algorithm generalizes to

symmetric gates, it does not allow for arbitrary real weights,

but requires that the weights are integer and the weighted
number of wires, the sum of the absolute weights, is linearly

bounded in the number of variables. The result is as follows.

Theorem III.4. There is a satisfiability algorithm for depth
two circuits with symmetric gates and weighted number of
wires cn that runs in time Õ

(
2(1−s)n

)
where

s =
1

cO(c2)

IV. VECTOR DOMINATION PROBLEM

In this section we discuss the Vector Domination problem

and give an algorithm faster than the trivial O(n2) for small

dimension.

Definition IV.1. Given two sets of d-dimensional real vec-

tors A and B, the Vector Domination Problem is the problem

of finding two vectors u ∈ A and v ∈ B such that ui ≥ vi
for all 1 ≤ i ≤ d.

Chan [20] uses the Vector Domination problem to give an

algorithm for the all-pairs shortest path problem. The result

uses the same algorithm as ours with a different analysis.

We present our analysis here for completeness.

Lemma IV.1. Let d ∈ N and A,B ⊆ R
d with |A|+|B| = n.

There is an algorithm for the Vector Domination problem
that runs in time

O

((
d+ log n+ 2

d+ 1

)
n

)

Proof: The claim is trivial for n = 1 or d = 1.
Otherwise, let a be the median of the first coordinates of

A ∪ B. We partition the set A into three sets A+, A= and

A−, where A+ contains all vectors u ∈ A such that u1 > a,

A= contains all vectors such that u1 = a and A− contains

all vectors such that u1 < a. We further partition B into set

B+, B= and B− in the same way. A vector u ∈ A can only

dominate a vector v ∈ B in one of three cases:

1) u ∈ A+ and v ∈ B+

2) u ∈ A− and v ∈ B−

3) u ∈ A= ∪A+ and v ∈ B= ∪B−

For the first two cases we have |A+| + |B+| ≤ n
2 and

|A−| + |B−| ≤ n
2 as we split at the median. For the third

case, we know u1 ≥ v1, hence we can recurse on vectors of

dimension d− 1. Since finding the median takes time O(n)
we get for the running time of n vectors of dimension d

T (n, d) = 2T
(n
2
, d

)
+ T (n, d− 1) +O(n)

To solve this recurrence relation, we want to count the

number of nodes in the recurrence tree with n′ = n
2i and

d′ = d − j. There are
(
i+j
j

)
2i possible paths from the root

node to such a node, as in every step we either decrease n
or d, and there are

(
i+j
j

)
possible combinations to do so,

and if we decrease n there are two possible children. Since

computing the median of n
2i numbers takes time O( n

2i ) the

total time is upper bounded by∑
0≤i≤logn
0≤j≤d

(
i+ j

j

)
2iO

( n

2i

)
=

∑
0≤i≤logn

(
i+ d+ 1

d

)
O(n)

=

((
log n+ d+ 2

d+ 1

)
−

(
d+ 1

d+ 1

))
O(n)

=

((
d+ log n+ 2

d+ 1

)
− 1

)
O(n)

We can reduce 0-1 ILP with few inequalities to the Vector

Domination Problem.

Corollary IV.2. Consider a 0-1 Integer Linear Program on
n variables and δn inequalities for some δ > 0. Then we
can find a solution in time

2n/2
(
(1/2 + δ)n

δn

)
poly(n)

Note that this algorithm is faster than 2n for δ < 0.136.

Proof: Separate the variable set into two sets S1 and S2

of equal size. We assign every assignment to the variables in

S1 and S2 a δn-dimensional vector where every dimension

corresponds to an inequality. Let α be an assignment to S1

and let
∑n

i=1 wi,jxi ≥ tj be the j-th inequality for all j.

Let a ∈ R
δn be the vector with aj =

∑
xi∈S1

wi,jα(xi) and

let A be the set of 2n/2 such vectors. For an assignment β
to S2, let b be the vector with bj = tj −

∑
xi∈S2

wi,jxi(β)
and let B be the set of all such vectors b.

An assignment to all variables corresponds to an assign-

ment to S1 and an assignment to S2, and hence to a pair

a ∈ A and b ∈ B. The pair satisfies all inequalities if and

only if a dominates b. Since |A| + |B| = 2n/2+1 and the

dimension is δn, we can solve the domination problem in

time

O

((
n/2 + δn+ 3

δn+ 1

)
2n/2+1

)

We now reduce the satisfiability of a depth two threshold

circuit with δn bottom-level gates and any number of direct

wires to the union of 2δn ILP problems.

Corollary IV.3. Consider a depth two threshold circuit on
n variables and δn bottom-level gates for some δ > 0. We
allow an arbitrary number of direct wires to the top-level
gate. Then there is a satisfiability algorithm that runs in time

2δn2n/2
(
(1/2 + δ)n

δn

)
poly(n)
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Note that this algorithm is faster than 2n for δ < 0.099.

Proof: For every subset U of bottom-level gates, we

solve the satisfiability problem under the condition that only

the bottom-level gates of U are satisfied. For an assignment

to satisfy both the circuit and the condition that only gates

in U are satisfied, it must satisfy the following system of

inequalities:

1) For gates in U with weights w1, . . . , wn and threshold

t, we have
∑n

i=1 wixi ≥ t.
2) For gates not in U we require

∑n
i=1 wixi < t, which

is equivalent to
∑n

i=1−wixi ≥ −t+ε for some small

ε.

3) Let v1, . . . , vn be the weights of the direct wires and

let s be the threshold of the top-level gate. Further let

wU be the sum of the weights of the gates in U . Then∑n
i=1 vixi ≥ s− wU .

Note that this system contains δn + 1 inequalities, and the

additional dimension adds only a polynomial factor to the

time.

Since we need to solve a system of inequalities for every

possible subset of bottom-level gates to be satisfied, we have

an additional factor of 2δn, which gives the running time as

claimed.

Williams [9] introduced the reductions used in Corollaries

IV.2 and IV.3. He considered a special case of the Vector

Domination problem (called the Cooperative Subset Query

problem) where the entries in the vectors are 0 and 1 instead

of arbitrary real numbers . Applying the reduction from

Corollary IV.2 to CNFSAT, he concludes that an algorithm

for solving the Cooperative Subset Query problem with

d = ω(log n) that runs in time O(f(d)nδ) for some δ < 2
and a time-constructible f gives a CNFSAT algorithm in time

O(f(m)2(δ/2)n) where m is the number of clauses.

V. FAN-IN SEPARATION

In this section we reduce the satisfiability of a depth

two threshold circuit with cn wires to depth two threshold

circuits with at most δn bottom-level gates by considering

all possible assignments to a random subset U of variables.

The goal of the restriction is to eliminate all but a small

fraction of gates. U will consist of all but an O(1/(ck))
fraction of the variables where k is chosen such that there

are only a small number of gates of fan-in larger than k
relative to the number of remaining variables. The Fan-In

Separation Lemma shows how to find such a k.

Lemma V.1 (Fan-In Separation Lemma). Let F be a family
of sets such that

∑
F∈F |F | ≤ cn. Further let a > 1 and

ε > 0 be parameters. There is an k ≤ ac/ε such that
∑
F∈F

k<|F |≤ka

|F | ≤ εn

Proof: Assume otherwise for the sake of contradiction.

For 0 ≤ i ≤ c
ε , let fi be the sum of |F | where ai < |F | ≤

ai+1. By assumption we have fi > εn for all i. Hence∑c/ε
i=0 fi > cn, which is a contradiction.

Lemma V.2. Consider a depth two threshold circuit with n
variables and cn wires. Let δ > 0 and let U be a random
set of variables such that each variable is in U with some
probability 1 − p independently. There exists a p = 1

cO(c2)

such that the expected number of bottom-level gates that
depend on at least two variables not in U is at most 3δpn.

Proof: Let ε = δ2

c and a = c2

δ2 and let k be the smallest

value such that there are at most εn wires as inputs to gates

with fan-in between k and ka. Further let p = δ
ck .

Using the Fan-In Separation Lemma we get k ≤(
c2

δ2

)c2/δ2

. We distinguish three types of bottom-level gates:

Small gates, with fan-in at most k, medium gates with fan-in

between k and ka, and large gates with fan-in at least ka.

For each type of gates, we argue that the expected number

of gates that depend on at least two variables not in U is

bounded by δpn.

For medium gates, the total number of wires is bounded

by δ2

c n and each gate contains at least k wires. Hence the

number of medium gates is bounded by δ
ck δn = δpn.

Large gates contain at least ka wires, hence the number

of large gates is bounded by c
kan = δ

ck δn = δpn.

For small gates, we argue as follows. Let m be the number

of small gates and let l1, . . . , lm be their fan-ins. Let Xi

denote the event that gate i depends on at least two variables

not in U and let X be the number of such events. We have

P (Xi) ≤
(
li
2

)
p2 ≤ l2i p

2 and therefore

E[X] =
m∑
i=1

P (Xi) ≤
m∑
i=1

l2i p
2 ≤ p2kcn = δpn

Lemma V.3. There is a satisfiability algorithm for depth two
threshold circuits with cn wires that runs in time 2(1−s)n for
E[s] = 1

cO(c2)
.

Proof: Let δ = 1
48 and U as well as other parameters

be as above. For every assignment to U , we have a depth

two threshold circuit with pn variables and 3δpn bottom-

level gates in expectation. Since 3δ < 0.099, we can decide

the satisfiability of such a circuit using Corollary IV.3 with

constant savings. Let s′ be the savings with our parameters.

Let T be the time for carrying out the entire procedure.

Since we are interested in the expected savings we consider

the logarithm of the time and get

E[log(T )] = (1− p)n+ (1− s′)pn = (1− s′p)n

and the lemma follows from p = 1
cO(c2)

.

Since s is bounded by above by 1, we can repeat the

process a constant number of times until we find a restriction
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such that the savings is at least its expectation. This gives

us our main result Theorem III.1.

VI. GENERALIZATION TO FORMULAS

In this section we discuss an extension of our main result

to linear size, constant depth threshold formulas. A formula

is a circuit such that the output of every gate is an input

to at most one other gate. A formula can be viewed as a

tree where the internal nodes correspond to gates and the

leaves to bottom variables. Note that a circuit of depth two

is always a formula. The proof is a direct generalization of

our main proof.

Corollary VI.1. There is a satisfiability algorithm for
depth d threshold formulas with cn wires that runs in time
Õ

(
2(1−s)n

)
where

s =
1

((d− 1)c)O(((d−1)c)2)

Proof sketch: The algorithm chooses a random restric-

tion such that at most δn gates depend on more than one

variable after restriction, where δ < 1
16 as before. As in the

original proof, we take into account that there is only a single

top-level gate, which does not simplify after restriction. The

main difference to our main proof is the notion of the fan-

in. Instead of considering the number of inputs to a gate,

consider the size of a gate. The size of a gate is the size of

the subtree rooted at that gate. It is also an upper bound to

the number of variables the gate depends on.

For all i ≤ d, the sum of sizes of all gates at depth i is

at most cn, since the circuit is a tree with at most cn wires.

Hence the sum of sizes of all gates (minus the top-level gate)

is at most (d− 1)c.
Using the Fan-In Separation Lemma we can select a set

U of size pn where p = 1
((d−1)c)O(((d−1)c)2)

such that the

number of gates that depend on at least two variables not in

U is at most δn. We can then write each remaining gate as

a linear inequality, which allows us to apply Corollary IV.2.

VII. GENERALIZATION TO SYMMETRIC GATES

In this section we discuss a second extension, to symmet-
ric gates. A gate is symmetric if the output depends only

on the weighted sums of the inputs. In particular, threshold

gates are symmetric. The proof of our main result does

not directly generalize to symmetric gates, but we give a

different algorithm to decide the satisfiability of depth two

circuits consisting of symmetric gates that follows similar

ideas as our main proof. For this algorithm we do however

require that the weights are integer and small. Specifically,

we define the weighted fan-in of a gate as the sum of the

absolute weights and the weighted number of wires as the

sum of the fan-ins of all the gates. The result applies to

circuits with a weighted fan-in of cn.

The main difference between the two algorithms is the

problem we reduce it to after applying a restriction. In our

main result, we reduce the satisfiability of the simplified

circuit to a (small) system of linear inequalities. Here, we

reduce to a system of linear equations. We first give an

algorithm for linear equations.

Lemma VII.1. There is an algorithm to find a Boolean
solution to a system of linear equations on variables
{x1, . . . , xn} in time Õ(2n/2).

Proof: We first reduce the problem to subset sum. Let

wi,j be the weight of xi in the j-th equation and let rj
be right-hand side of the j-th equation. Further let D =
n · maxi,j{wi,j , rj}. We define si =

∑
j wi,jD

j and s =∑
j rjD

j . Then there is a solution to the system of linear

equations if and only if there is a subset of the si that sums

to s.

To solve the subset sum problem, partition the set of si
into two sets of equal size and list all 2n/2 possible subset

sums each. We can then sort the lists in time O(2n/2n) and

determine if there is a pair of numbers that sums to s.

We reduce the satisfiability problem of depth two thresh-

old circuits with small integer weights to a system of linear

equations to get the following result.

Theorem VII.2 (Theorem III.4 restated). There is a sat-
isfiability algorithm for depth two circuits with symmetric
gates and weighted number of wires cn that runs in time
Õ

(
2(1−s)n

)
where

s =
1

cO(c2)

As before, we pick a random restriction with some param-

eter p, such that most gates depend on at most one variable.

Given an assignment, we distinguish between the Boolean

output of a gate and the value, which is defined as the

weighted sum of the inputs. Note that the value uniquely

defines the output of a symmetric gate. Unlike our main

proof, we guess the value of the remaining gates, including

the top-level gate. Given a value for every gate, we can

write a system of linear equation that is satisfied if and only

if the assignment is consistent with the values of the gates.

We then solve the system of linear equations on n Boolean

variables in time Õ(2n/2) using Lemma VII.1.

While Lemma VII.1 gives some savings over brute force,

we need to solve a separate system of linear equations for

every set of possible values of the gates. We call the number

of systems the overhead. To get any savings, we need the

overhead for guessing the values to be smaller than the

savings achieved with solving the system of linear equations.

For this, it is crucial that both the number of remaining gates

and the number of values that can be obtained is small. Here

we use the requirement that the weights are small. Section

VII-A contains the details of this calculation.
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One possible approach would be to select p using a fan-

in separation technique. However, we only achieved savings

that are doubly exponentially small in c using this approach.

To get better savings, it is useful to model the interplay

between the parameter p and the circuit as an explicit zero-

sum game, where the first player’s (the algorithm designer)

pure strategies are the values of p and the second player’s

(the circuit designer) pure strategies are circuits where all

the gates have the same fan-in. The payoff is the difference

between the saving of solving the subset sum problem and

the overhead of guessing the values of the gates.

The mixed strategies of the circuit designer are circuits of

symmetric gates with a weighted number of wires of at most

cn, where each such circuit is viewed as a distribution of

the total number of wires among gates of different weighted

fan-in. The mixed strategies of the algorithm designer are

distributions on the values of p. We then apply the Min-Max

theorem to lower bound the expected value of the game by

exhibiting a distribution (with finite support) on the values

of p. We search through the values in the support of the

distribution to find a p that produces the expected value.

This novel game-theoretic analysis yields an overall savings

which is only single exponentially small in c. Section VII-B

contains the details of the Min-Max approach.

A. The Algorithm

We develop the algorithm of Theorem VII.2 in three

stages. In this section, we consider p a parameter and

present a satisfiability algorithm for depth two circuits with

symmetric gates and weighted number of wires of cn. We

further assume that all the bottom-level gates have the same

weighted fan-in f . The algorithm achieves savings sp,f and

for certain combinations of p and f the savings might be

negative. In the second stage we extend the algorithm to

circuits with varying fan-in and show that the savings of the

algorithm is a convex combination of sp,f . In the last stage,

in Section VII-B we show how to select a p such that the

savings is at least 1
cO(c2)

for any distribution on f .

As we are mainly interested in the savings, we look at the

logarithm of the time complexity and bound its expectation.

Lemma VII.3. Let 0 ≤ p ≤ 1 be a parameter and
C be a depth two circuit with symmetric gates, variables
V = {x1, . . . , xn}, a weighted number of wires of cn, and
weighted fan-in f for all bottom-level gates. There is an
algorithm that decides the satisfiability for such C with time
complexity T such that E[log(T )] = (1− sp,f )n for

sp,f =

{ p
4 if pf < 1

4c
p
2 − c

f log (8cpf) otherwise

Proof: We select a random subset U ⊆ V such that a

variable is in U with probability (1− p) independently. We

note that E[|U |] = (1−p)n. For each of the 2|U | assignments

to U , we solve the satisfiability problem of the simplified

circuit. Bottom-level gates where all inputs are in U are

removed and the top-level gate is adjusted appropriately.

Gates that only depend on one input are replaced by a direct

wire to the top-level gate with an appropriate weight and

adjustment to the top-level gate. For all gates with at least

two remaining inputs, we guess the value of the gate and

express the gate as a linear equation. Similarly, we guess

the value of the top-level gate to get another linear equation.

We then solve the resulting system of linear equations on

n′ = n − |U | variables in time Õ
(
2n
′/2

)
using Lemma

VII.1.

The critical part of the analysis is bounding the overhead

from guessing the values of the gates. We first bound the

number of distinct values a gate can take. The top-level gate

can only take polynomially many different values. Consider

a bottom-level gate with weighted fan-in l ≥ 2 after applying

an assignment to the variables in U . The number of possible

inputs, and hence the number of possible values is bounded

by 2l. On the other hand, since the value is an integer

between −l and l, the number of possible values for the

gates is also upper bounded by 2l + 1. Hence, we use

min{2l, 2l+1} as an upper bound for the number of values

of a bottom-level gate with weighted fan-in l.

Our overhead crucially depends on the number of excep-

tional gates, gates that depend on more than one variable

after applying an assignment to the variables in U . Intu-

itively, if the fan-in of a gate is small, then we expect that

it will be simplified to depend on at most one variable after

assigning values to the variables in U . On the other hand,

there cannot be too many gates of large fan-in. While this

intuition is simple, it is tricky to make it work for us in the

general context. At this stage, our focus is on estimating the

savings sp,f for the probability parameter p and weighted

fan-in f .

Let H be a random variable denoting the number of possi-

ble values the remaining gates can obtain. Our estimation of

H and sp,f involves two cases. Let t = 1
4c . We first consider

the case pf < t. Let U ′ ⊆ V − U be the set of variables

that appear in exceptional gates. Our goal is to upper bound

E[log(H)] ≤ E[|U ′|].

Consider a bottom-level gate. Let X be the random

variable denoting the number of its inputs not in U . Let

f ′ ≤ f be the fan-in of the gate (remember f is the weighted
fan-in), and let X be the random variable denoting the

number of its inputs not in U . The distribution of X is

Bin(f ′, p), hence we have E[X] = f ′p. Let the random

variable Y denote the number of variables that the gate can

contribute to U ′. Since U ′ is the set of variables appearing

in exceptional gates, we have Y = X for X ≥ 2 and Y = 0
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otherwise. Hence

E[Y ] = E[X]−P[X = 1] ≤ f ′p− f ′p(1− p)(f
′−1)

≤ f ′p(1− (1− p)f
′
) ≤ f ′p(1− (1− f ′p))

= (f ′p)2 ≤ (fp)2

by Bernoulli’s inequality. Hence, for any variable x which

is an input to the gate, the probability x belongs to U ′ is at

most
E[Y ]
f ≤ p2f ≤ p

4c . Since the total number of wires is

bounded by cn, we have E[log(H)] ≤ E[|U ′|] = p
4n.

For the logarithm of the time complexity this yields

E[log(T )] = E[|U |] +E

[
1

2
(n− |U |)

]
+

p

4
n+O(log n)

≤ n
(
1− p

4

)
+O(log n)

where the logarithmic summand stems from guessing the

value of the top-level gate. We have sp,f = p
4 .

We now consider the case pf ≥ t. Suppose the i-th gate

has li inputs that are not in U . The expected value of li is

pf . There are at most 2li + 1 possible values for the gate.

Since all the bottom-level gates have the same weighted fan-

in f , the number of bottom-level gates is at most cn/f and

E[
∑cn/f

i=1 li] = pcn. We bound the expected logarithm of

the number of possible values of all gates by

E

⎡
⎣log

⎛
⎝cn/f∏

i=1

(2li + 1)

⎞
⎠
⎤
⎦ =

cn

f

cn/f∑
i=1

E

[(
log(2li + 1)

f

cn

)]

≤ cn

f
log(2pf + 1)

≤ cn

f
log (8cpf)

where we use the concavity of the logarithm function in the

penultimate step and the fact pf ≥ 1
4c in the last step.

For the logarithm of the time complexity we get,

E [|U |] +E

[
1

2
(n− |U |)

]
+ cn/f log (8cpf) +O(log n)

≤ n

(
1−

(
p

2
− c

f
log (8cpf)

))
+O(log n)

with savings sp,f = p
2 − c

f log (8cpf).
We now extend the algorithm to circuits with varying fan-

in and show that the logarithm of the time complexities is

lower bounded by a convex combination of the savings sp,f .

We model the cn-wire circuits of varying weighted fan-in

by a distribution F on wires. For each weighted fan-in f ,

the wire distribution F specifies the number cfn of wires

of bottom-level gates of weighted fan-in f . We denote the

savings of our algorithm on circuits with wire distribution

F by sp,F .

Lemma VII.4. Let 0 ≤ p ≤ 1 be a parameter and C
be a depth two circuit with symmetric gates, n variables
and a weighted number of wires of cn, where the wires

are distributed according to F . There is a satisfiability
algorithm for such C with time complexity T such that
E[log(T )] = (1− sp,F )n for

sp,F ≥
n∑

f=1

cf
c
sp,f

Proof: The algorithm is the same as above. The loga-

rithm of the overhead of guessing the values for all bottom-

level gates with fan-in f is log(Hf ) =
cfn
f log (8cpf) if

pf ≥ t and log(Hf ) =
cf
c

p
4n otherwise. Solving the system

of linear equations and using linearity of expectation then

yields the savings as claimed.

B. The Algorithm as a Zero-Sum Game

The time complexity of the algorithm in Section VII-A

depends crucially on choosing a suitable parameter p. In-

stead of trying to directly determine a good parameter p by

analyzing the wire distribution of the circuit, we apply a

trick from game theory.

A zero-sum game with two players A and C is a game

where both players pick a strategy and the outcome is

determined by a function of the two strategies. Player A
tries to maximize the outcome, while player C tries to

minimize it. The Min-Max Theorem states that it does not

matter which player moves first, as long as we allow mixed

strategies for the players.

We model the task of choosing the parameter p as the

following zero-sum game: Player A, the algorithm designer,

picks some probability p, and player C, the circuit designer,

picks a value f . The outcome is sp,f , the savings of the

algorithm. The algorithm designer tries to maximize the

savings, and the circuit designer tries to minimize it. The

wire distribution of a circuit is a mixed strategy for the

circuit designer. A mixed strategy for the algorithm designer

A would be a distribution on the probabilities.

A direct approach for designing the algorithm would be to

select the parameter p by analyzing the circuit. Specifically,

given the wire distribution of the circuit F , the algorithm

designer picks a p and the outcome sp,F is a convex

combination of the values sp,f . Using the Min-Max Theorem

we turn this game around: The algorithm designer picks

a mixed strategy and the circuit designer responds with a

pure strategy f , a circuit where all bottom-level gates have

weighted fan-in f . The following lemma shows that there is

a good strategy for the algorithm designer.

Lemma VII.5. There is a distribution D on parameters p
such that for all f ,

Ep∼D[sp,f ] ≥ 1

cO(c2)

Proof: Let D be the following distribution on p: For

I = O
(
c2 log(c)

)
with suitable constants, and 1 ≤ i ≤

I , we set p = 2−i with probability A · 2−(I−i+1), where
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A = 1∑I
i=1 2−(I−i+1) is the normalization factor. We know

that 1 ≤ A ≤ 2. The expectation of p is E[p] = AI2−I−1.

Let f be any pure strategy of the circuit designer and

J = log(f). The expected outcome of the game for these

strategies is

Ep∼D[sp,f ] =
I∑

i=1

2−(I−i+1)s2−i,2J .

To lower bound the expected outcome, we use a case

analysis on the savings similar to the one in Section VII-A.

Let t = 1
4c as defined in the previous section. Let I ′ ≤ I

be the largest value such that for i ≤ I ′, we have 2J−i ≥ t
and for I ′ < i ≤ I we have 2J−i < t.

Using the savings from Lemma VII.3, we have s2−i,2J =
2−i−1− c

2J
log

(
c2J−i+1

)
for 2J−i ≥ t and s2−i,2J = 2−i−2

otherwise. The expected savings is then

Ep∼D[sp,f ] =
I∑

i=1

2−(I−i+1)s2−i,2J

=
I′∑
i=1

2−(I−i+1)
(
2−i−1 − c

2J
log

(
c2J−i+3

))

+
I∑

i=I′+1

2−(I−i+1)2−i−2

≥
I∑

i=1

2−(I+3)

−
I′∑
i=1

2−(I−i+1) c

2J
log

(
c2J−i+3

)

=
1

2I+1

⎛
⎝I

4
− c

I′∑
i=1

2−(J−i) log
(
c2J−i+3

)⎞⎠

Let j = 	(J − i)
. By the definition of I ′ we have j ≥
log(t) = − log(c)− 2. Hence

I′∑
i=1

2−(J−i) log
(
c2J−i+3

) ≤
∞∑

j=log(t)

2−j (j + log (8c))

≤ 8c log (8c) +

∞∑
j=1

j2−j + log (8c)

= O (c log(c))

Hence for I = O
(
c2 log(c)

)
we get the claim.

We now conclude that for every f there is a p = 2−i for

1 ≤ i ≤ I , such that sp,f ≥ 1

cO(c2) . Using that for every

mixed strategy for f , the savings is a convex combination

of the savings for pure strategies, we conclude the same for

any strategy on f .

This gives us the final algorithm: Given a circuit C with

wire distribution F , evaluate Ef∼F [sp,f ] with p = 2−i for

each 1 ≤ i ≤ I as above and use the optimal p for the

random restriction.

The savings is tight in the sense that there is a mixed

strategy on f such that the expected savings is at most

1/2Ω(c).

Lemma VII.6. There is a wire distribution F such that for
any p

Ef∼F [sp,f ] ≤ 1

2Ω(c)

Proof: Let p be the strategy of the algorithm designer

and let F be the distribution such that for 1 ≤ j ≤ c, c2j = 1
and cf = 0 for any other f . By lemma VII.4 we have

Ef∼F [sp,f ] =
c∑

j=1

1

c
sp,2j

We argue that for large c and p ≥ 1
2c , the savings is negative.

Assume p ≥ 1
2c . There is some j∗ ≤ c such that for f = 2j

∗
,

1 ≤ pf ≤ 2. Using that for any p and f , the savings sp,f is

upper bounded by p
2 we get

Ef∼F [sp,f ] =
c∑

j=1

1

c
sp,2j

≤ p

2
− 1

c
sp,2j∗

=
p

2
− 1

c

c

2j∗
log

(
cp2j

∗+3
)

≤ p

2
(1− (log (8c) + 1))

For large c, the expectation is therefore negative. On the

other hand, if p ≤ 1
2c , then Ef∼F [sp,f ] ≤ 1

2c−1 .

VIII. CONCLUSION

In this paper, we present the first nontrivial algorithm for

deciding the satisfiability of cn-wire threshold circuits of

depth two. The same result also applies to the special of case

of 0-1 Integer Linear Programming with sparse constraints.

The algorithm improves over exhaustive search by a factor

2sn where s = 1/cO(c2).

This paper also presents a satisfiability algorithm for depth

two circuits consisting of symmetric gates with small integer

weights.

Several straightforward open questions remain. Can we

further improve the savings? The savings in our algorithm

is exponentially small in c, while the best known savings

for cn-size AC0 circuits is only polylogarithmically small

in c [18]. Can we decrease this gap? If not, can we explain

it in terms of the expressive power of the circuits?

Our algorithm handles only linear size threshold circuits

of depth two. Can we obtain nontrivial satisfiability algo-

rithms for slightly more relaxed models? For example, it

would be very interesting to extend the result to larger depth

circuits. It would also be nice to generalize the algorithm to
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deal with depth two threshold circuits with linearly many

gates (as opposed to a linear number of wires).

It would also be interesting to relax the restriction on

the number of wires. Unfortunately, as discussed earlier, it

is not be possible to obtain a constant savings algorithm

for depth two threshold circuits of superlinearly many wires

under SETH.

It would be extremely interesting to find a subquadratic

algorithm for the Vector Domination Problem for dimension

ω(log n), which would imply the refutation of SETH.

Our algorithm is a “Split and List” algorithm [9], split

the variable set into subsets and list all assignments to the

subsets. As such, it inherently takes exponential space. Can

we reduce the space requirement to polynomial space?
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