
The Moser-Tardos Framework with Partial Resampling

David G. Harris

University of Maryland, College Park, MD 20742
Research supported in part by NSF Award CNS-1010789

Email: davidgharris29@hotmail.com.

Aravind Srinivasan

University of Maryland, College Park, MD 20742.
Research supported in part by NSF Award CNS-1010789.

Email: srin@cs.umd.edu.

Abstract—The resampling algorithm of Moser & Tardos is
a powerful approach to develop versions of the Lovász Local
Lemma. We develop a partial resampling approach motivated
by this methodology: when a bad event holds, we resample
an appropriately-random subset of the set of variables that
define this event, rather than the entire set as in Moser &
Tardos. This leads to several improved algorithmic applications
in scheduling, graph transversals, packet routing etc. For
instance, we improve the approximation ratio of a generalized
D-dimensional scheduling problem studied by Azar & Epstein
from O(D) to O(logD/ log logD), and settle a conjecture of
Szabó & Tardos on graph transversals asymptotically.

I. INTRODUCTION

The Lovász Local Lemma (LLL) [1] is a fundamental

probabilistic tool. The breakthrough of Moser & Tardos

shows that a very natural resampling approach yields a

constructive approach to the LLL [2]; this, along with

a few subsequent investigations [3], [4], gives a fairly

comprehensive suite of techniques to develop algorithmic

versions of the LLL. The basic algorithm of [2] is as follows.

Suppose we have “bad” events E1, E2, . . . , Em, each Ei

being completely determined by a subset {j ∈ Si : Xj}
of independent random variables X1, X2, . . . , X�. Then,

assuming that the standard sufficient conditions of the LLL

hold, the following resampling algorithm quickly converges

to a setting of the Xj’s that simultaneously avoids all the

Ei:

• first sample all the Xj’s (independently) from their

respective distributions;

• while some bad event is true, pick one of these, say

Ei, arbitrarily, and resample (independently) all the

variables {j ∈ Si : Xj}.
We develop a partial resampling approach motivated by

this, which we simply call the Resampling Algorithm; the

idea is to carefully choose a distribution Di over subsets of

{j ∈ Si : Xj} for each i, and then, every time we need

to resample, to first draw a subset from Di, and then only

resample the Xj’s that are contained in this subset. This

partial-resampling approach leads to algorithmic results for

many applications that are not captured by the LLL.

In order to motivate our applications, we start with two

classical problems: scheduling on unrelated parallel ma-

chines [5], and low-congestion routing [6]. In the former,

we have n jobs and K machines, and each job i needs to

be scheduled on any element of a given subset Xi of the

machines (this is not the standard notation for job-scheduling

problems). If job i is scheduled on machine j, then j incurs

a given load of pi,j . The goal is to minimize the makespan,

the maximum total load on any machine. The standard way

to approach this is to introduce an auxiliary parameter T ,

and ask if we can schedule with makespan T [5], [7]. Letting

[k] denote the set {1, 2, . . . , k}, a moment’s reflection leads

to the following integer-programming formulation:

∀i ∈ [n],
∑
j∈Xi

xi,j = 1; (1)

∀j ∈ [K],
∑
i

pi,jxi,j ≤ T ; (2)

∀(i, j), pi,j > T =⇒ xi,j = 0; (3)

∀(i, j), xi,j ∈ {0, 1}. (4)

(Although (3) is redundant for the IP, it will be critical for

the natural LP relaxation [5].)

Our class of problems. Given the above example, we are

ready to define the class of problems that we will study. As

above, we have n “categories” (finite sets) X1, X2, . . . , Xn;

we need to choose one element from each category, which is

modeled by “assignment constraints” (1) on the underlying

indicator variables xi,j . In addition, we have K (undesirable)

Boolean functions B1, B2, . . . , BK , each of which is an

increasing function of the variables xi,j ; we aim to choose

the xi,j in order to satisfy the assignment constraints, and

such that all the Bk are falsified. It is easily seen that our two

applications above, have the undesirable events Bk being lin-
ear threshold functions of the form “

∑
i,j ak,i,jxi,j > bk”;

we also allow explicitly-nonlinear Bk, some of which will

be crucial in our packet-routing application. We develop

a partial resampling approach to our basic problem in

Section II; Theorem 2.4 presents some general conditions

under which our algorithm quickly computes a feasible

solution {xi,j}. The same class of problems that we study,

has been investigated by us in recent work [8]. Here is a

comparison:

(i) the work of [8] is non-constructive; all our results are

constructive, and our approach based on hitting sets and

partial resampling, is completely different from the “Rödl

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.57

469

Nibble” based approach of [8] and its inductive proof;

(ii) we obtain significantly-improved quantitative bounds in

many cases over the results of [8] (which – again – are

nonconstructive) as mentioned in a few places below (see,

e.g., the comparison toward the end of Section I-A); and

(iii) our approach does not seem to be a constructive version

of [8], and there appears to be no formal inclusion either

way; on the one hand, there appear to be some parameter

ranges for Theorem 4.2 in which [8] can give slightly better

bounds, and on the other hand, some of the work of [8] can

be interpreted in our language.

The probabilistic analysis of the Moser-Tardos and related

algorithms is governed by witness trees. While these are

easy to count when all bad-events are similar (the “Sym-

metric LLL”), this can be complicated in the more general

(“Asymmetric”) case. A key technical tool in our analysis is

a new formula for counting the witness trees. This greatly

simplifies the analysis of the Asymmetric LLL. It is critical

to obtaining usable formulas for complicated applications of

the Partial Resampling framework, but it is also very useful

for analyzing the standard Moser-Tardos framework.

We will need the following relative of the standard Cher-

noff upper-tail bound:

Definition 1.1: (The Chernoff separation function) For

0 < μ ≤ t, letting δ = t/μ− 1 ≥ 0, define

Chernoff(μ, t) =
(eδ

(1 + δ)1+δ

)μ

;

this is the Chernoff bound that a sum of [0, 1]-bounded and

independent random variables with mean μ will exceed t. If

t < μ we set Chernoff(μ, t) = 1.

Let us next motivate our result by describing three families

of applications.

A. The case of non-negative linear threshold functions

The scheduling and routing applications had each Bk be-

ing a non-negative linear threshold function: our constraints

(i.e., the complements of the Bk) were of the form

∀k ∈ [K],
∑
i,j

ak,i,jxi,j ≤ bk. (5)

(The matrix A of coefficients ak,i,j here, has K rows

indexed by k, and some N columns that are indexed by

pairs (i, j).) Recall that all our problems will have the

assignment constraints (1) as well. There are two broad

types of approaches for such problems, both starting with the

natural LP relaxation of the problem, wherein we allow each

xi,j to lie in [0, 1]. Suppose the LP relaxation has a solution

{yi,j} such that for all k, “
∑

i,j ak,i,jyi,j ≤ b′k”, where

b′k < bk for all k; by scaling, we will assume throughout

that ak,i,j ∈ [0, 1]. The natural question is:

“What conditions on the matrix A and vectors b′

and b ensure that there is an integer solution that

satisfies (1) and (5), which, furthermore, can be

found efficiently?”

The first of the two major approaches to this is polyhedral.

Letting D denote the maximum column sum of A, i.e.,

D = maxi,j
∑

k ak,i,j , the rounding theorem of [9] shows

constructively that bk = b′k + D suffices. Given a solution

to the LP-relaxation of makespan minimization, this bound

implies that we can find a schedule with makespan at most

2T efficiently. This 2-approximation is the currently best-

known bound for this fundamental problem, and what we

have seen here is known to be an alternative to the other

polyhedral proofs of [5], [7].

The second approach to our problem is randomized

rounding [6]: given an LP-solution {yi,j}, choose exactly

one j independently for each i, with the probability of

choosing j in category i equaling yi,j . The standard “Cher-

noff followed by a union bound” approach [6] shows that

Chernoff(b′k, bk) ≤ 1/(2K) suffices. That is, there is some

constant c0 > 0 such that

bk ≥
{
c0 · logK

log(2 logK/b′k)
if b′k ≤ logK;

b′k + c0 ·
√
b′k · logK if b′k > logK

(6)

suffices. In particular, the low-congestion routing problem

can be approximated to within O(logK/ log logK) in the

worst case, where K denotes the number of edges.

Let us compare these known bounds (b′k = bk + D
vs. (6)). The former is good when all the b′k are “large”

(say, much bigger than, or comparable to, D – as in the

2-approximation above for scheduling); the latter is better

when D is too large, but unfortunately does not exploit

the sparsity inherent in D – also note that K ≥ D
always since the entries ak,i,j of A lie in [0, 1]. A natural

question is whether we can interpolate between these two:

especially consider the case (of which we will see an

example shortly) where, say, all the values b′k are Θ(1).
Here, b′k = bk +D gives an O(D)-approximation, and (6)

yields an O(logK/ log logK)-approximation. Can we do

better? We answer this in the affirmative in Theorem 4.2 –

we are able to essentially replace K by D in (6), by showing

constructively that for any desired constant C1 > 0, there

exists a constant C0 > 0 such that the following suffices:

bk ≥
{
C0 · logD

log(2 logD/b′k)
if b′k ≤ logD

b′k + b′kD
−C1 + C0 ·

√
b′k · logD if b′k > logD

(7)

Application to multi-dimensional scheduling. Consider the

following D-dimensional generalization of scheduling to

minimize makespan, studied by Azar & Epstein [10]. Here,

when job i gets assigned to machine j, there are D
dimensions to the load on j (say runtime, energy, heat

consumption, etc.): in dimension �, this assignment leads

to a load of pi,j,� on j (instead of values such as pi,j in

[5]), where the numbers pi,j,� are given. Analogously to (1),

470

(2) and (3), we ask here: given a vector (T1, T2, . . . , TD),
is there an assignment that has a makespan of at most
T� in each dimension �? The framework of [10] and

[9] gives a (D + 1)-approximation, while our bound (7)

yields an O(logD/ log logD)-approximation, which can be

a significant improvement over the O(logK/ log logK)-
approximation that follows from (6).

Comparison with other known bounds. As described above,

our bound (7) improves over the two major approaches

here. However, two related results deserve mention. First, a

bound similar to (7) is shown in [11], [8], but with D∗, the

maximum number of nonzeroes in any column of A, playing

the role of D. Note that D∗ ≥ D always, and that D∗ � D
is possible. Moreover, the bound of [11] primarily works

when all the b′k are within an O(1) factor of each other,

and rapidly degrades when these values can be disparate;

the bound of [8] is nonconstructive.

B. Transversals with omitted subgraphs

Given a partition of the vertices of an undirected graph

G = (V,E) into blocks (or classes), a transversal is a subset

of the vertices, one chosen from each block. An independent
transversal, or independent system of representatives, is a

transversal that is also an independent set in G. The study

of independent transversals was initiated by Bollobás, Erdős

& Szemerédi [12], and has received a considerable amount

of attention (see, e.g., [13], [14], [15], [16], [17], [18],

[19], [20], [21]). Furthermore, such transversals serve as

building blocks for other graph-theoretic parameters such

as the linear arboricity and the strong chromatic number

[14], [15]. We improve (algorithmically) a variety of known

sufficient conditions for the existence of good transversals,

in Section III. In particular, Szabó & Tardos present a

conjecture on how large the blocks should be, to guarantee

the existence of transversals that avoid Ks [20]; we show

that this conjecture is true asymptotically for large s. We

also study weighted transversals, as considered by Aharoni,

Berger & Ziv [13], and show that near-optimal (low- or high-

) weight transversals exist, and can be found efficiently. In

particular, we improve the quantitative bounds of [8] and

show that “large-weight” (existentially-optimal) independent

transversals exist, once the smallest block-size becomes

reasonably large.

C. Packet routing with low latency

A well-known packet-routing problem is as follows. We

are given an undirected graph G with N packets, in which

we need to route each packet i from vertex si to vertex ti
along a given simple path Pi. The constraints are that each

edge can carry only one packet at a time, and each edge

traversal takes unit time for a packet; edges are allowed

to queue packets. The goal is to conduct feasible routings

along the paths Pi, in order to minimize the makespan T , the

time by which all packets are delivered. Two natural lower-

bounds on T are the congestion C (the maximum number of

the Pi that contain any given edge of G) and the dilation D
(the length of the longest Pi); thus, (C+D)/2 is a universal

lower-bound, and there exist families of instances with T ≥
(1 + Ω(1)) · (C +D) [22]. A seminal result of [23] is that

T ≤ O(C +D) for all input instances, using constant-sized

queues at the edges; the big-Oh notation hides a rather large

constant. Building on further improvements [24], [25], our

work [8] developed a nonconstructive 7.26(C + D) and a

constructive 8.84(C +D) bound; we improve these further

to a constructive 5.70(C +D) here.

Informal discussion of the Resampling Algorithm. To

understand the intuition behind our Resampling Algorithm,

consider the situation in which we have bad events of the

form Z1 + · · · + Zv ≥ μ + t, where the expected value of

Z1 + · · ·+Zv is μ. There are two basic ways to set this up

for the standard LLL. The most straightforward way would

be to construct a single bad-event for Z1+ · · ·+Zv ≥ μ+ t.
In this case, the single event would depend on v variables,

which might be very large. Alternatively, one could form(
v

μ+t

)
separate bad-events, corresponding to every possible

set of μ+ t variables.

In fact, both of these approaches are over-counting the

dependence of the bad-event. In a sense, a variable Zi is

causing the bad-event only if it is “the straw that breaks

the camel’s back,” that is, if it is the key variable which

brings the sum Z1 + · · · + Zv over the threshold μ + t.
Really, only about t of the variables are “guilty” of causing

the bad-event. The first μ variables were expected to happen

anyway; after reaching a total μ+t variables, any remaining

variables are redundant. Any individual variable Zi only has

a small chance of being a guilty variable.

In general, the partial Resampling Algorithm tends to

work well when there are common configurations, which

are not actually forbidden, but are nonetheless “bad” in the

sense that they are leading to a forbidden configuration. So,

in the case of a sum of random variables, if a large group of

these variables is simultaneously one, then this is bad but,

by itself, still legal. We will see other examples of more

complicated types of bad-but-legal configurations. Further

specific comparisons with the standard LLL are made in

Sections III and IV-A.

We omit several proofs in this version due to the lack of

space.

II. THE RESAMPLING ALGORITHM

A. Notation

We begin by discussing some basic definitions. We have n
categories, which we identify with the set [n] = {1, . . . , n}.
Each category has a set of possible assignments Xi. We

specify a probability distribution pi on each category i,
with

∑
j∈Xi

pi,j = 1. We will usually not be explicit about

the set of possible assignments, so we would write simply

471

∑
j pi,j = 1. We refer to any ordered pair 〈i, j〉 where

j ∈ Xi as an element; we sometimes refer to an element

as (i, j) as well. We let X denote the set of all elements.

Given any vector �λ = (�λi,j) indexed by elements 〈i, j〉, we

define, for any set Y ⊆ X , �λY =
∏
〈i,j〉∈Y �λi,j .

Events as set-families, and increasing bad events.
Suppose we are given some K increasing bad events

B1, B2, . . . , BK , such that each Bk is an upward-closed
collection of subsets of X . Note that in the preceding

sentence – and in a few places later – we identify each event

such as Bk with a family of subsets of X in the obvious

manner: i.e., if Fk is this family, then Bk is true iff there is

some G ∈ Fk such that all members of G (each of which

is an “element” in our terminology of a few lines above)

have been chosen. Equivalently, since each Bk is upward-

closed, we can identify each bad event Bk with its atomic
bad events Ak,1, . . . , Ak,mk

: Bk holds iff there is some j
such that all members of Ak,j have been chosen, and each

Ak,j is minimal inclusion-wise. That is, viewing each Bk as

a family of subsets,

Bk = {Y ⊆ X | Ak,1 ⊆ Y ∨ · · · ∨Ak,mk
⊆ Y }. (8)

We are not making any sparsity assumptions about the bad

events Bk, for example that they depend only on a (small)

subset of the categories.

B. Fractional hitting-sets

In order to use our algorithm, we will need to specify

an additional parameter, for each bad event Bk. We must

specify a fractional hitting-set B′k, which essentially tells us

how to resample the variables in that bad event.

Definition 2.1: Let B ⊆ 2X be a given increasing bad

event on the ground set X . (As usual, 2X denotes the family

of subsets of X .) Suppose C : 2X → [0, 1] is some weight

function on the subsets of X . We say that C is a fractional
hitting set for B if, viewing B as a family of subsets of X
as in (8), we have for all A ∈ B that

∑
Y⊆A C(Y) ≥ 1.

C. Resampling Algorithm and the Main Theorem

We first present our partial resampling algorithm:

• Select one element from each category i = 1, . . . , n.

The probability of selecting 〈i, j〉 is pi,j .

• Repeat the following, as long as there is some k such

that the current assignment makes the bad event Bk

true:

– Select, arbitrarily, some atomic bad event A ∈ Bk

that is currently true. We refer to this set A as the

violated set.
– Select exactly one subset Y ⊆ A. The probability

of selecting a given Y is given by

P(select Y) =
B′k(Y)∑

Y ′⊆A B′k(Y ′)
;

we refer to Y as the resampled set.

– Resample all the categories in Y independently,

using the vector p.

This algorithm is similar to, and inspired by, the Moser-

Tardos algorithm. The main difference is that in [2], if there

is a bad event that is currently true, we would resample all
the variables which it depends upon. Here, we only resample

a (carefully-chosen, random) subset of these variables.

We will need to keep track of the dependency graph

corresponding to our fractional hitting set. This is more

complicated than the usual Moser-Tardos setting, because we

will need to distinguish two ways that subsets of elements

Y, Y ′ could affect each other: they could share a variable,

or they could both be potential resampling targets for some

bad-event. In the usual Moser-Tardos analysis, we only need

to keep track of the first type of dependency. The following

symmetric relation ≈ (and its two supporting relations ∼
and ��) will account for this:

Definition 2.2: (Symmetric relations ∼, ��k, and ≈) Let

Y, Y ′ ⊆ X . We say Y ∼ Y ′ iff there exists a triple (i, j, j′)
such that 〈i, j〉 ∈ Y and 〈i, j′〉 ∈ Y ′: i.e., iff Y and Y ′

overlap in a category. We also write i ∼ Y (or Y ∼ i) to

mean that Y involves category i (i.e., 〈i, j〉 ∈ Y for some

j).

For each k, we say Y ��k Y ′ iff there is some atomic

event A′′ ∈ Bk with Y, Y ′ ⊆ A′′.
Relation ≈ is defined between pairs (Y, k): the only

admissible pairs (Y, k) here are those for which Y ⊆ A
for some atomic A ∈ Bk. We define (Y, k) ≈ (Y ′, k′) iff:

(i) Y ∼ Y ′, or (ii) k = k′ and Y ��k Y ′.
We now also define:

Definition 2.3: (Values Gk
i,j , Gk

i , and Gk that depend
on a vector �λ) Suppose we are given an assignment of non-

negative real numbers �λi,j to each element 〈i, j〉. For each

bad event Bk, we define

Gk
i,j(

�λ) =
∑

Y �〈i,j〉
B′k(Y)�λY

Gk
i (
�λ) =

∑
Y∼i

B′k(Y)�λY , and

Gk(�λ) =
∑
i

Gk
i (
�λ).

Roughly speaking, Gk
i,j is the probability that variable i

takes on value j, and causes bad-event Bk to occur, and

is selected for resampling.

Our main theorem is as follows. In part (a), it assumes

that the vector p has been given. In parts (b) and (c), it

assumes the existence of a suitable vector �λ, from which p
is explicitly derived in the statement of the theorem.

Theorem 2.4: (Main Theorem) In each of the following

three cases, the Resampling Algorithm converges to a fea-

sible configuration avoiding all bad events with probability

one.

472

(a) Suppose there exists μ : 2X × [K] → [0,∞) which

satisfies, for all Y ⊆ X and all k ∈ [K],

μ(Y, k) ≥ pY B′k(Y)
∏

(Y ′,k′)≈(Y,k)

(1 + μ(Y ′, k′)).

Then, the expected number of resamplings of any category

i is at most
∑

(Y,k): Y∼i μ(Y, k).

For the next two cases, we assume we are given an

assignment of non-negative real numbers �λi,j to each el-

ement 〈i, j〉, and suppose that we run the Resampling

Algorithm with pi,j = �λi,j/
∑

j′
�λi,j′ for all i, j. We will

use Definition 2.3 and �λi
.
=

∑
j
�λi,j in these two cases.

(b) Suppose that for all k, Gk(�λ) < 1; suppose further that

∀i, �λi ≥ 1 +
∑
k

Gk
i (
�λ)

1−Gk(�λ)
.

Then the expected number of resamplings of a category i is

at most �λi.

(c) Suppose the ��k relations are implied by ∼: i.e., for all

k, Y ��k Y ′ implies that Y ∼ Y ′. Suppose further that

∀i, �λi ≥ 1 +
∑

k G
k
i (
�λ). Then the expected number of

resamplings of a category i is at most �λi.

D. Proof ingredient: Witness Trees

A key component of our proofs will be the notion of

witness trees similar to [2]. Just as in the proof of [2], we

define an execution log of this algorithm to be a listing of all

pairs (Y, k) that were encountered during the run; it is crucial

to note that we do not list the violated sets A themselves.

Given a log, we define the witness tree which provides a

justification for any given resampling in the execution log.

Not listing the violated sets themselves, is one of our critical

ideas, and helps prune the space of possible witness trees

substantially. We form the witness tree in a manner similar

to [2], but driven by the relation ≈: we start with the event

of interest (for example, the final resampling), which goes

at the root of the tree. This, and all nodes of the tree, will be

labeled by the corresponding pair (Y, k). Stepping backward

in time, suppose the current event being processed is labeled

(Y, k). If there is no (Y ′, k′) in the current tree such that

(Y, k) ≈ (Y ′, k′), then we skip over (Y, k) (and move on

to the previous time-step). If not, let v labeled (Y ′, k′) be a

node of the lowest level (i.e., highest depth) in the current

witness tree such that (Y, k) ≈ (Y ′, k′); make the new node

labeled (Y, k) a child of this node v. Continue this process

going backward in time to complete the construction of the

witness tree.

We next introduce our main Lemma 2.5, which parallels

the analysis of [2], connecting the witness trees to the

execution logs. However, its proof is much more involved.

Lemma 2.5: Let τ be any witness tree, with nodes labeled

by (Y1, k1), (Y2, k2) . . . , (Yt, kt). Then the probability that

the witness tree τ is produced by the execution log, is at

most

P(τ occurs as witness tree) ≤
t∏

s=1

pYsB′ks
(Ys).

Proof: Recall that we do an initial sampling of all

categories (which we can consider the zeroth resampling),

followed by a sequence of resamplings. Now, consider a

node s of τ labeled by (Y, k). Suppose 〈i, j〉 ∈ Y . Because

any node – labeled (Y ′, k′), say – in which i is sampled

would satisfy (Y, k) ≈ (Y ′, k′), it must be that any earlier

resamplings of the category i must occur at a lower level of

the witness tree. So if we let r denote the number of times

that category i has appeared in lower levels of τ , then we

are demanding that the rth resampling of category i selects

j. The probability of this is pi,j .

We next consider the probability of selecting set Y . Now,

consider all the nodes of the witness tree which are at a

lower level than Y and are adjacent under ≈ to (Y, k);
denote these by (Y1, k1), (Y2, k2), . . . , (Yx, kx). These are

not necessarily distinct, but in that case they would be listed

with their multiplicity.

Again, because of the way τ is formed, we must select

Y after selecting these sets. After we select Y1, . . . , Yx, we

must encounter some atomic event A ∈ Bk for which Y
is eligible. We now claim that the first time after selecting

Y1, . . . , Yx that we encounter such an A, then we must select

Y . For, suppose we select some other Y ′ ⊆ A. In order

for the tree to contain (Y, k), we must sometime later in

the execution log select Y . In this case, (Y ′, k) will appear

lower in the witness tree than our node s, and we will have

(Y, k) ≈ (Y ′, k′). Regardless of the exact position of Y ′

in the witness tree, we will thus not see the tree τ as a

subtree of the witness tree. This gives us a condition which

is more complicated than the one previously: the first time

after selecting Y1, . . . , Yx that we encounter some atomic

event for which (Y, k) is eligible, we select it. This condition

has a probability of at most B′k(Y), irrespective of what the

violated set A was.

If all these events had a fixed time-ordering, then the sys-

tem’s stochasticity would immediately imply that their joint

probability is the product of their individual probabilities,

at most
∏

pYsB′ks
(Ys). Unfortunately, the time sequence of

these events is not fully determined. As we show in the full

paper, these events all have a specific form, which allows

us to still conclude that the total probability can be obtained

by multiplying individual probabilities.

The Resampling Algorithm and its proof are very similar

to [2], and it is tempting to view this as a special case

of that algorithm. However, the proof of the analogue of

Lemma 2.5 for the Moser-Tardos algorithm uses a quite

different argument based on coupling. This type of argument

does not appear to work for bounding the probability of

selecting a given Y .

473

In order to show that this algorithm converges, we show

that the total weight of all large witness trees is small. Using

arguments from Moser & Tardos, we can immediately show

Theorem 2.4(a). For many applications of the Resampling

Algorithm, in which the fractional hitting-sets are relatively

simple, this criterion is sufficient. However, it can be awk-

ward to use in more general settings. The reason is that it

requires us to specify yet another function μ, and check a

constraint for every Y, k. In the next section, we develop an

alternative approach to counting witness trees.

E. A new approach to counting witness trees

As we have seen, the standard accounting of witness trees

includes a parameter μ for each bad-event. We will reduce

the number of parameters dramatically by rephrasing the

LLL criterion in terms of each category.

This type of accounting is useful not just for our Re-

sampling Algorithm, but for the usual LLL and Moser-

Tardos algorithm as well. When applied to the usual Moser-

Tardos algorithm, this will give us a simplified and slightly

weakened form of Pegden’s criterion [26]. Nevertheless, it

is stronger and simpler than the standard LLL, particularly

the asymmetric LLL.

Definition 2.6: Given k and a set Y with Y ⊆ A for

some atomic A ∈ Bk, we define a family Y ⊆ 2X to be a

k-neighborhood of Y if the following properties hold:

(P1) for all Y ′ ∈ Y , we have Y ′ ��k Y and Y ′ �∼ Y ;

and

(P2) for all distinct Y ′, Y ′′ ∈ Y , we have Y ′ ���k Y ′′.
Note that ∅ is always a k-neighborhood of Y .

In many settings, the linkages due to �� are relatively in-

significant compared to the linkages due to ∼. One possible

reason for this are that the �� linkage becomes null (any pair

of sets Y1 ��k Y2 for any k, already have Y1 ∼ Y2 – and

so ∅ is the only k-neighborhood); this always occurs in the

usual Moser-Tardos algorithm (without partial resampling).

Alternatively, there may be many bad events each of which

has relatively small probability. We can simplify our LLL in

this setting; in particular, we can avoid a mutual recursion

as in Theorem 2.4(a): we get a “pure” recurrence (9), which

can then be used in (10).

Definition 2.7: (Value Ŝk depending on vector �λ) Sup-

pose further that we are given an assignment of non-negative

real numbers �λi,j to each element 〈i, j〉. We define, for each

k, a real Ŝk (if it exists) to be any value that satisfies the

condition

Ŝk ≥ max
Y : B′

k(Y)>0

∑
Y: Y is a

k-neighborhood of Y

(Ŝk)
|Y| ∏

Y ′∈Y
Bk(Y

′)�λY ′
.

(9)

Note that Ŝk ≥ 1 because of the neighborhood Y = ∅.
Furthermore, note that if the �� relation is null (i.e. Y1 ��k
Y2 ⇒ Y1 ∼ Y2), then Ŝk = 1.

Theorem 2.8: Suppose we are given an assignment of

non-negative real numbers �λi,j to each element 〈i, j〉. For

any category i, define �λi =
∑

j
�λi,j . Suppose further that

for each k, there is some real Ŝk that satisfies (9, and that

∀i, �λi ≥ 1 +
∑
k

ŜkG
k
i , (10)

where Gk
i = Gk

i (
�λ) as in Definition 2.3. Then the Resam-

pling Algorithm terminates with probability one, and the

expected number of resamplings of a category i is at most
�λi.

The worst case for Ŝk occurs when all the atomic events

within Bk are connected, yielding:

Proposition 2.9: Given a vector �λ with Gk(
��λ) < 1, we

can set Ŝk = 1
1−Gk to satisfy (9).

Parts (b) and (c) of Theorem 2.4 can be unified. Suppose

we are given some Ŝk which satisfies (9). In this case, we

define for each 〈i, j〉 Hi,j =
∑

k ŜkG
k
i,j and similarly Hi =∑

j Hi,j . Then the criterion of Theorem 2.4 has the simple

form �λi −Hi ≥ 1.

Next, if we are given �λ,B′k satisfying Theorem 2.8, then

we know that there exists a configuration which avoids

all bad events. Furthermore, such a configuration can be

found by running the Resampling Algorithm. We may

wish to learn more about such configurations, other than

that they exist. We can use the probabilistic method, by

defining an appropriate distribution on the set of feasible

configurations. The Resampling Algorithm naturally defines

a probability distribution, namely, the distribution imposed

on elements after the algorithm terminates. The following

theorem bounds the probability that an event E occurs in

the output of the Resampling Algorithm:

Theorem 2.10: (a) Suppose that we satisfy Theo-

rem 2.4(a). Then, for any atomic event E, the prob-

ability that E is true in the output of the Resampling

Algorithm, is at most P (E)
∏

k,Y∼E(1 + μ(k, Y)).
(b) Suppose that we satisfy Theorem 2.4(b) or Theo-

rem 2.4(c). Let J ⊆ Xi. The probability that the

Resampling Algorithm ever selects 〈i, j〉 for j ∈ J is

at most
∑

j∈J
�λi,j

�λi−Hi+
∑

j∈J Hi,j

(c) Suppose that we satisfy Theorem 2.4(b) or Theo-

rem 2.4(c). The probability that the Resampling Algo-

rithm ever simultaneously selects 〈i1, j1〉, . . . , 〈ik, jk〉,
is at most λi1,j1 . . . λik,jk .

A simple corollary of Theorem 2.10 shows a lower bound
on the probability of selecting a given element 〈i, j〉:

Corollary 2.11: Suppose that we satisfy Theorem 2.4(b)

or Theorem 2.4(c). Let J ⊆ Xi. The probability that the

Resampling Algorithm terminates by selecting 〈i, j〉 for j ∈
J is at least

∑
j∈J

�λi,j−
∑

j∈J Hi,j

�λi−
∑

j∈J Hi,j
.

474

III. TRANSVERSALS WITH OMITTED SUBGRAPHS

Suppose we are given a graph G = (V,E) with a partition

of its vertices into sets V = V1�V2�· · ·�Vl, each of size b.
We refer to these sets as blocks or classes. We wish to select

exactly one vertex from each block. Such a set of vertices

A ⊆ V is known as a transversal. There is a large literature

on selecting transversals such that the graph induced on A
omits certain subgraphs. (This problem was introduced in

a slightly varying form by [12]; more recently it has been

analyzed in [20], [17], [21], [18], [27]). For example, when

A is an independent set of G (omits the 2-clique K2), this

is referred to as an independent transversal.
It is well-known that a graph G with n vertices and

average degree d has an independent set of size at least

n/(d+1). For an independent transversal, a similar criterion

exists. Alon gives a short LLL-based proof that a sufficient

condition for such an independent transversal to exist is to

require b ≥ 2eΔ [14], where Δ is the maximum degree

of any vertex in the graph. Haxell provides an elegant

topological proof that a sufficient condition is b ≥ 2Δ
[16]. The condition of [16] is existentially optimal, in the

sense that b ≥ 2Δ − 1 is not always admissible [18],

[21], [20]. The work of [17] gives a similar criterion of

b ≥ Δ + �Δ/r� for the existence of a transversal which

induces no connected component of size > r. (Here r = 1
corresponds to independent transversals.) Finally, the work

of [19] gives a criterion of b ≥ Δ for the existence of a

transversal omitting K3; this is the optimal constant but the

result is non-constructive.
These bounds are all given in terms of the maximum

degree Δ, which can be a crude statistic. The proof of

[16] adds vertices one-by-one to partial transversals, which

depends very heavily on bounding the maximum degree of

any vertex. It is also highly non-constructive. Suppose we let

d denote the maximum average degree of any class Vi (that

is, we take the average of the degree (in G) of all vertices in

Vi, and then maximize this over all i). This is a more flexible

statistic than Δ. We present our first result here in parts (R1),

(R2), and (R3) of Theorem 3.1. As shown in [18], [21], [20],

the result of (R1) cannot be improved to b ≥ 2Δ − 1 (and

hence, in particular, to b ≥ 2d − 1). As shown in [19], the

result of (R3) cannot be improved to b ≥ cd for any constant

c < 1. The result (R1) for independent transversals can also

be obtained using the LLL variant of [26], but (R2) and (R3)

appear new to our knowledge.
Theorem 3.1: Suppose we have a graph G whose vertex

set is partitioned into blocks of size at least b. Suppose that

the average degree of the vertices in each block is at most

d. Then:
(R1) If b ≥ 4d, then G has an independent transversal;
(R2) If b ≥ 2d, then G has a transversal which induces no

connected component of size > 2;
(R3) If b ≥ (4/3)d, then G has a transversal which induces

no 3-clique K3.

Furthermore, these transversals can be constructed in

expected polynomial time.

Proof: In the framework of our Resampling Algorithm,

we associate each block to a category. For each forbidden

subgraph which appears in G, we associate an atomic bad

event. (Note that the atomic bad events for (R2) are all the

paths of length two in G; for (R3) they are the triangles of

G.) We apply Theorem 2.4(c) with all entries of �λ equal to

a scalar α. This has a solution α > 0 iff b ≥ 4d
r .

A. Avoiding large cliques

For avoiding cliques of size s > 3, the above approach

based on the maximum average degree d no longer works;

we instead give a bound in terms of the maximum degree

Δ. We will be interested in the case when both s and Δ is

large. That is, we will seek to show a bound of the form

b ≥ γsΔ+ o(Δ), where γs is a term depending on s and s
is large. Clearly we must have γs ≥ 1/(s− 1); e.g., for the

graph G = Ks, we need b ≥ 1 = Δ/(s−1). An argument of

[20] shows the slightly stronger lower bound γs ≥ s
(s−1)2 ;

intriguingly, this is conjectured in [20] to be exactly tight.

On the other hand, a construction in [19] shows that γs ≤
2/(s − 1). This is non-constructive, even for fixed s; this

is the best upper-bound on γs previously known. We show

that the lower-bound of [20] gives the correct asymptotic
rate of growth, up to lower-order terms; i.e., we show in

Theorem 3.2 that γs ≤ 1/s+ o(1/s). In fact, we will show

that when b ≥ Δ/s+o(Δ), we can find a transversal which

avoids any s-star; that is, all vertices will have degree <
s−1, and hence we avoid Ks. Furthermore, such transversals

can be found in polynomial time.

Comparison with the standard LLL: We now discuss

how one might approach this problem using the standard

LLL, and why this approach falls short. As in [14], we

make the natural random choice for a transversal: choose a

vertex randomly and independently from each Vi. Suppose

we define, for each s-clique H of the graph, a separate bad

event. Each bad event has probability (1/b)s. We calculate

the dependency of an s-clique as follows: for each vertex

v ∈ H , we choose another v′ in the category of v, and v′

may be involved in up to Δs−1/(s−1)! other s-cliques. This

gives us the LLL criterion e×(1/b)s×sbΔs−1/(s−1)! ≤ 1,

which can be solved when b/Δ ≥ e/s+ o(1/s). Now note

that when we are calculating the dependency of a bad event,

we must take the worst-case estimate of how many other s-

cliques a given vertex v may participate in. We bound this

in terms of the edges leaving v, so the number of such s-

cliques is at most Δs−1/(s − 1)!. However, heuristically,

this is a big over-estimate; there is an additional constraint

that the endpoints of all s − 1 such edges are themselves

connected, which is very unlikely. Unfortunately, for any

given vertex v, or even a whole partition Vi, we cannot

tighten this estimate; this estimate can only be tightened

in a global sense. The LLL is focused on the very local

475

neighborhood of a vertex, and so it cannot “see” this global

condition. The Resampling Algorithm gives us a way to

“localize” this global information to the neighborhood of

a vertex. We now present our theorem here:

Theorem 3.2: There is a constant c > 0 such that,

whenever b ≥ Δ/s+cs−3/2 log s, then there is a transversal

which omits any s-stars. Furthermore, such a transversal can

be found in polynomial time.

Proof: Apply Theorem 2.4(c), assigning the same vec-

tor �λ = α where α > 0 is a scalar. Such an α exists under

the conditions of Theorem 3.2.

We note that this result improves on [19] in three distinct

ways: it gives a better asymptotic bound; it is fully con-

structive; it finds a transversal omitting not only s-cliques

but also s-stars.

We next study weighted transversals, as considered by

[13]. We use our weighting condition to lower- and upper-

bound the weights of independent transversals, which is not

possible using [16] or [26].

Suppose that we are given weights w(v) ≥ 0 for each

vertex of G. There is a simple argument that G = (V,E)

has an independent set of weight at least
w(V)
Δ+1 and that G has

a transversal (not necessarily independent) of weight at least
w(V)

b . Likewise, G has independent sets or transversals with

weight at most w(V)/(Δ+1) or w(V)/b, respectively. Note

also that we cannot always expect independent transversals

of weight more (or less) than w(V)/b: e.g., consider the

case of all weights being equal. Our theorems 3.3 and 3.4

improve quite a bit upon the (nonconstructive) bounds of

[8]; among other things, we show next that weight at least
w(V)

b is in fact achievable if b ≥ 4.5Δ, a result that was

shown to be true asymptotically for large b in [8].

Theorem 3.3: Suppose 4Δ ≤ b ≤ 4.5Δ. Then there is an

independent transversal I ⊆ V with weight

w(I) ≥ w(V)
(√

b+
√
b− 4Δ√

b(2b− 1) +
√
b− 4Δ

)
≥ w(V)

8Δ− 1
.

Suppose b ≥ 4.5Δ. Then there is an independent transver-

sal I ⊆ V with weight

w(I) ≥ w(V) ·min(1/b,
4

27Δ− 2
).

We show a matching upper bound on weights:

Theorem 3.4: Suppose 4Δ ≤ b ≤ 8Δ. Then there is an

independent transversal I ⊆ V with weight

w(I) ≤ w(V)
2

4
√
Δ
√
b− 4Δ + b

Suppose b ≥ 8Δ. Then there is an independent transversal

I ⊆ V with weight w(I) ≤ w(V)
b .

We can give similar bounds for independent transversals

omitting other subgraphs.

IV. SUMS OF RANDOM VARIABLES, AND

COLUMN-SPARSE PACKING

Different types of bad events call for different hitting-sets,

and the best choice may depend on “global” information

about the variables it contains, in addition to local param-

eters. However, there is a natural and powerful option for

upper-tail bad events Bk of the form
∑

� Z� ≥ k, which is

what we discuss next. As above, we work in our usual setup

of elements, categories, and increasing bad events Bk. In the

discussion below, elements will often be referred to as x, xr

etc.; note that an element is always some pair of the form

〈i, j〉.
Theorem 4.1: Suppose we are given an assignment of

non-negative real numbers �λi,j to each element 〈i, j〉. Let

x1, . . . , xv be a set of elements. Define μ =
∑

t
�λxt

, and

for each category i let

μi =
∑

xt is in category i

�λxt

Suppose that in our usual setting of categories and bad

events, there is a bad event Bk that Zx1 + · · ·+Zxv ≥ μ(1+
δ), where δ > 0 and μ(1+δ) is an integer. Let d ≤ μ(1+δ)
be a positive integer. Then, recalling Definition 2.3, there is

a fractional hitting-set B′k with the property

Gk ≤ μd

d!
(
(1+δ)μ

d

) ;
Gk

i ≤ (μi/μ) · d · (1− (μi/μ))
d−1 · μd

d!
(
(1+δ)μ

d

) .
Also, we refer to the parameter d as the width of this hitting-

set.

Proof: Assign the following fractional hitting-set: for

each subset Y = {xr1 , . . . , xrd} of cardinality d in which

all the elements xr1 , . . . , xrd come from distinct categories,

assign weight B′k(Y) = 1

((1+δ)μ
d)

.

Note that by setting d = �μδ�, one can achieve the

Chernoff bounds [28]:

μd

d!
(
(1+δ)μ

d

) ≤ (eδ

(1 + δ)1+δ

)μ

.

A. LP rounding for column-sparse packing problems

In light of Theorem 4.1, consider the family of CSPs

where we have a series of linear packing constraints of

the form “
∑

x ak,xyx ≤ bk”, with non-negative coefficients

a, b. (Here and in what follows, x will often refer to some

element (i, j).) In addition, there are the usual assignment

constraints: disjoint blocks X1, . . . , Xn with the constraint

that
∑

j yi,j = 1. When does such an integer linear program

have a feasible solution? Suppose we wish to solve this

via LP relaxation. One technique is to solve the LP where

the integrality constraints on y ∈ {0, 1} are relaxed to

476

y′ ∈ [0, 1], and in addition the packing constraints are

tightened to
∑

x ak,xyx ≤ b′k for some b′k ≤ bk.

We assume that each ak,x ∈ [0, 1] and that for each x we

have
∑

k ak,x ≤ D. The condition on the separation between

bk and b′k is based on the Chernoff separation function from

Definition 1.1.

Theorem 4.2: There is a constant C > 0 with the fol-

lowing property. Suppose we have an LP parameterized by

ak,x, b
′
k, where D = maxx

∑
k,x ak,x ≥ 1.

Now let ε > 0, bk be given such that:

(C1) For all k we have bk
b′k

Chernoff(b′k(1+ ε), bk) ≤ Cε
D

(C2) For all k we have bk ≥ 1
(C3) For all k we have bk ≥ b′k(1 + ε)

Then if the linear program∑
j

yi,j ≥ 1,
∑
x

ak,xyx ≤ b′k, yx ∈ [0, 1]

is satisfiable, then so is the integer program∑
j

yi,j ≥ 1,
∑
x

ak,xyx ≤ bk, yx ∈ {0, 1}.

Furthermore, such a satisfying assignment can be found

in polynomial time.

In a typical application of this theorem, one is given some

fixed LP which specifies a, b′k, D. One wants to choose bk, ε
to satisfy Theorem 4.2; typically, it is important to make the

bk as small as possible so as to get a good approximation

ratio to the LP, while ε is not important except inasmuch as

it satisfies the Theorem.

Comparison with the standard LLL: We note that it would

be impossible for the standard LLL to approach this result,

at least in its full generality. The reason is that variable yi,j
affects constraint k if ak,i,j > 0, and it is possible that every

variable affects every constraint. Of course, this dependency

might be very small, but the LLL cannot exploit this.

Theorem 4.2 is given a generic setting, which is intended

to handle a wide range of sizes for the parameters bk, b
′
k, D.

We illustrate some typical applications.

Proposition 4.3: Suppose we are given an LP satisfying

the requirement of Theorem 4.2; let c > 0 be any desired

constant. Then we can set bk as follows so as to satisfy

Theorem 4.2:

1) For each k with b′k = O(1), we set bk = O(logD
log logD);

2) For each k with b′k ≥ Ω(logD), there is some constant

c′ > 0 such that we may set bk = b′k(1 + D−c) +
c′
√

b′k logD.

Values of b′k which are not covered by these cases, will have

a similar but more complicated value of bk.

The multiplicative factor (1 + D−c) in Proposition 4.3

is required when the right-hand sides b′k have different

magnitudes. When they all have the same magnitude, a

simpler bound is possible:

Proposition 4.4: Suppose we are given an LP satisfying

the requirement of Theorem 4.2; suppose that there is some

T ≥ Ω(logD) such that, for all k, we have b′k ≤ T .

Then setting bk = T + O(
√
T log T) suffices to satisfy

Theorem 4.2.

The multi-dimensional scheduling application from the in-

troduction follows as an easy application of Proposition 4.3.

First, given (T1, T2, . . . , TD), we can, motivated by (3), set

xi,j := 0 if there exists some � for which pi,j,� > T�. After

this filtering, we solve the LP relaxation. If it gives a feasible

solution, we scale the LP so that all r.h.s. values b′k equal 1;

our filtering ensures that the coefficient matrix has entries

in [0, 1] now, as required. By Proposition 4.3, we can now

set bk = O(logD/ log logD).

B. Packet routing

We begin by reviewing the basic strategy of [24], its

improvements by [25] and [8]. [24] is a very readable

overview of our basic strategy, and we will not include all the

details which are covered there. We note that [25] studied a

more general version of the packet-routing problem, so their

choice of parameters was not (and could not be) optimized.

We are given a graph G with N packets. Each packet has

a simple path, of length at most D, to reach its endpoint

vertex. In any timestep, a packet may wait at its current

position, or move along the next edge on its path. Our goal

is to find a schedule of smallest makespan in which, in any

given timestep, an edge carries at most a single packet.

We define the congestion C to be the maximum, over all

edges, of the number of packets scheduled to traverse that

edge. It is clear that D and C are both lower bounds for

the makespan, and [23] has shown that in fact a schedule of

makespan O(C +D) is possible. [24] provided an explicit

constant bound of 39(C + D), as well as describing an

algorithm to find such a schedule. This was improved to

23.4(C +D) in [25] and improved in [8] to 8.84(C +D).
A non-constructive probabilistic argument in [8] showed the

existence of schedules with makespan 7.26(C +D).
In the initial graph, the congestion may “bunch up” in

time, that is, certain edges may have very high congestion

in some timesteps and very low congestion in others. So

the congestion is not bounded on any smaller interval than

the trivial interval of length D. During our construction, we

will “even out” the schedule, bounding the congestion on

successively smaller intervals. Ideally, one would eventually

finish by showing that on each each individual timestep (i.e.

interval of length 1), the congestion is roughly C/D. In this

case, one could form a feasible schedule by expanding each

timestep into C/D separate timesteps.

Although the details of this construction are too com-

plicated to discuss fully here, the following intuition is

still useful. By choosing the delays for each packet, the

congestion within each time-step can be regarded as a sum

of random variables, with mean O(1). We want to ensure

477

that this congestion is in fact bounded by O(1), over all

timesteps and all edges. (This is a simplification; in fact,

in the final stages of the construction of [8], the necessary

condition is a complicated and non-linear function of the

congestion within four adjacent time-steps.) So, the bounds

we have developed in Theorem 4.1 apply.

Theorem 4.5: There is a schedule of makespan at most

5.70(C + D), which can be constructed in expected poly-

nomial time.

Acknowledgment. We thank the FOCS 2013 referees for

their very helpful suggestions.

REFERENCES

[1] P. Erdős and L. Lovász, “Problems and results on 3-chromatic
hypergraphs and some related questions,” in Infinite and
Finite Sets, ser. Colloq. Math. Soc. J. Bolyai. North-Holland,
1975, vol. 11, pp. 609–627.

[2] R. Moser and G. Tardos, “A constructive proof of the general
Lovász Local Lemma,” Journal of the ACM, vol. 57, no. 2,
pp. 1–15, 2010.

[3] B. Haeupler, B. Saha, and A. Srinivasan, “New Constructive
Aspects of the Lovász Local Lemma,” Journal of the ACM,
vol. 58, 2011.

[4] K. Kolipaka and M. Szegedy, “Moser and Tardos meet
Lovász,” in Proceedings of ACM STOC, 2011, pp. 235–244.

[5] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approxima-
tion algorithms for scheduling unrelated parallel machines,”
Mathematical Programming, vol. 46, pp. 259–271, 1990.

[6] P. Raghavan and C. D. Thompson, “Randomized rounding:
a technique for provably good algorithms and algorithmic
proofs,” Combinatorica, vol. 7, pp. 365–374, 1987.

[7] M. Singh, “Iterative methods in combinatorial optimization,”
Ph.D. dissertation, Tepper School of Business, Carnegie-
Mellon University, 2008.

[8] D. G. Harris and A. Srinivasan, “Constraint satisfaction,
packet routing, and the Lovász Local Lemma,” in Proc. ACM
Symposium on Theory of Computing, 2013.

[9] R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thompson,
U. V. Vazirani, and V. V. Vazirani, “Global wire routing in
two-dimensional arrays,” Algorithmica, vol. 2, pp. 113–129,
1987.

[10] Y. Azar and A. Epstein, “Convex programming for scheduling
unrelated parallel machines,” in STOC ’05: Proceedings of
the 36th annual ACM Symposium on Theory of Computing.
ACM, 2005, pp. 331–337.

[11] F. T. Leighton, C.-J. Lu, S. B. Rao, and A. Srinivasan, “New
Algorithmic Aspects of the Local Lemma with Applications
to Routing and Partitioning,” SIAM Journal on Computing,
vol. 31, pp. 626–641, 2001.

[12] B. Bollobás, P. Erdős, and E. Szemerédi, “On complete
subgraphs of r-chromatic graphs,” Discrete Math., vol. 1, pp.
97–107, 1975.

[13] R. Aharoni, E. Berger, and R. Ziv, “Independent systems of
representatives in weighted graphs,” Combinatorica, vol. 27,
pp. 253–267, 2007.

[14] N. Alon, “The linear arboricity of graphs,” Israel Journal of
Mathematics, vol. 62, pp. 311–325, 1988.

[15] ——, “The strong chromatic number of a graph,” Random
Structures and Algorithms, vol. 3, pp. 1–7, 1992.

[16] P. E. Haxell, “A note on vertex list colouring,” Combinatorics,
Probability, and Computing, vol. 10, pp. 345–348, 2001.

[17] P. E. Haxell, T. Szabó, and G. Tardos, “Bounded size compo-
nents – partitions and transversals,” Journal of Combinatorial
Theory, Series B, vol. 88, pp. 281–297, 2003.

[18] G. Jin, “Complete subgraphs of r-partite graphs,” Combin.
Probab. Comput., vol. 1, pp. 241–250, 1992.

[19] P.-S. Loh and B. Sudakov, “Independent transversals in lo-
cally sparse graphs,” Journal of Combinatorial Theory, Series
B, vol. 97, pp. 904–918, 2007.

[20] T. Szabó and G. Tardos, “Extremal problems for transversals
in graphs with bounded degree,” Combinatorica, vol. 26, pp.
333–351, 2006.

[21] R. Yuster, “Independent transversals in r-partite graphs,”
Discrete Math., vol. 176, pp. 255–261, 1997.

[22] T. Rothvoss, “A simpler proof for O(congestion+dilation)
packet routing,” in Proc. Conference on Integer Pro-
gramming and Combinatorial Optimization, 2013, uRL:
http://arxiv.org/pdf/1206.3718.pdf.

[23] F. T. Leighton, B. M. Maggs, and S. B. Rao, “Packet routing
and jobshop scheduling in O(congestion + dilation) steps,”
Combinatorica, vol. 14, pp. 167–186, 1994.

[24] C. Scheideler, “Universal routing strategies for intercon-
nection networks,” in Lecture Notes in Computer Science.
Springer, 1998, vol. 1390.

[25] B. Peis and A. Wiese, “Universal packet routing with arbitrary
bandwidths and transit times,” in IPCO, 2011, pp. 362–375.

[26] W. Pegden, “An extension of the Moser-Tardos algorithmic
Local Lemma,” Arxiv 1102.2583, 2011, To appear in the
SIAM J. Discrete Mathematics.

[27] P. Haxell and T. Szabó, “Odd independent transversals are
odd,” Comb. Probab. Comput., vol. 15, no. 1-2, pp. 193–211,
Jan. 2006.

[28] J. P. Schmidt, A. Siegel, and A. Srinivasan, “Chernoff-
Hoeffding bounds for applications with limited indepen-
dence,” SIAM J. Discrete Math., vol. 8, pp. 223–250, 1995.

478

