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Abstract—How can we encode a communication proto-
col between two parties to become resilient to adversarial
errors on the communication channel? If we encode each
message in the communication protocol with a “good”
error-correcting code (ECC), the error rate of the encoded
protocol becomes poor (namely 𝑂(1/𝑚) where 𝑚 is the
number of communication rounds). Towards addressing
this issue, Schulman (FOCS’92, STOC’93) introduced the
notion of interactive coding.

We argue that whereas the method of separately encod-
ing each message with an ECC ensures that the encoded
protocol carries the same amount of information as the
original protocol, this may no longer be the case if using
interactive coding. In particular, the encoded protocol may
completely leak a player’s private input, even if it would
remain secret in the original protocol. Towards addressing
this problem, we introduce the notion of knowledge-
preserving interactive coding, where the interactive coding
protocol is required to preserve the “knowledge” trans-
mitted in the original protocol. Our main results are as
follows.
∙ The method of separately applying ECCs to each

message has essentially optimal error rate: No
knowledge-preserving interactive coding scheme can
have an error rate of 1/𝑚, where 𝑚 is the number
of rounds in the original protocol.

∙ If restricting to computationally-bounded
(polynomial-time) adversaries, then assuming
the existence of one-way functions (resp.
subexponentially-hard one-way functions), for
every 𝜖 > 0, there exists a knowledge-preserving
interactive coding schemes with constant error
rate and information rate 𝑛−𝜖 (resp. 1/polylog(𝑛))
where 𝑛 is the security parameter; additionally to
achieve an error of even 1/𝑚 requires the existence
of one-way functions.

∙ Finally, even if we restrict to computationally-
bounded adversaries, knowledge-preserving interac-
tive coding schemes with constant error rate can
have an information rate of at most 𝑜(1/ log 𝑛). This
results applies even to non-constructive interactive
coding schemes.
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I. INTRODUCTION

The study of how to communicate over a noisy chan-
nel dates back to the seminal works of Shannon [Sha48]
and Hamming [HAM50] from the 1940s, initiating the
study of error-correcting codes. Roughly speaking, an
error-correcting code encodes a 𝑘-bit message 𝑚 into
a 𝑐𝑘 bit message with the property that even if a
fraction 𝜂 < 1 of the bits of the encoded messages
are adversarially changed, the original message 𝑚 can
be decoded; 𝑅 = 1/𝑐 is referred to as the information
rate of the code, and 𝜂 as the error rate. Efficiently
encodable and decodable error correcting codes with
constant information rate and error rate are known
[Jus72]; in fact, such codes can even be made linear-
time encodable and decodable [Spi96].

In this work, we are interested in the question of
how to encode interactive communication: Given an
interactive protocol 𝜋 = (𝐴,𝐵) between two parties,
how can we encode this protocol to become resilient
to adversarial errors? A naive approach would be to
simply apply a “good” (i.e., constant information and
error rate) error correcting code to each message of
the protocol. This results in a poor error rate: if the
protocol has 𝑚 rounds and each round requires sending
a 𝑘-bit message, then it suffices to corrupt 𝑂(𝑘) out
of the 𝑂(𝑘𝑚) communicated bits (that is, a fraction
𝑂(1/𝑚)) to ensure an incorrect decoding. To address
this problem, Schulman [Sch92], [Sch93], [Sch96] in-
troduced the notion of interactive coding. Roughly
speaking, an interactive coding scheme is an algorithm
𝑄 = (𝑄1, 𝑄2) such that for any interactive protocol
𝜋 = (𝐴,𝐵), (𝑄𝐴

1 , 𝑄𝐵
2 ) emulates the interaction of

(𝐴,𝐵) in the sense that (with overwhelming probabil-
ity) the execution of the actual protocol (𝐴,𝐵) and the
“encoded protocol” (𝑄𝐴

1 , 𝑄𝐵
2 ) yield the same outputs.

Additionally, the protocol (𝑄𝐴
1 , 𝑄𝐵

2 ) is error-resilient:
the execution of (𝑄𝐴

1 , 𝑄𝐵
2 ) yields the same outputs even

if a 𝜂 fraction of the communication is adversarially
corrupted, where 𝜂 is an error rate. Schulman [Sch96]
presented an interactive coding scheme with constant
information and error rate. Schulman’s construction
achieved an error rate of 1/240, which was later im-
proved by Braverman and Rao [BR11] and Braverman
[Bra12] to (close to) 1/8. The interactive coding scheme
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𝑄 in their works, however, requires exponential or
subexponential time. Gelles, Moitra and Sahai [GMS11]
showed to get a polynomial-time interactive coding
(with constant information and error rate) for the case
of uniformly distributed (as opposed to adversarial)
errors. More recently, the elegant work of Brakerski
and Kalai [BK12] showed how to get a polynomial-time
interactive coding handling also adversarial errors, with
a constant information rate and an error rate of (close
to) 1/32, and even more recently Brakerski and Naor
[BN13] show how to get quasi-linear time interactive
coding with constant information and error rate.

Interactive Coding, revisited When we encode mes-
sages using error correcting codes we ensure that the
encoded messages carry exactly the same information
as the original messages; in other words, they carry all
the information in the original messages (or else we
cannot decode), and additionally they do not carry any
other information (say, about future messages). Con-
sider, for instance, transmitting an “interactive exam”
(e.g., an oral exam) in an error resilient way. The exam
has the property that question 2 in the exam reveals
the answer to question 1. Ideally, we would like to
guarantee that the error resilient version of the exam
does not allow the student (taking the exam) to see
question 2 before it needs to provide the answer to
question 1 (or else it can trivially answer question 1).
Clearly this property would hold if we use the “naive
approach” of separately encoding every message using
an error correcting code, but as we shall see shortly,
this property may no longer hold if we use interactive
coding. Intuitively, the problem is that interactive coding
(and in particular, the above-mentioned solutions), while
guaranteeing that the encoded protocol carries at least
the same amount of information as the original protocol,
does not necessarily guarantee that the encoded protocol
does not reveal more information than the original
protocol.

As another example, consider two mutually distrust-
ful players that wish to runs some secure cryptographic
protocol (𝐴,𝐵) over a noisy channel. Can these players
instead run an interactive coding (𝑄𝐴

1 , 𝑄𝐵
2 ) of (𝐴,𝐵)?

In other words, does the interactive coding preserve the
security of the original underlying protocol? It is easy
to see that the “naive approach” of separately encoding
every message using an error correcting code preserves
security of the underlying protocol. However, if we use
interactive coding, this may no longer be the case. The
problem is that the notion of interactive coding only
requires that the encoded protocol (𝑄𝐴

1 , 𝑄𝐵
2 ) emulates

(𝐴,𝐵) as long as both of the communicating parties are
honestly executing the protocol. In particular, if one of
the players is adversarial, it could be the case that the

player gains more information when participating in the
encoded protocol than it would have in the original pro-
tocol; for instance, player 1 may, by deviating from the
protocol instructions in the encoded protocol (𝑄𝐴

1 , 𝑄𝐵
2 ),

learn something about player 2’s private input that is
guaranteed to remain secret in the original protocol
(𝐴,𝐵) (no matter what player 1 does).

The reason interactive coding schemes do not neces-
sarily provide the desired guarantees in the above sce-
narios is that such schemes typically “bundle together”
multiple rounds of interactions of the original protocol,
and when an error in the communication is detected,
the whole bundle is “replayed”. (Looking forward, as
we show in Theorem 2, any interactive coding with
a “good” error rate in fact needs to replay messages
in this way.) This may allow an attacker to “fake”
an error in the communication in order to get the
bundle replayed, but this time change its messages,
and as a consequence may learn two (or more) partial
transcripts where the attackers messages are different:
in essence, the encoded protocol gives the attacker the
opportunity to “rewind” the honest player in original
protocol. In the above “interactive exam” example such
rewindings mean that the student may get knowledge
of the second question before having to provide the
answer to the first one; for the cryptographic proto-
col example, it is well-known that most (but not all,
see [CGGM00]) cryptographic protocols are not secure
under such rewindings: Consider, for instance, any of
the classic zero-knowledge protocols (e.g., [GMR89],
[Blu86]); if the verifier can rewind the prover just
once, it can completely recover the NP-witness used by
the prover, although the protocols are zero-knowledge
without such rewindings.

Knowledge-preserving interactive coding Towards
addressing this problem, we here put forward, and
study, the notion of knowledge-preserving interactive
coding: Roughly speaking, we require not only that
(𝑄𝐴

1 , 𝑄𝐵
2 ) conveys at least as much “knowledge” as

(𝐴,𝐵), but also that it does not convey more, even
if one of the players adversarially deviates from the
protocol instructions; that is, (𝑄𝐴

1 , 𝑄𝐵
2 ) preserves the

knowledge transmitted in (𝐴,𝐵). In other words, we
require not only that (𝑄𝐴

1 , 𝑄𝐵
2 ) emulates (𝐴,𝐵) when

the players are honest (only caring about their correct
output and not trying to extract any other knowledge),
but also that it is a good emulation when one of
the players adversarially deviates from the protocol
instructions (e.g., trying to obtain more knowledge
about the other player’s input and potentially use it
in the interaction). We formalize this notion through
the classic zero-knowledge “simulation-paradigm” from
cryptography [GMR89], [GMW91]: We require that
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for every adversarial strategy 𝐴∗ for player 1 (resp.
𝐵̃∗ for player 2) participating in the encoded protocol
(𝐴, 𝐵̃) = (𝑄𝐴

1 , 𝑄𝐵
2 ), there exists a “simulator” 𝐴∗

(resp. 𝐵∗) such that the output of both players in the
execution of (𝐴∗, 𝐵̃) (resp. (𝐴, 𝐵̃∗)) are indistinguish-
able from the outputs of players in the execution of
(𝐴∗, 𝐵) (resp. (𝐴,𝐵∗)). In other words, an adversary
participating in the encoded protocol does not gain any
more “knowledge” than it would have in the original
protocol, and cannot affect the honest parties output
more than it could have in the original protocol.

As we shall see, achieving knowledge-preserving
interactive coding is significantly harder than “plain”
interactive coding, and studying resilience against only
computationally bounded adversaries, as was done by
Lipton [Lip94] and Micali, Peikert, Sudan and Wilson
[MPSW10] in the context of error correcting codes, is
actually essential for achieving good error rates in the
context of knowledge-preserving interactive coding.

A. Our Results

We are interested in knowledge-preserving interactive
coding schemes 𝑄 = (𝑄1, 𝑄2) where 𝑄1 and 𝑄2 are
efficient; we formalize this by requiring that 𝑄1, 𝑄2

receive as input the communication complexity ℓ and
number of rounds 𝑚 of the protocol (𝐴,𝐵), and a
security parameter 𝑛, and require that 𝑄1, 𝑄2 run in
time polynomial in ℓ,𝑚 and 𝑛; in the sequel, when
referring to a knowledge-preserving interactive coding
scheme, we only refer to such efficiently computable
schemes.

The information-theoretic regime We start by stating
the folklore result that the “naive approach” of sepa-
rately encoding each message in the protocol with a
good error correcting code is a knowledge-preserving
interactive coding:

Theorem 1. [Informally stated] There exists a
knowledge-preserving interactive coding scheme 𝑄 with
polynomial information rate and error rate 𝑂(1/𝑚)
where 𝑚 is the number of communication rounds in
the original protocol.

Our first result is a strong negative result for
knowledge-preserving interactive coding, showing that
the naive approach is essentially optimal in terms of
the error-rate (if requiring resilience against computa-
tionally unbounded adversaries).1

Theorem 2. [Informally stated] For every knowledge-
preserving interactive coding scheme 𝑄 = (𝑄1, 𝑄2),
every polynomial 𝑚(⋅), there exists an 𝑚(𝑛)-round

1We mention the naive approach also has a poor (polynomial)
information rate. We leave open the question if constant information
rate can be acheived with error rate 𝑂(1/𝑚).

protocol (𝐴,𝐵) such that (𝑄𝐴
1 , 𝑄𝐵

2 ) has an error rate
of at most 1/𝑚(𝑛), where 𝑛 is the security parameter.
(In particular, no knowledge preserving coding scheme
can have error rate 1/poly(𝑛) where 𝑛 is the security
parameter).

The computational regime We next turn to consider
computational knowledge-preserving interactive coding,
where we only require resilience against computation-
ally bounded adversaries: we only require the error-
resilience property to hold against computationally-
bounded channel adversaries, and the knowledge-
preserving property to hold against computationally-
bounded adversaries. We first present a positive result,
showing that constant-error rate is possible (albeit at a
sub-constant information rate):

Theorem 3. [Informally stated] Assume the existence
of one-way functions. Then, for every 𝜖 > 0, there exists
a knowledge-preserving interactive coding scheme with
error rate (1/12) − 𝜖 and information rate 𝑂(1/𝑛𝜖)
where 𝑛 is the security parameter. If additionally
subexponentially-hard one-way functions exists, the in-
formation rate can be improved to 𝑂(1/polylog𝑛).

As our next result demonstrates, one-way functions
are necessary to achieve a “non-trivial” error rate.

Theorem 4. [Informally stated] Assume the existence of
a computational knowledge-preserving interactive cod-
ing scheme with error rate 1/𝑚, where 𝑚 is the number
of communication rounds in the original protocol. Then
one-way functions exist.

We finally show that every computational knowledge-
preserving interactive coding scheme with constant error
rate must have an information rate of 𝑜(1/ log 𝑛).

Theorem 5. [Informally stated] Assume the existence
of a computational knowledge-preserving interactive
coding scheme with information rate 𝑅 and error rate
𝜂. Then 𝑅𝜂 ∈ 𝑜(1/ log(𝑛)), where 𝑛 is the security
parameter.

Non-constructive knowledge-preserving interactive
coding All the above-mentioned results rely on the
standard notion of interactive coding where the algo-
rithm 𝑄 = (𝑄1, 𝑄2) only uses the original protocol
𝜋 = (𝐴,𝐵) as a black-box (i.e., the encoded protocol
is (𝑄𝐴

1 , 𝑄𝐵
2 )). One may also consider a more relaxed

notion of coding, where the encoded protocol uses the
description of the protocol 𝜋 in a non-black-box way,
or is even non-constructive. We note that the proof of
Theorem 5 is actually stronger than stated; we actually
show that every protocol (not just those protocols ob-
tained by accessing the original protocol 𝜋 as a black-
box) that preserves the knowledge transmitted in the
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original protocol and has an error rate of 𝑂(1), must
have a communication complexity of at least 𝜔(log 𝑛).

Theorem 6. [Stronger version of Theorem 5, informally
stated] For every function 𝜂(𝑛) ∈ Ω(1/ log 𝑛), there
exists a protocol 𝜋 with communication complexity
𝑂(1/𝜂(𝑛)) such that for every protocol 𝜋′ that is
a knowledge-preserving variant of 𝜋 (even just w.r.t.
computationally-bounded adversaries) and is computa-
tionally 𝜂-error resilient, the communication complexity
of 𝜋′ is at least 𝜔(log 𝑛).

It is worthwhile to compare Theorem 6 with Theorem
2. As mentioned above, Theorem 6 is stronger that
Theorem 2 in that it rules out also non-constructive
interactive coding schemes. On the other hand, it is
weaker is several other aspects: First, in Theorem 2 we
“blatantly” violate knowledge preservance: we exhibit
some explicit information that can only be learnt with
negligible probability in 𝜋, but can be learnt with
inverse polynomial probability in the encoded protocol.
In contrast, in the proof of Theorem 6 we rely on the
knowledge-preservance property in a stronger way (in
particular, as mentioned above, we rely the knowledge-
preservance property to show that the encoded proto-
col implicitly executed 𝜋, whereas in Theorem 2 this
could be showed unconditionally). Secondly, the error
rate achieved in Theorem 6 is weaker than the one
rate achieved in Theorem 2. This, to some extent, is
necessary, since Theorem 6 also rules out computational
knowledge-preserving interactive coding, and as showed
in our positive result (Theorem 3), an error rate of 𝑂(1)
can be achieved in this setting.

B. Independent Work

In this work we study whether interactive codings
schemes can be made knowledge preserving (and thus
preserving security of the protocols on which they op-
erate). A recent independent work by Gelles, Sahai and
Wadia [GSW13] focuses on an orthogonal, but related,
exciting new question and studies whether information-
theoretically secure computation protocols can be error
resilient. They provide a negative result by demon-
strating the existence of a class of functionalities that
can be securely computated with information-theoretic
security, but no error-resilient protocol (handling a con-
stant error rate) can compute these functionalities with
information theoretic-security.

C. Overview of the Paper

In Section II we provide some notation and prelim-
inaries. In Section III we formally define the notion
of knowledge-preserving interactive coding. Section IV
contains our results for the information-theoretic setting,
and Section V contains our result for the computational

setting; finally, in Section VI we present our impos-
sibility results for non-constructive interactive coding.
Due to lack of space, in this extended abstract we only
provide very rough high-level outlines of the proofs of
all our results. The complete proofs can all be found in
the full version [CPT13].

II. NOTATION AND PRELIMINARIES

A. Notation

Basic Notation Let ℕ denote the set of positive integers,
and [𝑛] denote the set {1, 2, . . . , 𝑛}. By a probabilistic
algorithm we mean a Turing machine that receives an
auxiliary random tape as input. If 𝑀 is a probabilistic
algorithm, then for any input 𝑥, the notation “𝑀𝑟(𝑥)”
denotes the output of the 𝑀 on input 𝑥 when 𝑀 ’s
random tape is fixed to 𝑟, while 𝑀(𝑥) represents the
distribution of outputs of 𝑀𝑟(𝑥) when 𝑟 is chosen
uniformly. We say that a function 𝜖 : ℕ → [0, 1] is
negligible if for every constant 𝑐 ∈ ℕ, 𝜖(𝑛) < 𝑛−𝑐

for sufficiently large 𝑛. We say that a function 𝜇 :
ℕ → [0, 1] is overwhelming if there exists a negligible
function 𝜖 such that for all 𝑛 ∈ ℕ, 𝜇(𝑛) ≥ 1− 𝜖(𝑛).

Probabilistic Notation We use probabilistic notation
from [GMR89]: By 𝑥← 𝒮 , we denote that an element
𝑥 is sampled from a distribution 𝒮. If 𝐹 is a finite
set, then 𝑥 ← 𝐹 means 𝑥 is sampled uniformly from
the set 𝐹 . To denote the ordered sequence in which
the experiments happen we use comma, e.g. (𝑥 ←
𝒮, (𝑦, 𝑧)← 𝐴(𝑥)). Using this notation we can describe
probability of events. For example, if 𝑝(⋅, ⋅) denotes a
predicate, then Pr[𝑥 ← 𝒮, (𝑦, 𝑧) ← 𝐴(𝑥) : 𝑝(𝑦, 𝑧)]
is the probability that the predicate 𝑝(𝑦, 𝑧) is true in
the ordered sequence of experiments (𝑥← 𝒮, (𝑦, 𝑧)←
𝐴(𝑥)). The notation {(𝑥← 𝒮, (𝑦, 𝑧)← 𝐴(𝑥) : (𝑦, 𝑧))}
denotes the resulting probability distribution {(𝑦, 𝑧)}
generated by the ordered sequence of experiments (𝑥←
𝒮, (𝑦, 𝑧)← 𝐴(𝑥)).

Notation for Interactive protocols An interactive pro-
tocol is a tuple 𝜋 = (𝐴,𝐵,𝒳𝐴,𝒳𝐵) where 𝐴 and
𝐵 are interactive probabilistic Turing machines and
𝒳𝐴 and 𝒳𝐵 specify the set of inputs to 𝐴 and 𝐵
(parametrized by a security parameter 𝑛). 𝐴 and 𝐵,
on input 𝑥 ∈ 𝒳𝐴(1

𝑛) and 𝑦 ∈ 𝒳𝐵(1
𝑛) interact with

each other and generate some output at the end of the
interaction. We denote this interaction by 𝐴(𝑥)↔ 𝐵(𝑦)
(formally, it is a random variable over joint views of
𝐴 and 𝐵, including the randomness of both players,
their inputs, and all the messages received). Given an
interaction 𝑒, we denote by out𝑖[𝑒] the output of player
𝑖 ∈ {1, 2}, by out[𝑒] the output of both parties, and by
trans[𝑒] the transcript of the interaction.
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B. Cryptographic Notions

We assume the reader is familiar with statistical and
computational indistinguishability, one-way functions
and signature schemes; we refer the reader to [Gol06]
(or the full version of this paper) for details.

C. Hash Functions

We recall the standard definition of 𝑡-wise indepen-
dent hash functions.

Definition 7 (𝑡-wise Independent Hash Functions). A
family of hash functions 𝐻 = {ℎ : 𝑆1 → 𝑆2} is 𝑡-wise
independent if the following two conditions hold:

1) ∀𝑥 ∈ 𝑆1, the random variable ℎ(𝑥) is uniformly
distributed over 𝑆2, where ℎ← 𝐻 .

2) ∀𝑥1 ∕= ⋅ ⋅ ⋅ ∕= 𝑥𝑡 ∈ 𝑆1, the random variables
ℎ(𝑥1), . . . , ℎ(𝑥𝑡) are independent, where ℎ← 𝐻 .

D. Error-correcting Codes

We recall the definition of error correcting codes.

Definition 8 (Coding function). An (𝑛, ℓ)-coding func-
tion 𝐶 = (𝐸,𝐷) is an encoding function 𝐸 : {0, 1}𝑛 →
{0, 1}ℓ and a decoding function 𝐷 : {0, 1}ℓ → {0, 1}𝑛
for some positive integers ℓ ≥ 𝑛. The information
rate of the scheme, denoted 𝑅 is defined as 𝑛/ℓ. The
scheme has error rate (or decoding distance) 𝜂 if, for all
𝑚 ∈ {0, 1}𝑛 and all 𝑟 ∈ {0, 1}ℓ such that the codeword
𝐸(𝑚) and 𝑟 differ in at most 𝜂ℓ bits, 𝐷(𝑟) = 𝑚.

Definition 9 (ECC). An family of coding functions
{𝐶𝑛 = (𝐸𝑛, 𝐷𝑛)}𝑛∈ℕ is an efficient error correcting
code (ECC) 𝐶 = (𝐸,𝐷) with error rate 𝜂 : ℕ→ (0, 1)
and information rate 𝑅 : ℕ→ (0, 1) if for every 𝑛 ∈ ℕ,
(𝐸𝑛, 𝐷𝑛) is a (𝑛, 𝑛/𝑅(𝑛)) coding function with error
rate 𝜂(𝑛), and {𝐸𝑛} and {𝐷𝑛} can be computed by
uniform polynomial time algorithms.

As shown by Justesen in [Jus72], ECCs with constant
error and information rate exist.

Theorem 10 ([Jus72]). There exists an ECC with error
rate 𝑂(1) and information rate 𝑂(1).

Justesen codes, however, do not give a tight error rate.
The concatenation of the Reed-Solomon code [RS60]
and the Hadamard code, however, yield an ECC with
error rate close to 1/4 (which is optimal), but require a
polynomial information rate.

Theorem 11 ([GS00]). For every 𝜖 > 0, there exists
an ECC with error rate 1

4 − 𝜖 and information rate
𝑅(𝑛) = 𝑂(1/𝑛).

When unique decoding is impossible, it may be still
possible to decode to a short list of candidate messages;
the notion of list-decoding captures this.

Definition 12. A (𝑛, ℓ)-coding function is (𝜖, 𝐿)-list
decodable if for any 𝑟 ∈ {0, 1}ℓ, there exists a list of
at most 𝑙 ≤ 𝐿 distinct 𝑚1,𝑚2, . . .𝑚𝑙 such that 𝐸(𝑚𝑖)
and 𝑟 differ in at most 𝜖ℓ bits, for all 𝑖 ∈ [𝑙]. A family of
coding functions {(𝐸𝑛, 𝐷𝑛)}𝑛∈ℕ with information rate
𝑅 : ℕ→ (0, 1) is efficiently 𝜖-list decodable if for every
𝑛 ∈ ℕ, (𝐸𝑛, 𝐷𝑛) is a (𝑛, 𝑛/𝑅(𝑛)) coding function that
is (𝜖(𝑛), 𝐿𝑛)-list decodable for some 𝐿𝑛 ∈ ℕ, and there
exists a polynomial time algorithm 𝐿𝐷 that finds this
list.

As shown by Guruswami and Sudan [GS00], the
concatenation of the Reed-Solomon code and Hadamard
code is efficiently list decodable up to an error rate close
to 1/2.

Theorem 13. For every 𝜖 > 0, there exists an ECC with
information rate 𝑅(𝑛) = 𝑂(1/𝑛) that is is efficiently
1
2 − 𝜖-list decodable.

III. KP INTERACTIVE CODING

In this section we provide a formal definition of
knowledge-preserving (KP) interactive coding.

A. Error Resilience for Interactive Protocols

Let us start by defining error rate for interactive
protocols; in contrast to earlier works on interactive
coding, we here consider error-resilience against both
unbounded adversarial channels (as is typically done
[Sch96]) and also error-resilience against computation-
ally bounded channels (as was done in the context of
error correcting codes in [Lip94], [MPSW10]).

Towards providing these definitions, we need some
additional notation. The communication complexity of a
protocol 𝜋 on security parameter 𝑛, denoted by CC𝑛(𝜋),
is the worst-case total number of bits transmitted in the
interaction 𝐴(𝑥) ↔ 𝐵(𝑦), over all possible input 𝑥 ∈
𝒳𝐴(1

𝑛), 𝑦 ∈ 𝒳𝐵(1
𝑛) and randomness of both players.

The round complexity 𝑚(𝑛) of a protocol 𝜋 on security
parameter 𝑛 is the worst-case number of communication
rounds (one round corresponds to two messages) in the
interaction 𝐴(𝑥) ↔ 𝐵(𝑦), over all possible input 𝑥 ∈
𝒳𝐴(1

𝑛), 𝑦 ∈ 𝒳𝐵(1
𝑛) and randomness of both players.

We consider interactive protocols running over
noisy/adversarial channels, which may flip some of the
bits transmitted by both players. We model channels
as interactive Turing machines that relay messages
between the two players.

Definition 14 (Channel). A channel is an interactive
Turing machine 𝐶 that on input a security parameter
1𝑛 interacts with two interactive machines by relaying
messages for the machines as follows: upon receiving a
message 𝑚 from one machine, 𝐶 sends a message 𝑚′

to the other machine of length ∣𝑚′∣ = ∣𝑚∣.
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We denote by 𝐴(𝑥) ↔𝐶(1𝑛) 𝐵(𝑦) the interaction
between 𝐴(𝑥) and 𝐵(𝑦) over the channel 𝐶 given the
security parameter 𝑛. (Note that the interaction 𝐴(𝑥)↔
𝐵(𝑦) is identical to the interaction 𝐴(𝑥)↔𝐶0(1𝑛) 𝐵(𝑦),
where 𝐶0 is the “honest” channel that simply relays
messages between 𝐴 and 𝐵 without flipping any bits.)

Definition 15 (Communication Complexity over Noisy
Channels). Let 𝜋 = (𝐴,𝐵,𝒳𝐴,𝒳𝐵) be a protocol. The
communication complexity of 𝜋 over noisy channels
on security parameter 𝑛, denoted by CC∗𝑛(𝜋), is the
worst-case number of bits transmitted in the interaction
𝐴(𝑥) ↔𝐶(1𝑛) 𝐵(𝑦), over all possible inputs 𝑥 ∈
𝒳𝐴(1

𝑛), 𝑦 ∈ 𝒳𝐵(1
𝑛), randomness of both players, and

channels 𝐶.

We are now ready to define error resilience.

Definition 16. A protocol 𝜋 = (𝐴,𝐵,𝒳𝐴,𝒳𝐵) with
round-complexity 𝑚(⋅) is (computationally) 𝜂(⋅, ⋅)-error
resilient if there exists a negligible function 𝜇 such
that for every security parameter 𝑛, inputs 𝑥 ∈
𝒳𝐴(1

𝑛), 𝑦 ∈ 𝒳𝐵(1
𝑛), and any (non-uniform proba-

bilistic polynomial-time in the security parameter 𝑛)2

channel 𝐶 that flips at most 𝜂(𝑛,𝑚(𝑛)) ⋅𝐶𝐶∗𝑛(𝜋) bits,
the following holds:

Pr
[
out[𝐴(𝑥)↔ 𝐵(𝑦)] = out[𝐴(𝑥)↔𝐶(1𝑛) 𝐵(𝑦)

]

≥ 1− 𝜇(𝑛).

B. Knowledge Preservance

Let us move on to defining what it means for a
protocol 𝜋̃ = (𝐴, 𝐵̃,𝒳𝐴,𝒳𝐵) to be convey “as much
knowledge” as a protocol 𝜋 = (𝐴,𝐵,𝒳𝐴,𝒳𝐵). We
formalize this using the classic “simulation-paradigm”
from cryptography [GMR89], [GMW91]. We require
that for every adversarial strategy 𝐴∗ for player 1
(resp. 𝐵̃∗ for player 2) participating in 𝜋̃, there exists
a simulator 𝐴∗ such that the output of both players in
the execution of (𝐴∗, 𝐵̃) (resp. (𝐴, 𝐵̃∗)) are indistin-
guishable from the outputs of players in the execution
of (𝐴∗, 𝐵) (resp. (𝐴,𝐵∗)). That is, any “harm” 𝐴∗ can
do in 𝜋̃, the simulator 𝐴∗ could have also done in 𝜋.

Definition 17. A protocol 𝜋̃ = (𝐴, 𝐵̃,𝒳𝐴,𝒳𝐵) is a
(computationally) knowledge-preserving variant of 𝜋 =
(𝐴,𝐵,𝒳𝐴,𝒳𝐵) if the following two properties hold:
∙ Completeness: There exists a negligible function 𝜇

such that the following ensembles are statistically
close as a function of 𝑛.

– {out[𝐴(𝑥)↔ 𝐵̃(𝑦)]}𝑛,𝑥,𝑦
– {out[𝐴(𝑥)↔ 𝐵(𝑦)]}𝑛,𝑥,𝑦

where the ensembles are indexed over 𝑛 ∈ ℕ, 𝑥 ∈
𝒳𝐴(1

𝑛), 𝑦 ∈ 𝒳𝐵(1
𝑛).

2We could also have defined the channel as a uniform polynomial-
time algorithm. All our result hold for both choices.

∙ (Computational) Knowledge Preservance: For ev-
ery (probabilistic polynomial-time) adversary strat-
egy 𝐴∗ for player 1, there exists a (probabilis-
tic polynomial-time) strategy 𝐴∗ such that the
following ensembles are statistically close (resp.
computationally indistinguishable) as a function of
𝑛.

– {out[𝐴∗(𝑥, 𝑧)↔ 𝐵̃(𝑦)]}𝑛,𝑥,𝑦,𝑧
– {out[𝐴∗(𝑥, 𝑧)↔ 𝐵(𝑦)]}𝑛,𝑥,𝑦,𝑧

where the ensembles are indexed over 𝑛 ∈ ℕ, 𝑥 ∈
𝒳𝐴(1

𝑛), 𝑦 ∈ 𝒳𝐵(1
𝑛), 𝑧 ∈ {0, 1}∗. We make

the analogous requirement for every (probabilistic
polynomial-time) adversary strategy 𝐵̃∗ for player
2.

A Remark on Auxiliary Input Just as in the classic
definitions of zero-knowledge [GMR89], [GO94] and
secure computation [GMW91], the additional input 𝑧
to 𝐴∗ (and 𝐴∗) models any auxiliary information avail-
able to the attacker. All our results hold regardless of
whether we allow the attacker to receive such auxiliary
information.

A Remark on Preserving Cryptographic Protocol
Security In this comment we assume the reader is
familiar with classic definitions of protocol security
[GMW91]; see [Gol04] for details. It easily follows
from the definition of knowledge preservance that if
a protocol 𝜋 is a “secure implementation” of some
functionality ℱ (in the sense of [Gol04]), then any
knowledge-preserving variant 𝜋′ of 𝜋 will also be a se-
cure implementation of ℱ . Indeed, if 𝜋′ is a knowledge-
preserving variant of 𝜋, then 𝜋′ is “as secure as” 𝜋.

C. Knowledge-Preserving Interactive Coding

We are now ready to define knowledge-preserving
interactive coding. An interactive coding scheme is
a pair of oracle-aided interactive probabilistic Turing
machines 𝑄 = (𝑄1, 𝑄2). For every interactive protocol
𝜋 = (𝐴,𝐵,𝒳𝐴,𝒳𝐵), 𝑄 induces an encoded interactive
protocol 𝑄𝜋 = (𝑄𝐴

1 , 𝑄𝐵
2 ,𝒳𝐴,𝒳𝐵), defined as follows.

In the interaction of 𝑄𝜋 , 𝑄1 and 𝑄2 do not receive the
input directly. Instead, 𝑄1 and 𝑄2 receive as input the
security parameter 1𝑛, the round complexity 1𝑚 and
the communication complexity 1𝐶𝐶𝑛(𝜋) of 𝜋, and are
given oracle access to 𝐴𝑟𝐴(𝑥) and 𝐵𝑟𝐵 (𝑦) respectively,
where 𝑥 ∈ 𝒳𝐴(1

𝑛), 𝑦 ∈ 𝒳𝐵(1
𝑛) are the inputs and

𝑟𝐴, 𝑟𝐵 ∈ {0, 1}∞ are uniformly sampled. More pre-
cisely, 𝑄1 (resp., 𝑄2) gets oracle access to the next-
message functions of 𝐴𝑟𝐴(𝑥) (resp., 𝐵𝑟𝐵 (𝑦)), which
on input a partial transcript 𝑇 returns the next message
(or the final output, in case 𝑇 is a complete transcript).
The interaction is denoted by 𝑄

𝐴(𝑥)
1 ↔ 𝑄

𝐵(𝑦)
2 where the

inputs 1𝑛, 1𝑚, and 1𝐶𝐶𝑛(𝜋) are omitted for notational
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simplicity. When we are explicit about the randomness
used by 𝑄1 and 𝑄2, we write 𝑄

𝐴(𝑥)
1 (𝑟1)↔ 𝑄

𝐵(𝑦)
2 (𝑟2).

Definition 18 (Knowledge-Preserving Interactive Cod-
ing Schemes). Let 𝜂(⋅, ⋅), 𝑟(⋅, ⋅) ∈ (0, 1) be functions. A
pair of oracle-aided interactive probabilistic Turing ma-
chines 𝑄 = (𝑄1, 𝑄2) is a (computational) knowledge-
preserving interactive coding scheme with error rate
𝜂(⋅, ⋅) and information rate 𝑅(⋅, ⋅) if for every inter-
active protocol 𝜋 = (𝐴,𝐵,𝒳𝐴,𝒳𝐵), the corresponding
encoded protocol 𝑄𝜋 satisfies the following properties.

∙ Efficiency: 𝑄1 and 𝑄2 run in polynomial time in
𝑛,𝑚(𝑛) and CC𝑛(𝜋).

∙ Information Rate: CC∗𝑛(𝑄
𝜋) ≤

CC𝑛(𝜋)/𝑅(𝑛,𝑚(𝑛)); that is the worst-case
“blow-up” of the encoded protocol is bounded by
1/𝑅(𝑛,𝑚(𝑛)).

∙ Error Resilience: 𝑄𝜋 is (computationally) 𝜂-error
resilient.

∙ Knowledge Preservance: 𝑄𝜋 is a (computationally)
knowledge-preserving variant of 𝜋.

𝑄 is a (computational) knowledge-preserving inter-
active coding scheme with information rate 𝑅(⋅) and
error rate 𝜂(⋅) if 𝑄 is (computational) knowledge-
preserving interactive coding scheme with information
rate 𝑅′(𝑛,𝑚) = 𝑅(𝑛) and error rate 𝜂′(𝑛,𝑚) = 𝜂(𝑛).

IV. THE INFORMATION-THEORETIC REGIME

As we shall see, achieving knowledge-preserving
interactive coding is significantly harder than “plain”
interactive coding, and studying resilience against only
computationally bounded adversaries (as was done in
[Lip94], [MPSW10] in the context of error correcting
codes) actually is essential for achieving good error
rates in the context of knowledge-preserving interactive
coding.

To put our result in context, let us start by showing
that the “naive approach” of separately encoding each
message in the protocol with a good error correcting
code is a knowledge-preserving interactive coding:

Theorem 19. There exists a knowledge-preserving
interactive coding scheme 𝑄 with information rate
𝑅(𝑛,𝑚) = 𝑂(𝑚) and error rate 𝜂(𝑛,𝑚) = 𝑂(1/𝑚).

Proof: We simply pad each message in the pro-
tocol 𝜋 to become of equal length (this increases the
communication complexity by at most a factor 𝑚) and
next encode each message using a constant-rate error
correcting code; let 𝜋̃ denote the encoded protocol.
Clearly, 𝜋̃ is error resilient as long as we corrupt
less than one message; thus we have an error rate of
𝑂(1/𝑚). It easily follows that 𝜋̃ is a security preserving
variant of 𝜋; the simulator 𝐴∗ for an attacker 𝐴∗ for
player 1 emulates an execution of 𝜋̃ for 𝐴∗ by simply

encoding all messages in 𝜋 (using the error correcting
code) and decoding all messages received by 𝐴∗ before
sending them to player 2. The simulator for player 2 is
defined analogously.

Let us now turn to our main impossibility result for
the information-theoretic setting. We show that naive
approach is essentially optimal: namely, any knowledge
preserving interactive coding scheme must have an error
rate of at most 1/𝑚.

Theorem 20. Let 𝑄 be a knowledge-preserving interac-
tive coding scheme with information rate 𝑅(⋅, ⋅) and er-
ror rate 𝜂(⋅, ⋅). Then for every polynomial 𝑚(⋅), we have
that for sufficiently large 𝑛, 𝜂(𝑛,𝑚(𝑛)) < 1/𝑚(𝑛). (In
particular, there does not exists a knowledge-preserving
interactive coding scheme with error rate 𝜂(𝑛) =
1/poly(𝑛).)

Proof: Due to lack of space we provide just a high-
level overview of the proof of the theorem. (The full
proof can be found in the full version of the paper).
The key idea is to come up with a protocol 𝜋 having
the property that the only way to make the protocol error
resilient makes it possible for an attacker to “rewind” the
honest players (just as what is done in known interactive
protocols, as described above). Consider some interac-
tive coding protocol 𝑄 = (𝑄1, 𝑄2) and let 𝑀(𝑛,𝑚, ℓ)
be a polynomial upper bound on the number queries
made by 𝑄1, 𝑄2 to its oracles (where 𝑛 is the security
parameter, 𝑚 is the number of round in the protocol 𝜋
to be encoded, and ℓ is the communication complexity
of 𝜋). Consider the 𝑚(𝑛) = poly(𝑛)-round “ping-
pong” protocol 𝜋 where each player 𝑑 ∈ {1, 2} gets
an 𝑀(𝑛,𝑚, 2𝑚𝑛) + 1-wise independent hash function
𝐻𝑑 : {0, 1}poly(𝑛) → {0, 1}𝑛 as input and proceeds as
follows: player 1 computes and sends 𝑎1 = 𝐻1(∅) to
player 2; player 2 computes and sends 𝑏1 = 𝐻2(𝑎1) to
player 1; player 1 computes and send 𝑎2 = 𝐻1(𝑎1, 𝑏1)
to player 2, etc, for 𝑚 rounds, and finally both player
output the transcript of the interaction. That is, at each
round, each player 𝑑, computes its next message by
applying its hash function 𝐻𝑑 to the current transcript.
Note that in this protocol, by the unpredictability of
the output of the hash functions, player 1, even if
maliciously deviating from the protocol, will with over-
whelming probability be able to obtain at most 𝑚
distinct pairs (𝑞,𝐻2(𝑞)).

In contrast, as we show, unless the encoded protocol
has an error rate less than 1/𝑚, a malicious player 1
in the encoded protocol can with inverse polynomial
probability get 𝑚+1 such pairs (and as such a malicious
player 1 can learn something new in 𝑄𝜋 that it couldn’t
have learnt in 𝜋). The key lemma needed to establish
this shows that the encoded protocol “implicitly exe-
cutes” the original ping-pong protocol. More precisely,
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the rounds of the encoded protocol can be divided into
“chunks”, where each chunk in the encoded protocol
corresponds to a round in ping-pong protocol3, and
additionally by observing the oracle queries made by 𝑄,
we can read out a polynomial list of candidates for the
current transcript of the ping-pong protocol; to establish
this lemma we rely on the “elusiveness” property of the
output of the hash functions (and the fact that 𝑄 queries
the hash functions at most 𝑀(𝑛,𝑚, 2𝑚𝑛) times).

Next, by an averaging argument, one of these chunks,
say chunk 𝑖, must be shorter than a fraction 1/𝑚 of
the total communication complexity of the encoded
protocol. The idea now is for a malicious player 1 to
honestly execute the encoded protocol using its actual
input, except that during the 𝑖’th chunk, the player
acts as if its input was a random hash function 𝐻 ′

1

consistent with the transcript up until the end of chunk
𝑖 − 1; that is, we switch the input only in chunk
𝑖, but make sure we pick an input that is consistent
with the transcript so far. (Note that this attack is not
necessarily efficient since picking an input consistent
with the current transcript may not be computationally
feasible.) Now, intuitively, since the chunk was “small”,
by the error resilience property of the interactive coding
scheme, with overwhelming probability, player 1 will
finally output the same transcript (including 𝑚 distinct
pairs (𝑞,𝐻2(𝑞))) as if it had been running the protocol
honestly. (Formalizing this requires showing that the
attack performed by player 1 can be perfectly emulated
by the channel).

Additionally, as we show, by observing the oracle
queries made by 𝑄1 during the 𝑖’th chunk (which
corresponds to the 𝑖’th round in the implicitly executed
ping-pong protocol), player 1 may learn a new pair
(𝑞′, 𝐻2(𝑞

′)); intuitively, this follows since player 1 is
using a new input in round 𝑖 of the implicitly executed
ping-pong protocol (but formally proving this claim is
quite non-trivial). Thus, in essence, player 1, by using
a different input in only chunk 𝑖 manages to “rewind”
player 2 in the implicit ping-pong protocol.

So, if player 1 could just identify the 𝑖’th chunk,
it can learn 𝑚 + 1 distinct pairs (𝑞,𝐻2(𝑞)), which
was not possible in 𝜋; but it can simply guess the
starting round of the 𝑖’th chunk with inverse polynomial
probability. Summarizing, in 𝜋, an attacker can learn
𝑚 + 1 distinct pairs (𝑞,𝐻2(𝑞)) only with negligible
probability, whereas in 𝑄𝜋 this can be done with inverse
polynomial probability (if 𝑄𝜋 has a “non-trivial” error
rate); thus, we are “blatantly” violating knowledge-
preservance of 𝑄.

3These chunks may depend on the inputs of the players and the
randomness of 𝑄.

V. THE COMPUTATIONAL REGIME

We here turn to studying knowledge-preserving inter-
active coding in the presence of only computationally-
bounded adversaries (i.e., computational knowledge-
preserving interactive coding).

A. Positive Results

We first present a positive result, showing that assum-
ing the existence of one-way function, computational
knowledge-preserving interactive coding with constant
error rate (more specifically, close to 1/12) and sub-
polynomial (or even poly logarithmic, if assuming
subexponentially-hard one-way functions) information
rate is possible.

Theorem 21. Assume the existence of one-way func-
tions. For every 𝜖 > 0, there exists a computational
knowledge-preserving interactive coding scheme with
perfect completeness, error rate 𝜂 = 1

12 − 𝜖 and
information rate 𝑅(𝑛) = 𝑂(1/𝑛𝜖). If additionally
sub-exponentially hard one-way functions exists, the
information rate is 1/polylog𝑛.

Proof: Again we simply provide a very high-level
proof overview and defer the details to the full version.
Roughly speaking, the idea behind the scheme is the
following. In a “preamble phase” , the players start by
exchanging verification keys for a signature scheme;
the verification keys first are padded with 𝜌 0’s to
become “long” enough (where 𝜌 is a parameter to be
set) and then encoded using a good ECC (𝐸p, 𝐷p); let
𝛼(𝑛) denote the length of the encoded verification key.
Next, in the “main execution phase” we run the original
protocol 𝜋, except that each message is signed and
encoded using a good error correcting code (𝐸m, 𝐷m)
(which may be different from the code (𝐸p, 𝐷p)). More
precisely, player 1 keeps track of the “current round”
number in the protocol 𝜋, and encode its 𝑖𝑡ℎ-round
message 𝑎𝑖 as 𝑐𝑖 = 𝐸m(𝑖, 𝑎𝑖, 𝜎𝑖) where 𝜎𝑖 is a signature
of (𝑖, 𝑎𝑖). Upon receiving a message 𝑐 while having
the “current round” number (in the protocol 𝜋) being
𝑖, player 1 decodes the message ((𝑖′, 𝑏), 𝜎) = 𝐷m(𝑐)
and interprets 𝑏 as the 𝑖’th round message 𝑏𝑖 in 𝜋, as
long as 1) 𝑖′ = 𝑖 − 1, and 2) 𝜎 is a valid signature
on (𝑖′, 𝑏); if not, player 1 “signals” that the received
message was corrupted by simply resending its message
𝑐𝑖−1 = 𝐸m(𝑖 − 1, 𝑎𝑖−1, 𝜎𝑖) from the previous round.
Player 2’s strategy is defined analogously except that
player 2 accepts the received message if 𝑖′ = 𝑖 (since
player 2 is sending the second message in each round).
Finally, we impose a bound 𝑐 on the communication
complexity of the protocol (or else the protocol may
run forever, due to “resend” message); both players
simply abort outputting nothing if the communication
complexity would exceed 𝑐 if they send their message.
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Let 𝛽(𝑛) denote the length of each encoded message,
and let 𝛾(𝑛,𝑚) = 2𝛼(𝑛) + 2𝑚𝛽(𝑛) be the length of
the protocol if all messages get sent through on the first
trial, and there is no cut-off.

We must set 𝜌 such that the length 𝛼(𝑛) of the
encoded verification keys is within a constant factor
of 𝑐 (or else, either the preamble phase can be fully
corrupted, or the main phase can be fully corrupted).
On the other hand, 𝑐 must be long enough to execute
the encoded version of 𝜋 (that is 𝑐 > 𝛾(𝑛,𝑚), and
additionally handle sufficiently many “resend” requests,
before the error-quota of the adversary runs out. By
appropriately setting 𝜌 and 𝑐, this leads to an error
rate of 𝜂/4 if 𝜂 is the error rate of both (𝐸p, 𝐷p) and
(𝐸m, 𝐷m); roughly speaking, we lose a factor of two
because the adversary may choose to corrupt either the
verification key of player 1 or that of player 2; we loose
another (additively) factor of two due to the fact that
the length of the encoded messages must be within a
constant factor of 𝑐, and the fact that each time the
attacker corrupts the message of a single player in the
main phase protocol execution, we need to resend the
whole round (i.e., 2 messages).

We can further improve the error rate by relying
on an idea from [MPSW10]: since the messages in
the main phase are signed and we only consider a
computationally bounded channel, it in fact suffices to
list-decode the error-correcting code (𝐸m, 𝐷m) used in
the main phase.4 It follows using the same argument as
in [MPSW10] that (with overwhelming probability) list-
decoding can only yields at most a single valid message
(since all the messages are signed), and thus using list-
decoding here yields unique decoding.

B. Negative Results

We show that our positive result is optimal in two
ways:

1) The existence of one-way functions is necessary.
2) If a constant error rate is desired, it is impossible

to achieve an information rate of Ω(1/ log 𝑛).

The necessity of one-way functions We show that the
existence of one-way functions is necessary to achieve
computational knowledge-preserving interactive coding
with error rate 1/𝑝𝑜𝑙𝑦(𝑛).

Theorem 22. For every polynomial 𝑚(⋅), the existence
of a computational knowledge-preserving interactive

4[MPSW10] relies on this idea to show how to achieve an error-
correcting code with error rate 1/2 − 𝜖 if assuming a (noiseless)
public-key infrastructure and a computationally-bounded channel. In
our context, we do not have a public-key infrastructure, but our
initial exchange of verification keys using a uniquely decodable error-
correcting code can be viewed as a way to set-up the appropriate
public-key infrastructure needed for their results.

coding scheme 𝑄 with error rate 𝜂(𝑛,𝑚) ≥ 1/𝑚(𝑛)
implies the existence of one-way functions.

Proof: At a high level, the theorem follows by
observing that the attacker in the proof of Theorem 20
can be approximated efficiently if one-way functions do
not exist; the same holds for the channel adversary. The
full proof is found in the full version.

The necessity of a communication complexity blow-
up We show that every computational knowledge-
preserving interactive coding scheme with constant er-
ror rate must have an information rate of 𝑜(1/ log 𝑛),
showing that the inverse polylogarithmic rate achieved
in Theorem 21 (assuming subexponentially hard one-
way functions) is essentially optimal.

Theorem 23. Assume the existence of a computa-
tional knowledge-preserving interactive coding scheme
with information rate 𝑅(𝑛) and error rate 𝜂(𝑛). Then
𝑅(𝑛)𝜂(𝑛) ∈ 𝑜(1/ log(𝑛)).

Proof: Let us first mention that a weaker version of
the above theorem, demonstrating that the information
rate needs to sub constant (as opposed to 𝑜(1/ log 𝑛))
can be obtained by carefully “scaling down” the proof
of Theorem 2 by considering a constant-round ping-
pong protocol where the length of each message is
𝑂(log 𝑛). To give the tight bound, we need to rely on
an even more scaled down version where the length of
the messages in the ping-pong protocol is just 1. In this
regime, the previous proof no longer works: we can
no longer ensure that the transcript from the ping-pong
protocol can be decoded by observing all the oracle calls
made by 𝑄. (In the proof of Theorem 2 this was proven
by relying on the elusiveness property of the image of
the hash function, but since we now consider the range
{0, 1}, this no longer holds.) Rather, we here provide
a different information-theoretic definition of chunks
and rely on the fact that the protocol is knowledge
preserving to show that chunks are well-defined. To
simplify the proof of this, we actually rely on a simpler
variant of the ping-pong protocol, which we refer to
as the “bit-exchange” protocol 𝜋 (the protocol is almost
identical to a protocol used in [CP11] in a quite different
context): in the bit-exchange protocol, in round 𝑗, each
player simply sends the 𝑗’th bit of its input.

The idea, which turn out to be quite subtle to formal-
ize, is that if a partial transcript contained information
about, say, player 2’s message in round 𝑗, before player
1’s message in round 𝑗 has been fully determined in
the partial transcript, then intuitively, player 1 has the
opportunity to (with non-negligible probability) change
its message in round 𝑗 as a function of player 2’s
message in the same round, which isn’t possible in the
original bit-exchange protocol. The formal proof, which
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is quite subtle, is deferred to the full version.

VI. NON-CONSTRUCTIVE SCHEMES

We note that the proof of Theorem 5 is actually
stronger than stated; we actually show that every proto-
col (not just those protocols obtained by accessing the
original protocol 𝜋 as a black-box) that preserves the
knowledge transmitted in the “bit-exchange” protocol
and has an error rate of 𝑂(1), must have a communi-
cation complexity of at least 𝜔(log 𝑛).

As such, the lower bound applies even to non-
constructive interactive coding scheme. In particular,
for every 𝜂(𝑛) > 1/ log 𝑛, we have demonstrated
the existence of protocol 𝜋 with communication com-
plexity 1/𝜂(𝑛) such that every computationally 𝜂-error
resilient, computationally knowledge-preserving variant
of 𝜋 must have communication complexity at least
𝜔(log 𝑛). In particular, for the case 𝜂(𝑛) = 𝑂(1), we
get that the information rate also for non-constructive
interactive coding is at most 𝑜(1/ log 𝑛). (Note that this
result is interesting also in the information theoretic
setting, since in contrast to Theorem 20, we here
provide an impossibility result also for non-constructive
interactive coding.)

Theorem 24. For every function 𝜂(⋅) such that
𝜂(𝑛) ≥ 𝑂(1/ log 𝑛), there exists a protocol
𝜋 = (𝐴,𝐵,𝒳𝐴,𝒳𝐵) with communication complexity
CC𝑛(𝜋) = 𝑂(1/𝜂(𝑛)) such that for every protocol 𝜋′ =
(𝑄1, 𝑄2,𝒳𝐴,𝒳𝐵) that is a computationally knowledge-
preserving variant of 𝜋 and is computationally 𝜂-error
resilient, the communication complexity of 𝜋′ is at least
𝜔(log 𝑛).
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