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Abstract—We propose a new framework for defining privacy in
statistical databases that enables reasoning about and exploiting
adversarial uncertainty about the data. Roughly, our framework
requires indistinguishability of the real world in which a mech-
anism is computed over the real dataset, and an ideal world
in which a simulator outputs some function of a “scrubbed”
version of the dataset (e.g., one in which an individual user’s
data is removed). In each world, the underlying dataset is drawn
from the same distribution in some class (specified as part of the
definition), which models the adversary’s uncertainty about the
dataset.

We argue that our framework provides meaningful guarantees
in a broader range of settings as compared to previous efforts
to model privacy in the presence of adversarial uncertainty. We
also show that several natural, “noiseless” mechanisms satisfy
our definitional framework under realistic assumptions on the
distribution of the underlying data.

Index Terms—data privacy

I. INTRODUCTION

Suppose Facebook were to release the average income of its

users—not a noisy version of the average, but its exact value.

Or, suppose an Internet dating service were to release exact

aggregate statistics about its users’ romantic preferences and

sexual habits, as does OkCupid [17]. Such disclosures violate

formal privacy definitions such as differential privacy [7], [5]

but do not appear to constitute serious privacy breaches since

an adversary cannot use the released information to learn

anything sensitive about an individual user (or even a small set

of users) without unrealistically precise knowledge about the

millions of users of those sites. Differential privacy appears

to be overkill in these settings: it provides strong privacy

guarantees for an individual user even if an adversary knows

everything about the dataset besides that user’s data, but in the

scenarios just considered such omniscience is implausible.
The goal of this paper is to develop rigorous definitions

of privacy for statistical databases that allow us to reason

about and exploit existing adversarial uncertainty about the

underlying data. We are driven by several motivations:

• Better mechanisms: Relaxing definitions of privacy poten-

tially allows for mechanisms achieving greater accuracy

while still meeting satisfactory notions of privacy.

• Analyzing existing mechanisms: A broader goal is to

understand what privacy guarantees are achieved by

methods in use today (e.g., disclosure-control methods

currently used by statistical agencies, or releases that are

mandated by law) that were not designed with specific

privacy definitions in mind. In some cases, our definitions

provide a starting point for making rigorous statements

about such methods.

• Better understanding of the “semantics” of privacy:
Any definitional effort involves translating from natural-

language descriptions of privacy to mathematical formu-

lations of the same. We seek to understand the implica-

tions of different definitional approaches for the possible

inferences about sensitive data that an adversary can make

based on statistical releases.

The framework we introduce in this paper is flexible and

admits several instantiations—including one that is equivalent

to differential privacy—and we thus view it as a starting point

for future work. We also explore a specific instantiation of

the framework that we call distributional differential privacy,

and illustrate its applicability by studying several appealing

“noiseless” mechanisms satisfying the resulting definition.
Some previous works have also looked at modeling and

exploiting adversarial uncertainty in private data analysis

[4], [1], [16], [12], with the most relevant being the work

on noiseless privacy [1] and the Pufferfish framework [16].

(Noiseless privacy can be viewed as one instantiation of the

Pufferfish framework.) Both can be viewed as attempts to

formalize Dalenius’s characterization [3] of a mechanism as

private only if it is “[im]possible to determine the value

[of sensitive information] more accurately than is possible

without access to” the output of that mechanism. Dalenius’s

definition, however, is unreasonably strong [5], [8], [15] and,

in particular, it rules out learning certain global information

about a dataset. For example, it would rule out learning a link

between smoking and cancer, since given this result one can

determine that a known smoker is more likely to have cancer.
In contrast, we start with the premise that learning global

information about some population (e.g., a link between

smoking and cancer) is not a privacy violation. This is, in

part, because learning such global information is the main

goal of many statistical studies, and in part because it seems

counter-intuitive to speak of a violation of a user’s privacy that
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occurs whether or not that user participates in a study (as in

the smoking example). This perspective motivates us to define

privacy, as in the case of differential privacy, by comparing

the effects of a real-world disclosure to a disclosure computed

on a “scrubbed” dataset with, e.g., a user’s individual data

removed. As we discuss further in Section II-E, this results in

definitions very different from those of [1], [16].

A. Our Contributions
We now describe our contributions in more detail.

Definitional framework. We give a framework, coupled-
worlds privacy, for specifying privacy definitions. As an

important example instantiation, we consider distributional
differential privacy, which generalizes differential privacy.

Let x be a dataset containing records x1, . . . , xn, where

each record corresponds to an individual. At a high level,

differential privacy of a mechanism F requires that for any

x, and for each user i, the result F (x) reveals nothing more

about xi beyond what would be revealed by F (x−i) (where

x−i denotes the dataset with xi removed). Roughly speaking,

distributional differential privacy relaxes differential privacy

by treating x as a random variable from some distribution in

a pre-specified class of distributions Δ, rather than as a fixed

value. This means that xi can be masked by the randomness

of the other rows of the database, rather than just by the

randomness introduced by the mechanism. (If Δ is taken to

be the class of all distributions, this definition is equivalent to

differential privacy.)
A bit more formally, our definition requires indistinguisha-

bility of the real world in which F (x) is released, and an

ideal world in which a simulator releases some function of

the “scrubbed” dataset x−i. In each case, the dataset x is

drawn from the same distribution in some class Δ specified as

part of the definition. Indistinguishability implies, in particular,

that the real-world mechanism “leaks” little more than could

be inferred from the “scrubbed” dataset in the ideal world,

at least under the assumption that one of the distributions

in Δ adequately models the true distribution of x given the

attacker’s auxiliary knowledge (if any).
We prove various properties of definitions within our frame-

work. Although composition does not automatically hold, we

show a condition under which it does. We also show that the

class of distributions for which a given mechanism satisfies our

framework is convex. This is a desirable feature (not shared by

some previous definitions) since it implies that if a mechanism

is private under distributions (i.e., beliefs) D and D′, then it is

also private under a belief that assigns non-zero probability to

each of those distributions. Our framework can be instantiated

in several ways to yield different definitions. In particular, as

in Pufferfish [16], one can tailor the information considered

sensitive by appropriate choice of the “scrubbing” operation

applied to the dataset given to the simulator.
In addition to the Pufferfish framework, we are aware of at

least two concurrent efforts to generalize differential privacy

that share some broad ideas, one by Bhowmick and Dwork [2]

and one by Dwork, Reingold, Rothblum, and Vadhan [19].

Inference-based semantics. As a way of justifying our def-

initional framework, we formalize an intuitive, “inference-

based” notion of privacy in terms of a Bayesian attacker who

updates her belief about the dataset x given the output of some

mechanism. We show that if a mechanism is private within our

framework then, with high probability, an adversary’s posterior

beliefs in the real world and the ideal world are close. This

generalizes analogous statements shown to hold for differential

privacy [14].

The inference-based version of our definition provides a

more transparent view of the key difference between our

approach and that of previous work taking adversarial un-

certainty into account [1], [16]. Previous approaches can be

seen as requiring an attacker’s posterior belief (in the real

world) to be close to its prior belief. Here, in contrast, we

compare an attacker’s posterior belief in the real world to

its posterior belief in a hypothetical (ideal) world involving

a “scrubbed” version of the dataset. This results in a more

relaxed definition that is arguably more natural; see further

discussion in Section II-E.

Analyses of specific mechanisms. On an intuitive level, there

are two different ways to exploit the fact that our definition

considers datasets drawn from some distribution rather than a

“worst-case” dataset as in differential privacy. The first is to

leverage the uncertainty of the database to avoid adding noise

to the output. The second is to argue that the database sampled

will, with high probability, satisfy some condition under which

privacy holds. We use these ideas to design several natural,

“noiseless” mechanisms—e.g., releasing exact sums, “trun-

cated” histograms, or certain discrete statistical estimators—

satisfying distributional differential privacy under reasonable

assumptions about the distribution of the underlying data.

II. COUPLED-WORLDS PRIVACY

A. Background

We assume datasets are ordered lists of data points from

some universe U ; that is, a dataset lies in U∗. Each entry in a

dataset is associated with some individual i. A mechanism F is

a randomized algorithm taking inputs in U∗. We generally use

upper-case letters to denote random variables, and lower-case

letters to denote specific realizations.

We use the following notion extensively:

Definition 1. Two random variables A and B are (ε, δ)-
indistinguishable (denoted A ≈ε,δ B) if, for all events S,
we have

Pr[A ∈ S] ≤ eε · Pr[B ∈ S] + δ and

Pr[B ∈ S] ≤ eε · Pr[A ∈ S] + δ.

When δ = 0 we often omit it and write A ≈ε B.

Differential privacy. Recall that a mechanism F is (ε, δ)-
differentially private if, for every pair of “neighboring”

datasets x and y, the random variables F (x) and F (y) are

(ε, δ)-indistinguishable [7], [6]. As our default notion, we say
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that equal-length datasets x and y are neighbors if they differ

on a single data point. Thus, for F to be differentially private

the output of F must be distributed nearly identically regard-

less of whether a particular individual’s data were used in the

dataset or someone else’s data were used instead. An alternate

approach is to say that x and y are neighbors if they differ by

insertion or deletion of a single data point. Formally, given a

dataset x = (x1, x2, . . .) let x−i denote the dataset obtained

by removing xi. With respect to this notion of neighboring,

differential privacy requires that F (x) ≈ε,δ F (x−i) for all

x ∈ U∗ and all i. This second definition is strictly stronger

than our default notion of differential privacy (though with

some loss of parameters), but the default notion suffices to

analyze most natural mechanisms.

Gehrke et al. [11] reformulate differential privacy by as-

serting that F is differentially private if there is a simulator

Sim such that F (x) ≈ε,δ Sim(x−i) for all x ∈ U∗ and all i.
This is easily seen to be equivalent to differential privacy: If

F (x) ≈ε,δ F (x) for all x, y differing in one entry, then a valid

simulator is given by the algorithm that inserts an arbitrary

entry into x−i and then applies F to the result. Conversely,

if a suitable Sim exists then for any two datasets x, y that

differ in the i-th element we have x−i = y−i and hence

F (x) ≈ε,δ Sim(x−i) = Sim(y−i) ≈ε,δ F (y).

An “inference-based” perspective. A common interpretation

of differential privacy, due to Dwork and McSherry (see [5]),

is that “no matter what an attacker knows ahead of time, the

attacker learns the same information about any individual i
from the mechanism whether or not that individual’s data were

used.” This natural-language interpretation was formalized

by [9], [14] in terms of a Bayesian attacker who starts with

some prior distribution on the dataset and, based on the output

of the mechanism, draws inferences about xi. Specifically, dif-

ferential privacy implies that for all prior distributions D over

the random dataset X , and all indices i, with high probability

over t = F (X) we have Xi

∣∣
F (X)=t

≈ε′,δ′ Xi

∣∣
F (X−i)=t

(see

Section 1 for discussion and precise parameters). Alternatively,

using the simulation-based formulation of Gehrke et al. [11],

we can require the existence of a simulator Sim such that for

all distributions on X and indices i, and with high probability

over t = F (X), we have

Xi

∣∣
F (X)=t

≈ε,δ Xi

∣∣
Sim(X−i)=t

. (1)

B. A Distributional Version of Differential Privacy

As a warm-up to our general framework, we first de-

scribe a particular instantiation that we dub distributional
differential privacy (DDP). The main idea is that rather than

require indistinguishability to hold for all distributions over

the dataset, we require it to hold only for some specified

set of “candidate” distributions Δ. (One can view the set

of candidate distributions as representing the possibilities for

the “true” distribution of the dataset, or as representing the

adversary’s possible uncertainty about the dataset.) We present

two variants of the definition. The first, which we view as more

intuitively appealing, is obtained by relaxing the inference-

based definition discussed in the previous section. The second,

which can be viewed as a relaxation of the simulation-

based definition of Gehrke et al. [11], is somewhat easier to

work with and is strictly stronger than our inference-based

formulation.

We obtain a distributional variant of the inference-based def-

inition from the previous section by requiring Equation (1) to

hold only for some set of candidate distributions Δ rather than

for all possible distributions. Fix some class Δ of probability

distributions over random variables (X,Z) ∈ U∗ × {0, 1}∗,
where X represents the dataset and Z denotes auxiliary

information known to the adversary. We then have:

Definition 2. A mechanism F satisfies (ε, δ,Δ)-inference-
based distributional differential privacy if there is a simula-
tor Sim such that for all distributions D ∈ Δ on (X,Z), with
probability at least 1 − δ over choice of (t, z) = (F (X), Z)
the following holds for all i:

Xi

∣∣
F (X)=t, Z=z

≈ε,δ Xi

∣∣
Sim(X−i)=t, Z=z

.

A variant is obtained by generalizing the simulation-based

definition of Gehrke et al. [11].

Definition 3. A mechanism F satisfies (ε, δ,Δ)-distributional
differential privacy if there is a simulator Sim such that for
all distributions D ∈ Δ on (X,Z), all i, and all (xi, z) ∈
Supp(Xi, Z):

F (X)
∣∣
Xi=xi, Z=z

≈ε,δ Sim(X−i)
∣∣
Xi=xi, Z=z

.

In Section III we will show several example DDP mech-

anisms. In Definitions 2 and 3 taking Δ to be the set of all

distributions (or simply all point distributions) gives differen-

tial privacy. However, in general DDP is stronger and implies

inference-based DDP.

Theorem 1. Say F satisfies (ε, δ,Δ)-DDP where distributions
in Δ have support only on datasets of size at most n,
and 2

√
δn ≤ εeε. Then F satisfies (3ε, 2

√
δn)-inference-

based DDP.

Theorem 1 is a special case of Theorem 2, which we prove

in the next section. Theorems 1 and 2 are both generalizations

of a result of [14], who proved the same statement for the

usual notion of differential privacy.

The converse of Theorem 1 does not hold in general, as the

following example shows.

Example 1 (Separation of inference-based and indistinguisha-

bility-based DDP). Let Δ contain a single distribution on

(X,Z), where X = (X1, . . . , Xn) is a tuple of n uniformly

distributed bits and Z = ⊕n
i=1Xi. Say F (X) outputs the

parity of its input. Note that for any xi, z ∈ {0, 1}, the

distribution F (X)
∣∣
Xi=xi,Z=z

is just a point distribution on the

value z. However, X−i (and hence Sim(X−i)) is independent

of F (X) = Z, and so the distribution of Sim(X−i) cannot

equal Z with probability better than 1/2. Thus, conditioned on

Z, the distributions of F (X) and Sim(X−i) are very different
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in general, and so F cannot satisfy DDP for any reasonable

parameters.

On the other hand, for any t, z the distribution

Xi

∣∣
F (X)=t,Z=z

is uniform. If Sim outputs a uniform bit, then

Xi

∣∣
F (X)=t,Z=z

= Xi

∣∣
Sim(X−i)=t,Z=z

and so F does satisfy

inference-based DDP.

C. General Framework

Distributional differential privacy is just one possible instan-

tiation of a general framework we call coupled-worlds (CW)
privacy. At a high level, definitions within our framework

are specified by two functions1 alt and priv; if a mechanism

F satisfies the definition then, intuitively, “F (X) reveals no

more information about priv(X) than is revealed by alt(X).”
That is, priv allows one to specify what information should

be kept private, while alt defines a “scrubbed” version of

the dataset that is available in some ideal world. For the

specific case of DDP, we are interested in the privacy of an

individual record Xi (so priv(X) = Xi), and want to ensure

that F (X) reveals no more information about Xi than would

be revealed if user i had not participated in the study at all

(so alt(X) = X−i).

We start with an inference-based version of our framework

that we find intuitively compelling.

Definition 4. A mechanism F satisfies (ε, δ,Δ,Γ)-inference-
based coupled-worlds privacy if there is a simulator Sim
such that for all distributions D ∈ Δ on (X,Z), with
probability at least 1 − δ over choice of (t, z) = (F (X), Z)
the following holds for all (alt, priv) ∈ Γ:

priv(X)
∣∣
F (X)=t, Z=z

≈ε,δ priv(X)
∣∣
Sim(alt(X))=t, Z=z

.

As with DDP, it is convenient to use an alter-

nate, indistinguishability-based definition which implies the

inference-based version.

Definition 5. A mechanism F satisfies (ε, δ,Δ,Γ)-coupled
worlds privacy if there is a simulator Sim such that for all
distributions D ∈ Δ on (X,Z), all (alt, priv) ∈ Γ, and all
(v, z) ∈ Supp(priv(X), Z):

F (X)
∣∣
priv(X)=v, Z=z

≈ε,δ Sim(alt(X))
∣∣
priv(X)=v, Z=z

.

Theorem 2. Say F satisfies (ε, δ,Δ,Γ)-CW privacy, where
2
√
δ|Γ| ≤ εeε. Then F satisfies (3ε, 2

√
δ|Γ|,Δ,Γ)-inference-

based CW privacy.

The proof of Theorem 2 relies on the following generaliza-

tion of [14, Lemma 4.1]:

Lemma 1. Suppose (A,B) ≈ε,δ (A′, B′). Then, for every
δ2 > 0 and δ1 =

2δ
δ2
+ 2δ

εeε , the following holds: with probability
at least 1 − δ1 over t chosen according to B, the random
variables A|B=t and A′|B′=t are (3ε, δ2)-indistinguishable.

Proof of Theorem 2. Fix a mechanism F with simulator Sim,

a distribution D in Δ, and a pair (alt, priv) ∈ Γ. CW privacy

1Formally, they are specified by a set Γ = {(alti, privi)} of function pairs.

implies that:

(F (X), priv(X), Z) ≈ε,δ (Sim(alt(X)), priv(X), Z) .

Take δ2 = 2
√
δ|Γ| and δ1 = 2δ

δ2
+ 2δ

εeε . We can apply

Lemma 1 with A = A′ = priv(X), B = (F (X), Z), and

B′ = (Sim(alt(X)), Z) to get that with probability 1 − δ1
over (t, z), we have

priv(X)
∣∣
F (X)=t,Z=z

≈3ε,δ2 priv(X)
∣∣
Sim(alt(X))=t,Z=z

.

Taking a union bound over all function pairs in Γ, we see that

the above holds for all (alt, priv) ∈ Γ with probability at least

1− |Γ| · δ1 = 1− |Γ| ·
(

2δ

2
√

δ|Γ| +
2δ
εeε

)
= 1−

√
δ|Γ| − 2δ|Γ|

εeε

≥ 1− 2
√
δ|Γ| ,

where the final inequality follows because εeε ≥ 2
√
δ|Γ|.

As noted earlier for the specific case of DDP, the implication

in Theorem 2 is strict.

Other instantiations. We have already discussed one in-

stantiation of CW privacy (namely, distributional differential

privacy) in the previous section. We briefly mention some

other interesting instantiations.

• Consider a database representing a social network. Here,

the database is a graph and private data is associated with

each node or edge. We can define a version of node-level

privacy by taking pairs (alt, priv) in which priv outputs

information associated with a given node and its incident

edges, and alt removes that node and its incident edges.

• Frequently some data (say, demographic information like

gender and age) is public and need not be protected. To

model this we can consider pairs (alti, privi) in which

privi outputs only the private data in record Xi and alti
removes only the private information.

In all the examples we have discussed so far, alt and priv are

complementary. This need not always be the case:

• Imagine a database in which several schools contribute

data of their students. In this situation each school might

want to make sure that no more can be learned about each

of its students than if the entire school had chosen not to

participate in the study. To model this we can consider

pairs (alt, priv) in which priv still outputs an individual

student’s record, but alt removes all records associated

with that student’s school.

• Suppose a study involves a database of assets of several

financial firms. Having alt remove all the data of any

single firm might be too limiting. Instead we might only

require that a certain amount of ambiguity about each

firm’s data remains. This could be achieved by letting alt
add noise to the asset distribution of a firm.

442



D. Properties of the Framework
We now explore several properties of the CW privacy

framework. We first show that CW privacy is preserved under

post-processing. (Proofs of all theorems in this section appear

the full version of this work.)

Theorem 3. Coupled-worlds privacy is preserved under post-
processing. Formally, if mechanism F satisfies (ε, δ,Δ,Γ)-CW
privacy, then so does G ◦F for any (randomized) function G.

The next two results show that if a mechanism F satisfies

CW privacy with respect to some class of distributions Δ,

then it also satisfies CW privacy with respect to a (potentially)

larger class Δ′. In the first case, we show that one can take

Δ′ to include all distributions that are convex combinations

of distributions in Δ. Besides being a desirable property in its

own right, it also serves as a technically convenient tool.

Theorem 4. If F satisfies (ε, δ,Δ,Γ)-CW privacy, then it also
satisfies (ε, δ,Δ′,Γ)-CW privacy for Δ′ the convex hull of Δ.
That is, Δ′ is the set of all convex combinations of distributions
in Δ.

Next, we show that CW privacy continues to hold if the

attacker’s auxiliary information is reduced. Again, besides

being a desirable property in its own right, it is also technically

useful since it then suffices to prove CW privacy of some

mechanism only with respect to some realistic upper bound
on the auxiliary information available to an adversary.

Theorem 5. If F satisfies (ε, δ,Δ,Γ)-CW privacy, then it
satisfies (ε, δ,Δ′,Γ)-CW privacy for Δ′, where D′ ∈ Δ′ first
samples (X,Z) from some D ∈ Δ, then outputs (X,Z ′) with
Z ′ = f(Z) for some (randomized) function f .

Finally, we turn to the question of the composition of two

private mechanisms F and G. Here, both F (X) and G(X)
are released. Although we are not able to prove as general a

composition theorem as we would like, we can show that the

composition satisfies CW privacy as long as G is private even

when given F (X) as auxiliary information, and F is private

when given SimG(alt(X)) as auxiliary information.

Theorem 6. Let F and G be two mechanisms, Δ a class
of distributions, and Γ a family of (priv, alt) pairs. Say G is
(εG, δG,ΔG,Γ)-CW private with respect to a simulator SimG,
where

ΔG = {(X, (Z,F (X))) : (X,Z) ∈ Δ}
and F is (εF , δF ,ΔF ,Γ)-CW private with respect to a simu-
lator SimF , where

ΔF =
{(

X,
(
Z,SimG (alt(X))

))
: (X,Z) ∈ Δ,

alt is the first element of some pair in Γ
}
.

Then the mechanism H = (F,G) is (εH , δH ,Δ,Γ)-CW
private where

εH = εF + εG

δH = max (δF e
εG + δG, δF + δGe

εF ) = O(δF + δG).

E. Relation to Other Definitions

We conclude our definitional treatment by comparing our

definition to two other recent proposals: noiseless privacy [1]

and Pufferfish [16].

Noiseless privacy was introduced with a similar motivation

as our own; the idea was to use adversarial uncertainty about

the dataset to eliminate the need for noise in the mechanism

itself. The high-level idea is to require that F (X) “looks

similar” for any two values of a given record:

Definition 6. F satisfies (ε, δ,D)-noiseless privacy if for
all i, xi, x′i, and z:

F (X)
∣∣
Xi=xi,Z=z

≈ε,δ F (X)
∣∣
Xi=x′i,Z=z

,

where (X,Z) is chosen according to distribution D.

When δ > 0 this definition is slightly different from the ver-

sion in [1]. In particular, we require (ε, δ)-indistinguishability

to hold for all choices of xi and x′i, whereas the definition

in [1] requires ε-indistinguishability to hold except for xi, x
′
i

that occur with probability at most δ.

Pufferfish provides a framework for defining privacy. Noise-

less privacy can be viewed as one specific instantiation,2 but

others are possible. Pufferfish allows for customization of what

information will be kept private by appropriate choice of a

function sec, which takes as input a dataset X and outputs an

element of {0, 1,⊥}. Thus, sec defines two disjoint classes of

datasets, the preimages of 0 and 1, with the ⊥ output allowing

the function to be indecisive. Roughly, Pufferfish defines a

mechanism F to be private if the distribution of F (X) is

similar regardless of which value of sec(X) we condition on.

Definition 7. A mechanism F satisfies (ε, δ,Δ,S)-Pufferfish
privacy if for all sec ∈ S , all z, and all distributions (X,Z)
in Δ it holds that:

F (X)
∣∣
sec(X)=0, Z=z

≈ε,δ F (X)
∣∣
sec(X)=1, Z=z

(This definition differs in some non-essential ways from the

definition in [16]. We highlight that we allow δ > 0, something

not done in [16].)

In both noiseless privacy (and, by extension, Pufferfish) and

our notion of distributional definition privacy, the requirement

is that F (X) should be “roughly the same” in each of two

possible worlds. The difference between the definitions is in

which two worlds are compared. In noiseless privacy and

Pufferfish the comparison is between a world in which Xi

(resp., sec(X)) takes on one value and a world in which it

takes on some other value. In DDP, in contrast, the comparison

is between a world in which Xi is included in the dataset and

a world in which it is not. This has significant implications.

Consider an example in which there is a global parameter

μ which is either +1 or −1 (with half probability each),

and every record is normally distributed with mean μ and

standard deviation much smaller than 1. Note that the records

2This is true for the definitions as given here, which differ slightly from
the definitions given in the original works.
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are dependent because they all depend on the value of μ. (They

are, however, independent conditioned on μ.) The mechanism

F that computes the sample mean X̄ of the dataset and then

outputs ±1 depending on which is closer to X̄ does not satisfy

noiseless privacy: the distribution of F (X) conditioned on

Xi ≈ −1 is very different from the distribution of F (X)
conditioned on Xi ≈ +1. On the other hand, F does satisfy

DDP (with the obvious simulator that simply runs F ) since the

distributions of F (X) and F (X−i) are close for X sampled

according to the stated distribution.

To see the difference between our definitions and prior

ones, it may help to consider an inference-based version of

Pufferfish.

Definition 8. A mechanism F satisfies (ε, δ, Δ, S)-
inference-based Pufferfish privacy if for all sec ∈ S , all
z, and all distributions (X,Z) in Δ, with probability 1 − δ
over choice of t← F (X)|Z=z we have

sec(X)|F (X)=t,Z=z ≈ε,δ sec(X)|Z=z.

We have the following theorem.

Theorem 7. Say F satisfies (ε, δ,Δ,S)-Pufferfish privacy,
where all sec ∈ S have output in {0, 1} and 2

√
δ < εeε.

Then it also satisfies (3ε, 2
√
δ,Δ,S)-inference-based Puffer-

fish privacy.

(A proof is given in the full version. A similar statement

was proven in [16] for the δ = 0 case.) Thus, the inference-

based version of Pufferfish privacy is implied by the standard

version, as long as sec never outputs ⊥.

Returning to Definition 8, one may interpret Pufferfish as

requiring that the distribution of any sensitive information be

roughly identical both before and after the release of F (X).3

This means that releasing estimates of general population

parameters (for instance, whether smoking and cancer are

correlated) is a privacy violation because it implies something

about the information of any individual. In fact, Pufferfish

considers the privacy of every individual to be violated in

such a setting, even if their data is not used at all. In contrast,

inference-based coupled-worlds privacy (cf. Definition 4) only

requires that the distribution of any private information be

roughly identical whether F is computed over the entire

dataset or over a “scrubbed” version of the dataset.

We note also that Pufferfish and noiseless privacy do not

satisfy analogues of Theorem 5. In particular, returning to the

motivating example before Definition 8, if the parameter μ is

included in the auxiliary information then the mechanism in

question is noiselessly private.

III. ANALYSES OF SPECIFIC MECHANISMS

In this section we present several noiseless mechanisms

that satisfy distributional differential privacy. We first show

3The inference-based guarantee provided by differential privacy is stronger,
but this does not contradict the fact that differential privacy is a special case
of Pufferfish nor does it imply that all Pufferfish mechanisms give the same
guarantee. Instead, it is merely a special property of differential privacy itself.

that for a broad class of distributions the sum of all database

rows can be released with no noise added whatsoever. We

then show that when the database is sampled randomly from

some larger population, a truncated histogram (meaning a

histogram with near-empty bins removed) can be released ex-

actly. Finally, we present sufficient conditions for distributional

differential privacy and apply this to the computation of maxi-

mum a posterior-probability (MAP) estimators. Besides being

interesting and useful in their own right, these mechanisms

illustrate that distributional differential privacy is a meaningful

relaxation of differential privacy.

Recall that for a mechanism F to satisfy distributional

differential privacy, there must exist a simulator Sim meeting

the requirements of Definition 3. If Sim is identical to F ,

we call the simulator canonical. Throughout this section, all

simulators are canonical.

A. Privacy of the Exact Sum of a Real-valued Database

In this section, we consider a basic mechanism that releases

the sum (or equivalently, average) the entries of a real-

valued database without using any form of randomization (e.g.,

adding noise). The class of distributions over the pair (X,Z)
for which our results apply is natural and contains a wide

variety of distributions. In order to simplify the exposition

and clearly describe this class, we will first consider a setting

where there is no auxiliary information involved and introduce

a basic class of distributions on the database under which

privacy is guaranteed. Then, we consider a natural setting of

auxiliary information and, by invoking the useful convexity

property of our privacy framework (Theorem 4), we extend

our result to the convex-hull of the former class.

Since we consider here the sum of real data, we assume that

the database X is a list of n+1 real-valued random variables.

(We use n+1 for the database size rather than n only because it

simplifies the expression of our results). First, let us describe

in simple words this basic class of distributions. This class

contains all the continuous distributions D on the database

domain, i.e., Rn+1, that have the following properties:

• D is a product distribution. That is, under D, all the

database entries are independent.

• Under D, each database entry has a density function

whose support (i) is the same for all the entries, and (ii)

is some bounded interval4 [a, b] ⊂ R.

• Over the support, the density function of each entry is

bounded from below by some non-zero constant (that

does not depend on n).

We say that these distributions have a uniform component,
because they can be written as the sum of two continuous

distributions, one of which is the uniform distribution over

[a, b]. It is easy to show that DDP of the sum mechanism

remains the same (i.e., ε and δ of the DDP definition remain

unchanged) if every database entry is translated and scaled

4This interval can also be open or half-open. In fact, one can show using
some standard tools from measure theory that the result still holds when the
support is a bounded measurable (Borel) subset of R, but for clarity we limit
ourselves to the simpler case.
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(by a non-zero constant) in the same manner. Hence, we will

assume, w.l.o.g., that the common support of the database

entries is the interval [−1, 1] and that all density functions

are bounded from below by some strictly positive constant

η > 0 (that does not depend on n). We denote this class of

distributions by Δu.c.(η).
When there is no auxiliary information and X comes

from the class Δu.c.(η) discussed above the exact (noiseless)

sum is (ε, δ, Δu.c.(η))-DDP where for every ε > 0, δ is

exponentially decaying in n.

Theorem 8. (Privacy of the Exact Sum) Let X denote
R

n+1-valued database. Let η > 0. Then, for all ε > 0 and
δ = e−Ω(

2
3ηmin(

2
3η,ε

2)n), the sum of the database entries,∑n+1
i=1 Xi, is (ε, δ, Δu.c.(η))-DDP.

Next, we generalize our result, using Theorem 4, to include

all the distributions in the convex hull of the class Δu.c.(η)
given in Theorem 8. We will also take into account a specific

form of the auxiliary information Z. Namely, we consider the

case where Z is a subset of the database entries denoted by

XL � {X�, � ∈ L} for some set L ⊂ [n].

Theorem 9. (Privacy of the Exact Sum - Generalized) Let
η > 0 and conv (Δu.c.(η)) be the convex hull of Δu.c.(η). Let
L ⊂ [n] and let L denote |L|. Let X be R

n+1-valued database
and Z = XL be the auxiliary information where X is drawn
from some distribution in conv (Δu.c.(η)). Then, for all ε > 0

and δ = e−Ω(
2
3ηmin(

2
3η,ε

2)(n−L)), the sum of the database
entries,

∑n+1
i=1 Xi, is (ε, δ, conv (Δu.c.(η)))-DDP.

Proof. The proof is straightforward. First, we combine the

result of Theorem 8 with the fact that, for any independent

random variables U, U ′, V , if U ≈ε,δ U ′ then, for all

v ∈ Supp(V ), (U + V )|V=v ≈ε,δ (U
′ + V )|V=v . Then, we

invoke Theorem 4.

We emphasize that here the database rows are no longer

independent. For example, conv (Δu.c.(η)) includes a setting

where it is known that the rows are independently distributed

around some mean, but that mean is not known (and hence

needs to be estimated with an average query). Also, Theorem 5

means that any auxiliary information that is a function of only

some subset of the database is covered by the above theorem.

B. Releasing Exact Histograms under Sampling Priors

Sampling distributions, in which the data are drawn ran-

domly from a fixed underlying population, form a natural

class of distributions on data sets. We argue that a truncated
histogram, which releases a histogram (or contingency table)

from which small cell counts have been redacted, is DDP for

a large subclass of sampling distributions (and their convex

combinations).

The model here is that the random sample is the input

to the mechanism. In this context, distributional differential

privacy ensures that an adversary cannot determine if a given

individual’s data was used, even if the attacker knows that
the individual was in the sample. Consequently, the adversary

cannot determine if a given individual was in the sample to

begin with. Our results strengthen results of Gehrke et al. [10]

on truncated histograms; we explain the relationships between

the results further below.

The only condition we require on the sampling distribution

is that the size of the sample, denoted N , have some uncer-

tainty (to the adversary).

Definition 9 (Sampling Priors). Given a finite multiset P (the
“population”), and a distribution pN on nonnegative integers,
the sampling distribution DP,pN

picks N according to pN and
obtains X by selecting N individuals uniformly at random
from the population P .

The class Δ(ε,δ)-Samp is the convex closure of the set of
sampling distributions for which the random variable N
satisfies

Pr
n∼N

(
Pr(N = n)

Pr(N = n− 1)
∈ exp(±ε)

)
≥ 1− δ . (2)

The condition on the randomness of the sample size holds

in a variety of settings. It is slightly stronger than requiring

N ≈ε,δ N +1—it corresponds to requiring that N and N +1
be “pointwise” (ε, δ)-indistinguishable in the terminology of

[14]. Nevertheless, N satisfies the condition when N is either

binomial or Poisson5 (as long as the expectation is sufficiently

large, see below) or when N = const+ Lap(1/ε) where Lap
is the Laplace distribution. The following lemma is useful in

both the discussions of priors and the proof of our main result.

Lemma 2. For every ε, λ, p, n > 0, we have (1) Po(λ) satisfies
Eq. (2) when δ = exp(−λε2), and (2) Bin(n, p) satisfies
Eq. (2) where δ = exp(−Ω(npε2)).

Some examples of sampling priors that fall in the class

Δ(ε,δ)-Samp:

• Suppose the input is obtained by sampling each element

in P independently with probability p ∈ (0, 1). The size

N of the sample is binomial Bin(|P |, p), and satisfies

our condition when |P | · p is Ω( log(1/δε2 ) (see Lemma 2).

• Suppose the input to the mechanism is data set is a

sample of some known, fixed size n0. One can enforce

the randomness condition by discarding only a few data

points at random: set N = n0 − [Lap(1/ε) + log(1/δ)
ε ]+

points and discard n0−N data points. Here Lap denotes

the Laplace distribution and [x]+ denotes max {x, 0}.
Note that N ≤ n0.

This results in a “slightly” randomized mechanism that

alters at most 2 log(1/δ)ε bin counts in the histogram,

far less than the number required to ensure differential

privacy (which requires altering the counts of all bins

with some probability).

• Poisson priors: In Poisson sampling, the sample size N
follows a Poisson distribution. It satisfies our condition

when λ is Ω( log(1/δ)ε2 ).

5Recall that for any nonnegative real number λ, Po(λ) is the distribution
over nonnegative integers such that P (N = n) = e−λλn/n!.
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• The definition is phrased in terms of a fixed population

P , but i.i.d. sampling also falls into this class (one obtains

i.i.d. sampling in the limit as |P | goes to infinity).

Given a partition of the data domain D into “bins”, a

histogram reports the number of data points in each bin. The

k-truncated histogram reports the set of counts with value at

least k (and reports “0” for counts less than k).

Theorem 10 (Privacy via Sampling Priors). There is a con-
stant C > 0 such that, for k > C log(1/δ)

ε2 , the k-truncated
histogram is (3ε, 3δ)-DDP for the class Δ(ε,δ)-Samp.

The main difficulty of the proof is that the histogram counts

– that is, the entries of the vector F (Xi) – are not independent.

For example, when N = const + Lap(1/ε), then the sum

of the counts is much more concentrated than it would be

if the entries were truly independent (or even if every single

count were close to independent from the remaining ones).

Nonetheless, we can use the randomness in N to limit the

information about the jth entry of F (Xi) that is contained

in the remaining entries. The proof can be found in the full

version.

Relation to the work of Gehrke et al. Gehrke et al. [10]

prove a result which appears, at first glance, very similar:

namely, that a mechanism which samples each input record

with probability p and computes a histogram on the resulting

sample is differentially private.

There are two principal differences between the results.

First, we assume the sample is the input, and so we ask that the

adversary not be able to determine whether or not a particular

individual in the sample was used. This corresponds very

closely, for example, to preventing the type of attack carried

out by Homer et al. [13] on genome-wide association study

data. In contrast, Gehrke et al. show only that the adversary

cannot determine if an individual was present in the underlying

population.

Second, the parameters of the two results are incompara-

ble: Gehrke et al. assume the sample itself is very small—

approximately a ε fraction of the population—whereas our

results apply to populations that are very close in size to N
(subject to the population always being larger than N ). On the

other hand, Gehrke et al. require only that k be approximately

log(1/δ)/ε, instead of log(1/δ)/ε2. The bound on k is tight

for our definition, unfortunately.

Finally, we mention that Gehrke et al. analyze a class of

mechanisms, called crowd-blending private, that generalize

truncated histograms. It seems likely that Theorem 10 also

generalizes to this larger class of mechanisms, but we did not

verify this.

C. Stable Functions are DDP

We now consider deterministic functions that are “stable,”

by which we mean that the removal of one record has a low

probability of changing the output. (I.e., with high probability

F (X) = F (X−i).) This is sufficient to guarantee (0, δ,Δ)-
DDP. Furthermore, if we require the existence of non-zero

lower bound on the set of all conditional probabilities of

the output of F (X) given Xi = xi and Z = z then

the mechanism is (ε, 0,Δ)-DDP. Formally, this gives us two

sufficient conditions to prove that a mechanism is DDP.

Theorem 11. Let n ∈ N. Consider a deterministic database
mechanism F : Dn → S and a class of distributions Δ for the
pair (X,Z). Suppose ∃ δ > 0 such that ∀i ∈ [n], ∀(xi, z) ∈
Supp(Xi, Z),

Pr [F (X) �= F (X−i)|Xi = xi, Z = z] < δ

Then, F is (0, δ, Δ)-DDP.

Theorem 12. Let n ∈ N. Consider a deterministic function
F : Dn → S where S is a finite set that does not depend on n
and a distribution class Δn for the pair (X,Z). If there exist
c > 0 and μn ∈ (0, c) such that, for all i ∈ [n], all t ∈ S ,
and all(xi, z) ∈ Supp(Xi, Z), the following conditions hold
simultaneously

Pr [F (X) = t|Xi = xi, Z = z] ≥ c

Pr [F (X) �= F (X−i)|Xi = xi, Z = z] ≤ μn

then, F is (εn, 0, Δn)-DDP where εn = ln
(

c+μn

c−μn

)
.

Moreover, if c does not depend on n and μn → 0, then εn → 0.

The two above theorems are proved in the full version.

MAP estimators. The sufficient conditions shown above are

simple and they cover some very practical functions. As an

example, we consider a wide class of estimators known in

the literature as “maximum a posteriori probability” (MAP)

estimators [18]. At a high level, the scenario we are interested

in is one where the database entries are sampled i.i.d. from

one of several distributions. Which distribution is used is not

known. The MAP estimator calculates, based on provided prior

probabilities of each distribution being used, the distribution

from which the database entries are most likely sampled.

The MAP estimator appears a lot in applications involving

parameter estimation and multiple hypothesis testing. We show

that the MAP estimator achieves the notions of (0, δ, Δ) and

(ε, 0, Δ′)-DDP for two (slightly different) large classes of

priors Δ and Δ′. As the MAP estimator is deterministic, this

is not possible with differential privacy.

Formally, we consider database entries to come from a set B,

and we have a family of probability functions (f1, . . . , fk) that

each represents a distribution over B. A distribution D ∈ Δ
generates the database X as follows. First, D picks one

of the distributions in the family (f1, . . . , fk), with each fi
chosen with probability pi (for some probability mass function

(p1, . . . , pk)). Once that choice has been made, the entries

of X are chosen i.i.d. from the chosen fi. A given D is

defined by the choice of (p1, . . . , pk), and we take Δ to be

the union of all distributions D defined in this manner, where

the union is taken over all legitimate probability mass funtions

(p1, . . . , pk).
A MAP estimator with respect to (f1, . . . , fk) takes as input

a set of prior probabilities (π1, . . . , πk) (summing to 1) that the

446



user assigns to the distributions (f1, . . . , fk) and outputs the

index of the distribution which is most likely to have generated

the given database x. Formally, the output is the value of i that

maximizes πi

∏n
j=1 fi(xj) (with ties broken arbitrarily). We

emphasize that while intuitively the user is trying to match

(π1, . . . , πk) to the actual priors (p1, . . . , pk), we assume no

relationship between them when proving privacy. That is, our

results cover the case where the actual priors are unknown to

the user.

In the following theorem, proved in the full version,

we show that the MAP estimator F , as defined above, is

(0, δ, Δ)-DDP, where δ decays exponentially to zero in n,

if the family (f1, . . . , fk) satisfies some additional regularity

conditions.

Theorem 13. Consider a MAP estimator F : Bn+1 → [k] for
a given distribution family (f1, . . . , fk) and a set of strictly
positive user-defined weights (π1, . . . , πk). Suppose that the
distribution family satisfies the following condition:

∃ M > 1 s.t. ∀i, i′ ∈ [k], ∀a ∈ Supp(fi) ∪ Supp(fi′),

fi(a) ≤Mfi′(a)

Then the MAP estimator F is (0, δ, Δ)-DDP where Δ is
defined as above (with the same choice of distribution family
(f1, . . . , fk)) and

δ = (k − 1) τ (M + 1) e−nu (3)

where

τ = max
i �=i′

πi

πi′
(4)

u = min
i �=i′

(
− ln

(
E

[(
fi(X1)

fi′(X1)

)s]))
(5)

for any fixed s ∈ (0, 1).
Next, we consider another class of priors Δλ indexed by

some λ > 0. This class is defined equivalently to Δ, with

the added condition that pi ≥ λ for all i. For this class of

priors, we give the following result that asserts that the MAP

estimator F , as defined above, is (ε, 0, Δλ)-DDP, where ε
decays to zero in n, if the family (f1, . . . , fk) satisfies the

same regularity conditions as in the previous theorem.

Theorem 14. Consider a MAP estimator F : Bn+1 → [k] for
a given distribution family (f1, . . . , fk) and a set of strictly
positive user-defined weights (π1, . . . , πk). Suppose that the
distribution family satisfies the following condition:

∃ M > 1 s.t. ∀i, i′ ∈ [k], ∀a ∈ Supp(fi) ∪ Supp(fi′),

fi(a) ≤Mfi′(a)

Then the MAP estimator F is (ε, 0, Δλ)-DDP where

ε = ln

(
1 + (M/λ− 1) τMe−nu

1− (k − 1) τMe−nu

)
(6)

where τ is given by (4) and u is given by (5) for any fixed
s ∈ (0, 1).

This theorem is proved in the full version.

The above results hold for a distribution class with no

auxiliary information, but they can be extended to the case

where the auxiliary information Z is given by a proper subset

of the database entries XL � {Xj , j ∈ L ⊂ [n]}. Because this

auxiliary information can be interpreted as an upper bound,

this result covers all cases where the auxiliary information is

some function of only a subset of the database. The proof

follows exactly the same lines of the proofs of Theorems 13

and 14.

Theorem 15. Let the auxiliary information be given by Z =
XL for any subset L ⊂ [n]. The results of Theorems 13 and
14 still hold with n in (3) and (6) being replaced with n− L
where L = |L|.

We believe that both the sufficient conditions and the MAP

estimator mechanism itself are of interest independent of our

privacy definition. Because the databases’ inherent randomness

here is only used to avoid problematic situations, rather than

as a substitute for added noise, we believe a similar (though

possibly slightly less utile) mechanism could be shown to be

private under other privacy definitions as well. Mainly, one

can show that with a little added noise, the MAP mechanism

can be made ε-differentially private.

D. Implications for Other Privacy Definitions

In certain settings, privacy under the CW framework and/or

its DDP instantiation can imply privacy under the Pufferfish

framework and/or noiseless privacy. We first give a general

condition that specifies a case in which CW privacy implies

Pufferfish privacy. (All results in this section are proved in the

full version of this work.)

Theorem 16. Let F be a database mechanism. Let S be a set
of secret functions sec as in Definition 7, and require that each
sec ∈ S appears at least once as the priv function for some
(alt, priv) ∈ Γ. Let ε, δ > 0. Suppose that F is (ε, δ,Δ,Γ)-CW
private and that Sim is the simulator that satisfies Definition 5
in this case. If Supp(Z|sec(X)=0) = Supp(Z|sec(X)=1) and
there are some ε1 > 0 and δ1 > 0 such that

Sim (alt(X)) |sec(X)=0,Z=z ≈ε1,δ1 Sim (alt(X)) |sec(X)=1,Z=z

for all (alt, sec) ∈ Γ and all z ∈ Supp(Z|sec(X) = 0), then F
is (2ε+ ε1, δ(1 + eε+ε1) + δ1e

ε, Δ, S)-Pufferfish private.

We can easily apply the choices by which noiseless privacy

is an instantiation of Pufferfish to obtain a similar result

specifically showing a conversion from DDP to noiseless

privacy.

Corollary 1. Let F be a database mechanism. Let n be the
size of the database X . Suppose that F is (ε, δ,Δ)-DDP
for some ε, δ > 0. Let Sim be the simulator that satisfies
Definition 3 in this case. If, for all i ∈ [n] and all distinct
xi, x′i ∈ Range(Xi), Supp(Z|Xi=xi

) = Supp(Z|Xi=x′i) and

Sim(X−i)|Xi=xi,Z=z ≈ε1,δ1 Sim(X−i)|Xi=x′i,Z=z

447



for all z ∈ Supp(Z|Xi=xi
), then F is (2ε+ε1, δ(1+eε+ε1)+

δ1e
ε, D)-noiselessly private (with respect to Definition 6) for

all D ∈ Δ.

Next, we consider a special case where the rows of the

database are independent, i.e. Δ is a class of product distribu-

tions. Hence, we show that all the DDP mechanisms given in

Section 4 are also noiselessly private (with the loss of at most

a constant factor in the privacy parameters) whenever the prior

distribution is in the product form. In Section II-E we pointed

out that noiseless privacy was arguably too strong in that it

rules out learning summary statistics because those statistics

have implications for an individual. This corollary shows that

in some sense this is the only way in which it is stronger than

DDP. When such summary statistics are fixed (or included in

the auxiliary information) and the only remaining uncertainty

is idiosyncratic to each individual noiseless privacy is implied

by DDP.

Corollary 2. Let Δ be a class of distributions over (X,Z)
under each of which the database entries, conditioned on Z =
z, {Xi|Z=z, i ∈ [n]}, are independent for all z ∈ Supp(Z).
Let F be a database mechanism. If F is (ε, δ,Δ)-DDP for
some ε, δ > 0, then F is (2ε, δ(1+eε), D)-noiselessly private
(with respect to Definition 6) for all D ∈ Δ.

Finally, the following theorem uses Corollary 2 together

with the DDP results that were derived for mechanisms in

Sections III-A and III-C to show that such mechanisms are

also noiselessly private in the case where database entries are

chosen independently. For that matter, we need to modify the

setting of Theorem 13 a bit. Clearly, for any non-degenerate

set of actual priors (p1, . . . , pk), the database entries are not

independent. So, in the next theorem, we will assume a setting

where one of the distributions in the family (f1, . . . , fk)
is picked in a deterministic fashion but such distribution is

unknown, then the database entries are drawn i.i.d. according

to this unknown distribution. That is tantamount to say that

the set of actual prior is degenerate but unknown, i.e., pi = 1
for some unknown i ∈ [k].
Theorem 17. If we replace DDP with Noiseless Privacy
(Definition 6) as a definition for privacy, then the results
of Theorems 8 and 13 (with the class Δ in Theorem 13 is
replaced here with {f1, . . . , fk}) 6 still hold after replacing
each respective pair (ε, δ) in each of these theorems with
(2ε, δ(1 + eε)).
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