
Playing Non-linear Games with Linear Oracles

Dan Garber

Technion - Israel Institute of Technology
Haifa 32000 Israel

dangar@tx.technion.ac.il

Elad Hazan

Technion - Israel Institute of Technology
Haifa 32000 Israel

ehazan@ie.technion.ac.il

Abstract—Linear optimization is many times algorithmi-
cally simpler than non-linear convex optimization. Linear
optimization over matroid polytopes, matching polytopes and
path polytopes are example of problems for which we have
efficient combinatorial algorithms, but whose non-linear convex
counterpart is harder and admit significantly less efficient
algorithms. This motivates the computational model of online
decision making and optimization using a linear optimization
oracle.

In this computational model we give the first efficient
decision making algorithm with optimal regret guarantees,
answering an open question of [1], [2], in case the decision
set is a polytope. We also give an extension of the algorithm
for the partial information setting, i.e. the “bandit” model.

Our method is based on a novel variant of the conditional
gradient method, or Frank-Wolfe algorithm, that reduces the
task of minimizing a smooth convex function over a domain
to that of minimizing a linear objective. Whereas previous
variants of this method give rise to approximation algorithms,
we give such algorithm that converges exponentially faster and
thus runs in polynomial-time for a large class of convex opti-
mization problems over polyhedral sets, a result of independent
interest.

Keywords-Online Algorithms, Regret Minimization, Convex
Optimization

I. INTRODUCTION

We consider the problem of playing an online repeated

game in which a decision maker is iteratively required to

choose a point in a fixed convex decision set. After choosing

his point, an adversary chooses some convex function and

the decision maker incurs a loss that is equal to the function

evaluated at the point chosen. In this adversarial setting there

is no hope to play as well as an optimal offline algorithm that

has the benefit of hindsight. Instead the standard benchmark

is an optimal naive offline algorithm that has the benefit

of hindsight but that must play the same fixed point on

each round. The difference between the cumulative loss of

the decision maker and that of of this offline benchmark

is known as regret. The setting described above is often

termed online convex optimization in the machine learning

community and it has two popular variants. In the first

variant on each round, after the adversary chooses the

function to play, the decision maker gains full knowledge of

this function. This variant is known as the full information
setting. In the second variant the decision maker only learns

the value of the function evaluated at the point he chose

(which is just the loss he incurs). This variant is known as

the partial information or bandit setting.

While there are known algorithms for playing such games

with guaranteed regret bounds, they usually require to opti-

mize a non-linear convex function over the decision set on

every iteration (many times referred to as the “projection”)

[3], [4], [5], [6]. In high dimensional machine learning

applications this latter non-linear optimization problem is the

de-facto computational bottleneck [2]. On the other hand, for

many convex sets of interest, optimizing a linear objective

over the domain could be done by a very efficient and

simple combinatorial algorithm. Prominent examples for this

phenomenon are the matroid polytope for which there is a

simple greedy algorithm for linear optimization, and the flow

polytope (convex hull of all s− t paths in a directed acyclic

graph) for which linear optimization amounts to finding a

minimum-weight path [7]. Other important examples include

the set of rotations for which linear optimization is very effi-

cient using Wahba’s algorithm [8], and the bounded positive

semidefinite cone, for which linear optimization amounts

to a leading eigenvector computation whereas projections

require SVD decompositions.

This phenomena motivates the study of online algorithms

that require only linear optimization steps over the domain

and in particular algorithms that require only a constant

number of such steps per iteration of the game.

The main contribution of this work is an algorithm for

online games for the special case in which the decision set

is a polytope. Our algorithm requires only a single linear

optimization step over the domain per iteration and obtains

an optimal regret bound in terms of the game length in

the full information setting. Using existing techniques we

give an extension of this algorithm to the partial information

setting which obtains the best known regret bound for this

setting 1.

Our online algorithms are based on a new extension

1Since we use only one linear optimization step per iteration, our regret
bounds suffer from a certain blow-up in the form of a small polynomial in
the dimension and certain quantities of the polytope, however these addi-
tional factors are independent of the game length and are all polynomial in
the input representation for standard combinatorial optimization problems,
i.e. matroid polytopes, matching polytopes.

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.52

420

of a method that dates back to the 1950s for the offline

optimization of a smooth convex function, known as the

Conditional Gradient method or the Frank-Wolfe algorithm

[9], [10], [11]. This method basically reduces the task of

optimizing a non-linear function over a domain to that of

optimizing a linear objective over the domain. The main

appeal of this method is due to its computational simplicity

and its tendency to yield sparse solutions [11], [12], [13],

however its convergence rate is relatively slow and thus it is

only an approximation method. One of the key contributions

of our work is in providing a new conditional gradient

algorithm for non-linear smooth and strongly-convex op-

timization over polytopes with an improved convergence

rate that is exponentially faster than the basic method. The

new algorithm runs in polynomial time for a large class

of optimization problems and thus is an exact optimization

method for such problems. This new offline algorithm is of

independent interest. Building on the new ideas for offline

optimization we derive our online algorithms by analysing

the regret of a meta-algorithm for online games known as

regularized follow the leader [5], [4], but replace the non-

linear optimization step on each round with a single linear

optimization step.

The following table gives a short summary of our results

with a comparison to previous linear oracle-based methods.

Setting Previous This paper

Offline, smooth and strongly convex t−1 [11], [13] e−O(t)

Online, arbitrary convex losses T 3/4 [2]
√
T

Online, strongly convex losses T 3/4 [2] log T

Table I
COMPARISON OF LINEAR-ORACLE BASED METHODS FOR

OPTIMIZATION OVER POLYTOPES IN VARIOUS SETTINGS. IN THE

OFFLINE SETTING WE GIVE THE APPROXIMATION ERROR AFTER

t LINEAR OPTIMIZATION STEPS, OMITTING CONSTANTS. IN THE

ONLINE SETTING WE GIVE THE ORDER OF THE REGRET AFTER

T ROUNDS.

A. Related Work

The two closest works to ours, which also consider the

setting of online games with linear oracles, are those of

Kalai and Vempala [1], and Hazan and Kale [2]. In both

only linear optimization steps over the domain are used,

one per iteration. Kalai and Vempala [1] give a randomized

algorithm for online games in the special case in which all

loss functions are linear, this is some times referred to as

online linear optimization. Their algorithm achieves a regret

bound O(
√
T) where T is the length of the game, which

is optimal [14]. Their algorithm plays on each iteration a

point in the domain that minimizes the cumulative loss on all

previous iterations plus some random noise. They leave open

the question of handling non-linear loss functions. Hazan

and Kale [2] give an algorithm that can handle arbitrary

convex losses. Their technique builds on approximating the

decisions of a meta-algorithm for online games known as

regularized follow the leader, which plays a point that is the

optimal solution to a regularized non-linear convex problem.

They aim at approximating this non-linear objective using a

single linear optimization step. However their approximation

error is not guaranteed to be sufficiently small which results

in a suboptimal regret bound of O(T 3/4) and they leave

open the question of attaining the optimal regret bound in

terms of T .

Also relevant to our setting is the work of Kakade, Kalai

and Ligett [15], which as [1] also deals with the special case

of online linear optimization. However, [15] consider the

case in which we are not given an exact linear optimization

oracle but only an oracle that returns a solution with some

approximation guarantee.

The extension of our online algorithm to the bandit setting

is based on the techniques developed by Flaxman, Kalai and

McMahan [16] which gives an elegant way of converting an

algorithm for the full information setting into an algorithm

for the partial information setting by coupling exploration

with exploitation on each round.

The primary technical tool we use for the derivation of

our results is the Conditional Gradient method, or Frank-

Wolfe algorithm for offline smooth, convex optimization

which was first proposed by Frank and Wolfe in 1956 [9].

The basic method guarantees additive approximation error ε
after O(ε−1) linear optimization steps. In case the domain is

a polytope and the objective is a strongly convex function,

GuéLat and Marcotte [10] showed that under a certain

assumption on the distance of the constrained optimum

from the boundary of the set, an error rate O(log ε−1) is

achievable. However their error rate depends directly on the

distance of the optimum from the boundary, and thus the

log ε−1 rate holds only for instances in which the constraints

are irrelevant, i.e. problems that are effectively unconstrained

optimization for which much simpler techniques exist.

Migdalas [17] showed that for the strongly convex case, an

error rate O(log ε−1) is achievable if the linear optimization

step on each iteration is replaced with a quadratic optimiza-

tion step, which is computationally equivalent to computing

projections. More recently the conditional gradient method

regained interest due to its inherent sparsity with works such

as that of Clarkson [11], Hazan [12] and Jaggi [13] to the

simplex, semi-definite cone and arbitrary compact convex

sets respectively.

B. Techniques

One of our main contributions is a new conditional gradi-

ent algorithm for smooth strongly convex optimization over

polyhedra sets which guarantees ε additive approximation

error after O(log ε−1) linear optimization steps over the

domain. Previous approaches require in the same setting

O(ε−1) linear optimization steps. The slow convergence rate

of previous approaches is due to the following reason: each

421

step of the general method combines, via a convex sum,

the current iterate with a point in the domain that optimizes

the inner product with the gradient vector of the function

evaluated in the current iterate, which for polyhedral sets

is without loss of generality a vertex. Unfortunately, the

new added vertex may be far from the current iterate which

forces taking decreasing step sizes in order to guarantee

convergence.

In case the objective is a strongly-convex function, a

possible remedy to the above problem is to consider as

solutions to the inner product problem only points that are

close to the current iterate. However this results in a non-

linear optimization problem which is much less efficient to

solve using a linear oracle than the original linear problem.

The key technical contribution of this work is in construct-

ing a procedure, which we call a local linear oracle, for

optimizing a linear objective over the domain in the close

proximity of a feasible point. This procedure requires only

a single call to the linear oracle of the polytope and returns

a feasible point with objective value at least as good as

the optimal point in the intersection of the polytope with a

small ball centred at the current iterate. The point returned

is also close enough to the current iterate which allows the

reduction of the approximation error by a constant factor on

each iteration.

We use the new ideas for offline optimization to analyse

the regret of a meta-algorithm for online games known

as regularized follow the leader (RFTL) [5], [4], in case

that the non-linear optimization step of RFTL is replaced

with a single linear optimization step over the domain.

This approach is also the one taken in [2], however at the

time of their work no conditional gradient algorithm with

exponentially-decreasing error was known which is essential

for getting the optimal regret rates with such analysis. We

also manage to obtain regret bounds that are logarithmic in

the length of the game for strongly convex instances, which

is also known to be tight.

A technical issue with the efficiency of our online algo-

rithm is the size of the representation of the current iterate

as a convex sum of vertices. We show that it is possible to

compute a sufficiently small decomposition by bootstrapping

our new offline algorithm to the problem of computing a

nearest point in the domain. We require to compute such

a decomposition only after sufficiently many iterations, and

thus the amortized oracle complexity per iteration remains

a constant.

II. FORMAL DEFINITIONS

A. Online repeated convex games

We consider an online repeated game in which on each

iteration a decision maker needs to choose a point xt in a

fixed convex set P (a polytope in this work). An adversary

then chooses a convex loss function ft(x) : P → R and the

decision maker incurs loss ft(xt). The choice of the function

ft(x) may be adversarial and based on the actual plays made

by the decision maker in the past. In the full information,

setting after suffering the loss, the decision maker gets full

knowledge of the function ft. In the partial information
setting (bandit) the decision maker only learns the value

ft(xt) and does not gain any other knowledge about ft.
The standard goal in such games is to have overall loss

which is not much larger than that of the best fixed point in

P in hindsight. Formally the goal is to minimize a quantity

known has regret which is given by,

regretT =
T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x)

In certain cases, such as in the bandit setting, the decision

maker must use randomness in order to make his decisions.

In this case we consider only the expected regret, where the

expectation is taken over the randomness in the algorithm

of the decision maker.

B. Technical definitions and notations

Given two vectors x, y we write x ≥ y if every entry of x
is greater or equal to the corresponding entry in y. We denote

by ‖x‖ the l2 norm of the vector x and by ‖A‖ the spectral

norm of the matrix A, that is ‖A‖ = maxx:‖x‖=1 ‖Ax‖.
Given a matrix A we denote by A(i) the vector that

corresponds to the ith row of A. We denote Br(x) the

euclidean ball of radius r centred at x and in particular

we denote the unit ball around the origin by B. We also

denote by S the unit sphere around the origin, that is the set

{x | ‖x‖ = 1}.
Definition 1: We say that a function f(x) : Rn → R is

Lipschitz with parameter L over the set K ⊂ R
n if for all

x, y ∈ K it holds that,

|f(x)− f(y)| ≤ L‖x− y‖
Definition 2: We say that a function f(x) : Rn → R is

β-smooth over the set K if for all x, y ∈ K it holds that,

f(y) ≤ f(x) +∇f(x)�(y − x) + β‖x− y‖2

Definition 3: We say that a function f(x) : Rn → R is

σ-strongly convex over the set K if for all x, y ∈ K it holds

that,

f(y) ≥ f(x) +∇f(x)�(y − x) + σ‖x− y‖2

The above definition together with first order optimality

conditions imply that for a σ-strongly convex f , if x∗ =
argminx∈K f(x), then for all x ∈ K

f(x)− f(x∗) ≥ σ‖x− x∗‖2

Note that a sufficient condition for a twice-differential

function f to be β-smooth and σ-strongly convex over a

domain K is that,

∀x ∈ K : βI � ∇2f(x) � σI

422

Given a polytope P = {x ∈ R
n |A1x = b1, A2x ≤ b2}

2, A2 is m × n 3, let V denote the set of vertices of P
and let N = |V|. We assume that P is bounded and we

denote D(P) = maxx,y∈P ‖x− y‖. We denote ξ(P) =
minv∈V min{b2(j)−A2(j)v | j ∈ [m], A2(j)v < b2(j)}.
Let r(A2) denote the row rank of the matrix A2. Let

A(P) denote the set of all r(A2)× n matrices whose rows

are linearly independent vectors chosen from the rows of

A2 and denote ψ(P) = maxM∈A(P) ‖M‖. Finally denote

μ(P) = ψ(P)D(P)
ξ(P) . Henceforth we shall use the shorthand

notation of D, ξ, ψ, μ when the polytope at hand is clear

from the context.

We note that for many polytopes of interest, especially

such that arise in combinatorial optimization, such as ma-

torid polytopes, the unit flow polytope, the matching poly-

tope and more, the quantities D,ψ are polynomial in the

dimension and ξ is a constant.

III. INFORMAL STATEMENT OF RESULTS

In all of our results we assume that we are performing

optimization (either offline or online) over a polytope P and

that we have a linear optimization oracle OP for it:

OP(c) ∈ argmin
v∈V
{c�v}

Offline optimization: We give an iterative algorithm that

given a β-smooth and σ-strongly-convex function f returns

after t iterations a point xt+1 ∈ P such that,

f(xt+1)−min
y∈P

f(y) ≤ C exp

(
− σ

4βnμ2
t

)

where C = maxx,y∈P |f(x)− f(y)|. The algorithm per-

forms a single call to the oracle OP on each iteration.

This convergence rate is sometimes referred to as linear

convergence rate in the continuous optimization community.

We note that for the case of minimizing the function

f(x) = ‖x‖2 over the unit simplex it is known (see for

example [13]) that for any ε ≥ 1
n in order to achieve

additive approximation error ε, the cardinality of the solution

(number of non zeros) must be Ω(ε−1). In this specific

problem all parameters C, σ, β, μ are constants, hence the

dependence of the convergence rate on the dimension n
seems mandatory.

Online optimization: Based on the technique used for

the offline algorithm we derive online algorithms that require

only a single call to the linear oracle OP per iteration of the

game. Our algorithms achieve the following regret bounds.

For ease of presentation here we only write the dependency

2we consider polytopes given in this most general representation since
we are dealing with non-linear optimization. In this case transformations
between polyhedra representations that are standard in linear programming
do not apply in a straightforward manner since they may also change the
objective.

3we don’t impose any limit on the number of inequalities m and in fact
it may be exponential.

on the length of the game T which is the primary concern.

When we formally present the results we give the full

dependency of the bound on all parameters.

1) For arbitrary convex loss functions we get regret bound

O(
√
T) which is optimal [14].

2) In case all loss functions are H-strongly convex for

some H > 0 we get a logarithmic regret bound

O(log T) which is also optimal [18].

3) In the partial information setting we give a random-

ized algorithm with expected regret bound O(T 3/4).
The expectation is taken over the randomness in the

algorithm. To date this is the best known regret bound

for this setting.

IV. A LINEARLY CONVERGENT CONDITIONAL

GRADIENT ALGORITHM

In this section we overview our two main technical

tools which are the conditional gradient method and the

construction of a new oracle we term local linear oracle,

for finding a feasible point that dominates all points in the

intersection of the polytope and a small ball with respect to

some linear objective, such that the returned point is not too

far from the center of the ball.
These two components combined yield a new algorithm

for offline optimization of smooth strongly convex functions

with error rate that is exponentially-decreasing (a linear

convergence rate) which is also the technical key to our

online algorithms.

A. The conditional gradient method and local linear oracles
The conditional gradient method is a simple algorithm for

minimizing a smooth convex function f over a convex set

P , which in this work we assume to be a polytope, given

only an oracle OP for minimizing a linear objective over P .

The basic algorithm is given in figure 1.

1: Let x1 be an arbitrary point in P .

2: for t = 1... do
3: pt ← OP(∇f(xt)).
4: xt+1 ← xt + αt(pt − xt) for αt ∈ (0, 1).
5: end for

Figure 1. Conditional Gradient Algorithm

Denote x∗ = argminx∈P f(x). The proof of convergence

of the conditional gradient algorithm is due to the following

simple observations.

f(xt+1)− f(x∗) (1)

= f(xt + αt(pt − xt))− f(x∗)
≤ f(xt)− f(x∗) + αt(pt − xt)�∇f(xt) + α2

tβ‖pt − xt‖2
≤ f(xt)− f(x∗) + αt(x

∗ − xt)�∇f(xt) + α2
tβ‖pt − xt‖2

≤ f(xt)− f(x∗) + αt(f(x
∗)− f(xt)) + α2

tβ‖pt − xt‖2
≤ (1− αt)(f(xt)− f(x∗)) + α2

tβD
2

423

where the first inequality follows from the β-smoothness of

f , the second inequality follows from the optimality of pt
and the third inequality follows from convexity of f .

The relatively slow convergence of the conditional gra-

dient algorithm is due to the term ‖pt − xt‖ in the above

analysis, that may remain as large as the diameter of P even

when the error f(xt) − f(x∗) is small, thus forcing us to

choose values of αt that decrease like 1
t [11], [12], [13]

which results in a poor convergence rate of O(1/t).
Notice that if f is σ-strongly convex for some σ >

0 then knowing that for some iteration t it holds that

f(xt) − f(x∗) ≤ ε implies that ‖xt − x∗‖2 ≤ ε
σ . Thus

when choosing the direction pt, denoting r =
√
ε/σ, it

is enough to consider points that lie in the intersection set

P ∩ Br(xt), since all we need for the above analysis to

hold is that p�t ∇f(xt) ≤ x∗�∇f(xt). In this case the term

‖pt − xt‖2 will be of the same magnitude as f(xt)− f(x∗)
(or even smaller) and as observable from (1) we will get

f(xt+1)− f(x∗) ≤ (f(xt)− f(x∗))
(
1− αt + α2

tβ

σ

)
(2)

which by an appropriate choice of αt leads to an exponen-

tially fast convergence.

However solving the problem minp∈P∩Br(xt) p
�∇f(xt)

is much more difficult than solving the original linear prob-

lem minp∈P p�∇f(xt), given a linear oracle. To overcome

this difficulty we introduce the following definition which is

a primary ingredient of our work.

Definition 4 (Local Linear Oracle): We say that a proce-

dure A(x, r, c), x ∈ P , r ∈ R
+, c ∈ R

n is a Local Linear

Oracle for the polytope P with parameter ρ, if A(x, r, c)
returns a point p ∈ P such that:

1) ∀y ∈ Br(xt) ∩ P it holds that c�y ≥ c�p.

2) ‖x− p‖ ≤ ρ · r.

The local linear oracle (LLO) relaxes the problem

minp∈P∩Br(xt) p
�∇f(xt) by searching for a solution to

the linear problem on a larger set, but one that still has a

diameter that is not much larger than
√
f(xt)− f(x∗). One

of the main technical contributions of this work is showing

that for a polytope P a local linear oracle can be constructed

such that the parameter ρ depends only on the dimension n
and the quantity μ(P). Moreover the construction requires

only a single call to the oracle OP .

With a local linear oracle at hand, by replacing the oracle

call in the conditional gradient algorithm with an LLO call,

we get that for a single iteration it holds that,

f(xt+1)− f(x∗) ≤ (f(xt)− f(x∗))
(
1− αt + α2

tβρ
2

σ

)
(3)

and thus again by an appropriate choice of αt, exponentially-

fast convergence is attainable.

We conclude this subsection with the following theorem

which we prove in the full version of this paper.

Theorem 1: There exists an iterative algorithm for mini-

mizing a β-smooth and σ-strongly convex function f over

a polytope P that on every iteration performs a single call

to the linear oracle OP and such that after t iterations the

iterate xt+1 satisfies:

f(xt+1)− f(x∗) ≤ C exp

(
− σ

4βnμ2
t

)

where x∗ = argminx∈P f(x) and C is a bound on the initial

error f(x1) − f(x∗). Moreover, xt+1 is naturally given in

the form of a convex combination of at most t+ 1 vertices

of P .

One interesting application of theorem 1 which is also

relevant to our online algorithms is the following. Assume

that we are maintaining a point in the domain by its

convex decomposition into vertices of the polytope and

we are interested for the sake of efficiency to keep this

representation relatively small. A remeady for this problem

is to re-decompose the point into fewer vertices every time

the size of the decomposition becomes too large. A generic

way of achieving such a decomposition, that relies only on

the use of the linear oracle, is by bootstrapping theorem 1

to solve the problem minx∈P ‖x− x0‖2 where x0 is the

point we would like to decompose. This would enable us to

find a point x1 close enough to x0 (closeness depends on

the error we are willing to incur) that is given by a smaller

decomposition.

B. Constructing a local linear oracle

In this subsection we show how to construct an algorithm

for the procedure A(x, r, c) given only an oracle that mini-

mizes a linear objective over the polytope P .

As an exposition for our construction of a local lin-
ear oracle for general polyhedral sets, we first consider

the specific case of constructing a local linear oracle
for the n-dimensional simplex, that is the set Sn =
{x ∈ R

n | ∀i : xi ≥ 0 ,
∑n
i=1 xi = 1}. Given a point x ∈

Sn, a radius r and a linear objective c ∈ R
n, consider the

optimization problem,

min
y∈Sn

y�c

s.t. ‖x− y‖1 ≤
√
nr (4)

Observe that a solution p to problem (4) satisfies:

1) ∀y ∈ Sn ∩ Br(x) : p
�c ≤ y�c

2) ‖x− p‖ ≤ √nr
Thus a procedure that returns solutions to problem (4) is

a local linear oracle for the simplex with parameter ρ =
√
n.

Assume for now that
√
nr
2 ≤ 1. Problem (4) is solved

optimally by the following very simple algorithm:

1) i∗ ← argmini∈[n] c(i)
2) p← x
3) let i1, ..., in be a permutation over [n] such that

c(i1) ≥ c(i2) ≥ ... ≥ c(in)

424

4) let k ∈ [n] be the smallest integer such that∑k
j=1 x(ij) ≥

√
nr
2

5) δ ←∑k
j=1 x(ij)−

√
nr
2

6) ∀j ∈ [k − 1] : p(ij)← 0
7) p(ik)← δ

8) p(i∗)← p(i∗) +
√
nr
2

Observe that step 1 of the above algorithm is equivalent

to a single linear optimization step over the simplex.

We now turn to generalize the above simple construction

for the simplex to arbitrary polyhedral sets.

Our algorithm for a local linear oracle (LLO) for arbitrary

polyhedral sets is given in figure 2. Note that the algorithm

assumes that the input point x is given in the form of a

convex combination of vertices of the polytope. Later on

we show how to maintain such a decomposition of the input

point x efficiently.

1: Input: a point x ∈ P such that x =
∑k
i=1 λivi, λi >

0,
∑k
i=1 λi = 1, vi ∈ V , radius r > 0, linear objective

c ∈ R
n.

2: Δ← min{
√
nψ
ξ r, 1}.

3: ∀i ∈ [k]: li ← c�vi.
4: Let i1, ...ik be a permutation over [k] such that li1 ≥
li2 ≥ ...lik .

5: for j = 1...k do
6: λ′ij ← max{0, λij −Δ}.
7: Δ← Δ− (λij − λ′ik).
8: end for
9: v ← OP(c).

10: return p←∑k
i=1 λ

′
ivi +

(
1−∑k

i=1 λ
′
i

)
v.

Figure 2. Local Linear Oracle Algorithm

Lemma 1: Let x ∈ P be the input to the LLO algorithm

and let y ∈ P . Write y =
∑k
i=1(λi −Δi)vi + (

∑k
i=1 Δi)z

for some Δi ∈ [0, λi] and z ∈ P such that the sum
∑k
i=1 Δi

is minimized. Then ∀i ∈ [k] there exists an index j ∈ [m]
such that A2(j)vi < b2(j) and A2(j)z = b2(j).

The proof of the lemma is given in the full version of the

paper. The idea is to show that if the condition in lemma

1 is not satisfied then one can express the point y as y =∑k
i=1(λi − Δ′i)vi + (

∑k
i=1 Δ

′
i)z
′, Δ′i ∈ [0, λi] such that∑

iΔ
′
i <

∑
iΔi, contradicting the minimality of

∑
iΔi.

The proof of the following claim is given in the full

version of this paper.

Claim 1: Let z ∈ P and denote C(z) =
{i ∈ [m] : A2(i)z = b2(i)} and let C0(z) ⊆ C(z)
be such that the set {A2(i)}i∈C0(z) is a basis for

span
({A2(i)}i∈C(z)

)
. Then given y ∈ P , if there exists

i ∈ C(z) such that A2(i)y < b2(i) then there exists

i0 ∈ C0(z) such that A2(i0)y < b2(i0).
Lemma 2: Let x ∈ P be the input to the LLO algo-

rithm and let y ∈ P be such that ‖x− y‖ ≤ r. Write

y =
∑k
i=1(λi −Δi)vi + (

∑k
i=1 Δi)z for some Δi ∈ [0, λi]

and z ∈ P such that the sum
∑k
i=1 Δi is minimized. Then∑k

i=1 Δi ≤
√
nψ
ξ r.

Proof: Denote C(z) = {j ∈ [m] : A2(j)z = b2(j)}
and let C0(z) ⊆ C(z) such that the set of vectors

{A2(i)}i∈C0(z) is a basis for span
({A2(i)}i∈C(z)

)
. Denote

A2,z ∈ R
|C0(z)|×n the matrix A2 after deleting from it every

row i /∈ C0(z) and recall that by definition ‖A2,z‖ ≤ ψ.

Then it holds that,

‖x− y‖2 =

∥∥∥∥∥
k∑
i=1

Δi(vi − z)
∥∥∥∥∥
2

≥ 1

‖A2,z‖2
∥∥∥∥∥A2,z

(
k∑
i=1

Δi(vi − z)
)∥∥∥∥∥

2

≥ 1

ψ2

∥∥∥∥∥
k∑
i=1

ΔiA2,z(vi − z)
∥∥∥∥∥
2

=
1

ψ2

∑
j∈C0(z)

(
k∑
i=1

Δi(A2(j)vi − b2(j))
)2

Note that |C0(z)| ≤ n and that for any vector x ∈ R
|C0(z)|

it holds that ‖x‖ ≥ 1√
|C0(z)|

‖x‖1. Thus we have that,

‖x− y‖2 ≥ 1

nψ2

⎛
⎝ ∑
j∈C0(z)

∣∣∣∣∣
k∑
i=1

Δi(A2(j)vi − b2(j))
∣∣∣∣∣
⎞
⎠

2

=
1

nψ2

⎛
⎝ ∑
j∈C0(z)

k∑
i=1

Δi(b2(j)−A2(j)vi)

⎞
⎠

2

Combining lemma 1 and claim 1, we have that for all

i ∈ [k] such that Δi > 0 there exists j ∈ C0(z) such that

A2(j)vi ≤ b2(j)− ξ. Hence,

‖x− y‖2 ≥ 1

nψ2

(
k∑
i=1

Δiξ

)2

=
ξ2

nψ2

(
k∑
i=1

Δi

)2

Since ‖x− y‖2 ≤ r2 we conclude that
∑k
i=1 Δi ≤√

nψ
ξ r.

The following lemma establishes that our LLO algorithm

is indeed a local linear oracle for P with parameter ρ =√
nμ.

Lemma 3: Assume that the input to the LLO algorithm

is x =
∑k
i=1 λivi such that ∀i ∈ [k], λi > 0, vi ∈ V and∑k

i=1 λi = 1. Let p be the point returned by the algorithm.

Then the following conditions hold:

1) p ∈ P .

2) ‖x− p‖ ≤ √nμr.

3) ∀y ∈ Br(x) ∩ P it holds that c�y ≥ c�p.

Note that the LLO algorithm assumes that the input point

x is given by its convex decomposition into vertices. Our

425

online algorithm uses the LLO algorithm in the following

way: it sends as input to the LLO the current iterate xt
and then given the output of the LLO, pt it produces the

next iterate xt+1 by a taking a convex combination xt+1 ←
(1 − α)xt + αpt for some parameter α ∈ (0, 1). Thus if

the convex decomposition of xt is given, updating it to the

convex decomposition of xt+1 is straightforward. Moreover,

denoting Vt ⊆ V the set of vertices that form the convex

decomposition of xt, it is clear from the LLO algorithm that

|Vt+1 \ Vt| ≤ 1, since at most a single vertex, v is added to

the decomposition.

Lemma 4: The LLO algorithm has an implementation

such that each invocation of the algorithm requires a single

call to the oracle OP and additional O(T (n+ log T)) time

where T is the total number of calls to the LLO.

Proof: Clearly the LLO algorithm calls OP only once.

The complexity of all other operations depends on k - the

number of vertices in the convex decomposition of the input

point x. As we discussed, if we denote by xt, xt+1 the inputs

to the algorithm on calls number t, t + 1 to the algorithm

and by kt, kt+1 the number of vertices in the convex

decomposition of xt, xt+1 respectively then kt+1 ≤ kt + 1.

Thus if the algorithm is called a total number of T times

and the initial point, x1 is a vertex, then at all times k ≤ T .

Since all other operations except for calling OP consist

of computing k inner products between vectors in R
n and

sorting k scalars, the lemma follows.

Note that we can get rid of the linear dependence on T in

the bound in lemma 4 by decomposing the iterate xt into a

convex sum of fewer vertices in case the number of vertices

in the current decomposition, k becomes too large. From

Caratheodory’s theorem we know that there exists a decom-

position with at most n+1 vertices and for many polytopes

of interest there is an efficient algorithm for computing such

a decomposition. From previous discussions, we will need

to invoke this decomposition algorithm only every O(n)
iterations which will keep the amortized iteration complexity

low.

Another approach for the above problem that relies only

on the use of the oracle OP is the following. If k is too large

we can compute a new decomposition of the input point

x by finding an approximated solution to the optimization

problem miny∈P ‖x− y‖2 using theorem 1 up to precision

r2. The result will be a point x′ given by a decomposition

into O(nμ2 log(1/r)) vertices such that ‖x′ − x‖ ≤ r. Thus

this gives us a construction of a local linear oracle with

parameter ρ = 3
√
nμ. We will need to invoke this decom-

position procedure only every O(nμ2 log(1/r)) iterations

which leads to the following lemma.

Lemma 5: Assume that on all iterations the input r to the

LLO algorithm is lower-bounded by r1 > 0. Then there ex-

ists an implementation for a local linear oracle with parame-

ter ρ = 3
√
nμ such that the amortized linear oracle complex-

ity per iteration is 2 and the additional amortized complexity

per iteration is O
(
nμ2 log(1/r1)

(
n+ log(nμ2 log(1/r1)

))
.

In our online algorithm the bound r1 will always satisfy
1
r1

= O(T) where T is the length of the game, and thus the

running time per iteration depends only logarithmically on

T .

V. ONLINE ALGORITHMS

In this section we present and analyse our algorithm for

playing online convex games. We initially focus on the full
information setting. Later on we show how to convert the

full information algorithm into an algorithm for the partial
information setting. The algorithm is given in figure 3. The

functions Ft(x), used by the algorithm (in line 6), will be

specified precisely in the analysis. For now assume that

Ft(x) sums the loss functions on times 1, ..., t plus some

regularization term of the form ‖x− x0‖2.

1: Input: horizon T , set of radii {rt}Tt=1 t ∈ [T], optimiza-

tion parameter α ∈ (0, 1), LLO A with parameter ρ.

2: Let x1 be an arbitrary vertex in V .

3: for t = 1...T do
4: play xt.
5: receive ft.
6: pt ← A(xt, rt,∇Ft(xt)).
7: xt+1 ← xt + α(pt − xt).
8: end for

Figure 3. Algorithm for Full Information Setting

We have the following two main results.

Denote G = supx∈P,t∈[T] ‖∇ft(x)‖ and recall that we

have a construction for a local linear oracle with parameter

ρ = O(
√
nμ).

Theorem 2: Given a LLO with parameter ρ = O(
√
nμ),

there exists a choice for the parameters η, α, {rt}Tt=1 such

that for general convex losses the regret of the algorithm in

figure 3 is O(GDμ
√
nT).

Theorem 3: Given a LLO with parameter ρ = O(
√
nμ),

there exists a choice for the parameters η, α, {rt}Tt=1 such

that if all loss functions ft(x) are H-strongly convex

then the regret of the algorithm in figure 3 is O((G +
HD)2nμ2/H) log T).

A. Analysis for general convex losses

For time t ∈ {0, 1, ..., T − 1} we define the function

Ft(x) = η
(∑t

τ=1∇fτ (xτ)�x
)
+ ‖x− x1‖2 where η is

a parameter that will by determined in the analysis.

Denote x∗1 = x1 and for all t ∈ {1, 2, ..., T − 1}
denote x∗t+1 = argminx∈P Ft(x). Denote also x∗ =

argminx∈P
∑T
t=1 ft(x). Observe that Ft(x) is 1-smooth

and 1-strongly convex and thus fits the assumptions of our

results for offline smooth and strongly convex optimization

(see theorem 1).

426

The proof of the following lemma is basically outlined in

subsection IV-A and it is also given in full version of this

paper.

Lemma 6: Given time t ∈ [T − 1], let x∗t+1 =
argminx∈P Ft(x) and assume that ‖xt − x∗t+1‖ ≤ rt. Then

for every α ∈ (0, 1) it holds that,

Ft(xt+1)− Ft(x∗t+1) ≤ (1− α) (Ft(xt)− Ft(x∗t+1)
)

+βα2 min{ρ2r2t , D2}
Our online algorithm basically finds approximated mini-

mizers to the sequence of functions F1(x), F2(x), ..., FT (x)
where on each time t, the point xt - the approximated min-

imizer of Ft−1(x) is produced by using the previous iterate

xt−1 as a ”warm start” for the problem minx∈P Ft−1(x)
and then performing a single improvement step of the LLO-

based conditional gradient algorithm. Lemma 6 gives a

guarantee for such an improvement step.

The following lemma bounds for every time t the distance

between the approximated minimizer of Ft−1 - the point xt
that our algorithm plays on time t, and the true minimizer

x∗t which is the point that we would have liked to play on

time t. A proof is given in the full version of this paper.

Lemma 7: For any ε > 0, there is a choice for the param-

eters η, α, {rt}Tt=1 such that for all t ∈ [T]: ‖xt − x∗t ‖ ≤
√
ε.

Proof of theorem 2: Observe that playing the point

x∗t+1 = argminx∈P Ft(x) on each time t is equivalent to

playing the leader on each time with respect to the loss

functions f ′1(x) = ∇f1(x1)�x + 1
η‖x− x1‖2 and f ′t(x) =

∇ft(x)�x for every t > 1. This strategy of playing on each

time according to the leader is known to achieve overall zero

regret, see [1]. Thus,

T∑
t=1

∇ft(xt)�(x∗t+1 − x∗) ≤ 1

η
(‖x∗ − x1‖2 − ‖x∗1 − x1‖2)

≤ D2

η

By the definition of Ft(x), x
∗
t and the use of strong-

convexity we have that,

‖x∗t − x∗t+1‖2 ≤ Ft(x∗t)− Ft(x∗t+1) ≤ ηG‖x∗t − x∗t+1‖
Which implies by the triangle inequality that,

T∑
t=1

∇ft(xt)�(x∗t − x∗) ≤
D2

η
+ TηG2

Given a choice for ε, setting η, α, {rt}Tt=1 to the values

determined in the proof of lemma 7, plugging lemma 7 and

by the convexity of ft() we get that,

T∑
t=1

ft(xt)− ft(x∗) ≤
T∑
t=1

∇ft(xt)�(xt − x∗)

≤ 18GD2ρ2√
ε

+
TG
√
ε

18ρ2
+ TG

√
ε

The theorem now follows from plugging ε = (Dρ)2

T and the

fact that ρ ≥ 1.

The analysis for the case of strongly convex losses follows

the same lines with some relatively minor modifications

such as approximating ft(x) with the function f̃t(x) =
∇ft(xt)�x+H‖x− xt‖2 instead of just∇ft(xt)�x as done

in the analysis above. The full details are given in the full

version of this paper.

B. Bandit algorithm

Our online algorithm in figure 3 can be converted to the

bandit setting in an almost straightforward manner using the

techniques described in [16]. The major difference between

our algorithm and that of [16] is that our bandit algorithm

is based on our algorithm for the full information setting,

whereas the algorithm in [16] is based on Zinkevich’s online

gradient descent algorithm [3].

We now assume that without loss of generality the poly-

tope P contains the origin and it holds that rB ⊆ P ⊆ RB
for some positive scalars r,R. We assume that the loss

function ft(x) chosen by the adversary on time t, is chosen

with knowledge of the history of the game but without any

knowledge of possible randomization used by the decision

maker on time t. We also assume that ft(x) is L-Lipschitz

for some positive scalar L and |ft(x)| ≤ C for some positive

scalar C.

Our bandit algorithm and the proof of the following

theorem are given in the full version of this paper.

Theorem 4: Our bandit algorithm generates a sequence of

points x1, x2, ..., xT ∈ P such that:

E

[
T∑
t=1

ft(xt)−min
x∈P

T∑
t=1

ft(x)

]
= O

(√
n3/2CLμR√

r
T 3/4

)

where the expectation is taken over the randomness in the

algorithm.

VI. CONCLUSIONS AND OPEN PROBLEMS

We have introduced the first efficient algorithm for playing

repeated convex games with optimal regret in the linear

oracle model, and the first linearly-converging conditional

gradient algorithm for smooth and strongly-convex optimiza-

tion over polyhedral sets.

The most important open problem remaining is to give

an efficient decision making algorithm in the linear oracle

model for general convex sets. Of particular practical interest

is the bounded positive semidefinite cone, and a specific

algorithm for this setting would be of particular interest in

machine learning.

Another interesting research direction is to obtain an

efficient polynomial time algorithm in the linear oracle

427

model for general convex optimization, possibly using sim-

ilar techniques as Dunagan and Vempala [19]. 4

Finally, it will be interesting to extend our techniques

to the setting of Kakade, Kalai and Ligett [15] in which

we are only given an approximated linear oracle and not

an exact one, as assumed here. Their algorithm requires to

call the approximated oracle O(T) times per iteration of the

game. Perhaps by further developing our techniques, this

oracle complexity could be reduced dramatically, resulting

in a more practical algorithm. Moreover, their algorithm

applies only to the case in which all loss functions are linear.

Extending their result to the non-linear case is also very

interesting.

ACKNOWLEDGMENT

Work carried out and supported by the Technion-

Microsoft Electronic Commerce Research Center and ISF

grant 810/11.

REFERENCES

[1] A. T. Kalai and S. Vempala, “Efficient algorithms for online
decision problems,” J. Comput. Syst. Sci., vol. 71, no. 3, pp.
291–307, 2005.

[2] E. Hazan and S. Kale, “Projection-free online learning,” in
ICML, 2012.

[3] M. Zinkevich, “Online convex programming and generalized
infinitesimal gradient ascent,” in ICML, 2003, pp. 928–936.

[4] S. Shalev-Shwartz, “Online learning and online convex op-
timization,” Foundations and Trends in Machine Learning,
vol. 4, no. 2, pp. 107–194, 2012.

[5] E. Hazan, “A survey: The convex optimization approach to
regret minimization,” in Optimization for Machine Learning,
S. Sra, S. Nowozin, and S. J. Wright, Eds. MIT Press, 2011,
pp. 287–302.

[6] W. M. Koolen, M. K. Warmuth, and J. Kivinen, “Hedging
structured concepts,” in COLT, 2010, pp. 93–105.

[7] A. Schrijver, Combinatorial Optimization - Polyhedra and
Efficiency. Springer, 2003.

[8] G. Wahba, “A least squares estimate of satellite attitude,”
SIAM Rev., vol. 7, no. 3, 1965.

[9] M. Frank and P. Wolfe, “An algorithm for quadratic program-
ming,” Naval Research Logistics Quarterly, vol. 3, pp. 149–
154, 1956.

[10] J. GuéLat and P. Marcotte, “Some comments on Wolfe’s
‘away step’,” Mathematical Programming, vol. 35, no. 1,
1986.

[11] K. L. Clarkson, “Coresets, sparse greedy approximation, and
the frank-wolfe algorithm,” in SODA, 2008, pp. 922–931.

4Polynomial time convex optimization is known to be possible even in
the more difficult membership oracle model, here we ask for more efficient
running times.

[12] E. Hazan, “Sparse approximate solutions to semidefinite
programs,” in LATIN, 2008, pp. 306–316.

[13] M. Jaggi, “Sparse convex optimization methods for machine
learning,” Ph.D. dissertation, ETH Zurich, Oct. 2011.

[14] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and
Games. New York, NY, USA: Cambridge University Press,
2006.

[15] S. M. Kakade, A. T. Kalai, and K. Ligett, “Playing games with
approximation algorithms,” in STOC, 2007, pp. 546–555.

[16] A. Flaxman, A. T. Kalai, and H. B. McMahan, “Online convex
optimization in the bandit setting: gradient descent without a
gradient,” in SODA, 2005, pp. 385–394.

[17] A. Migdalas, “A regularization of the frankwolfe method
and unification of certain nonlinear programming methods,”
Mathematical Programming, vol. 65, pp. 331–345, 1994.

[18] E. Hazan and S. Kale, “Beyond the regret minimization
barrier: an optimal algorithm for stochastic strongly-convex
optimization,” Journal of Machine Learning Research - Pro-
ceedings Track, vol. 19, pp. 421–436, 2011.

[19] J. Dunagan and S. Vempala, “A simple polynomial-time
rescaling algorithm for solving linear programs,” Math. Pro-
gram., vol. 114, no. 1, pp. 101–114, 2008.

428

