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Abstract—In the Maximum Weight Independent Set of Rect-
angles (MWISR) problem we are given a set of n axis-parallel
rectangles in the 2D-plane, and the goal is to select a maximum
weight subset of pairwise non-overlapping rectangles. Due to
many applications, e.g. in data mining, map labeling and
admission control, the problem has received a lot of attention
by various research communities. We present the first (1+ ε)-
approximation algorithm for the MWISR problem with quasi-
polynomial running time 2poly(logn/ε). In contrast, the best
known polynomial time approximation algorithms for the prob-
lem achieve superconstant approximation ratios of O(log log n)
(unweighted case) and O(log n/ log log n) (weighted case).

Key to our results is a new geometric dynamic pro-
gram which recursively subdivides the plane into polygons of
bounded complexity. We provide the technical tools that are
needed to analyze its performance. In particular, we present a
method of partitioning the plane into small and simple areas
such that the rectangles of an optimal solution are intersected
in a very controlled manner. Together with a novel application
of the weighted planar graph separator theorem due to Arora
et al. [4] this allows us to upper bound our approximation ratio
by 1 + ε.

Our dynamic program is very general and we believe that
it will be useful for other settings. In particular, we show
that, when parametrized properly, it provides a polynomial
time (1 + ε)-approximation for the special case of the MWISR
problem when each rectangle is relatively large in at least
one dimension. Key to this analysis is a method to tile the
plane in order to approximately describe the topology of these
rectangles in an optimal solution. This technique might be a
useful insight to design better polynomial time approximation
algorithms or even a PTAS for the MWISR problem. In
particular, note that our results imply that the MWISR
problem is not APX-hard, unless NP ⊆ DTIME(2polylog (n)).

I. INTRODUCTION

One of the most fundamental problems in combinatorial

optimization is the INDEPENDENT SET problem: given an

undirected graph, find a set of pairwise non-adjacent vertices

with maximum total weight. While the general problem is

essentially intractable (it is NP-hard to approximate with a

factor n1−ε for any ε > 0 [22]), many special cases allow

much better approximation ratios.

One extensively studied setting are graphs which stem

from geometric shapes in the 2D-plane. Given a set of

geometric objects in the plane, the goal is to find a set

of pairwise non-overlapping objects with maximum total

weight. Depending on the complexity of these shapes, the

approximation factors of the best known polynomial time

algorithms range from 1 + ε for fat objects [12], to nε for

arbitrary shapes [14]. Observe that the latter is still much

better than the complexity lower bound of n1−ε for arbitrary

INDEPENDENT SET instances.

Interestingly, there is a very large gap between the best

known approximation factors when the considered objects

are squares of arbitrary sizes and when they are rectangles.

For squares, a (1 + ε)-approximation has been known for

several years [12]. For the rectangles, the best known ap-

proximation factors are O(log n/ log log n) for the general

case [10], and O(log log n) for the cardinality case [7].

Importantly, no constant factor approximation algorithms are

known for rectangles, while the best known hardness result

is NP-hardness [13], [16]. These gaps remain despite a lot

of research on the problem [2], [5], [7], [9], [10], [13], [16],

[17], [19], [20], which is particularly motivated by its many

applications in areas such as channel admission control [19],

map labeling [2], [11], and data mining [15], [17], [18].

Since even for arbitrary shapes the best known hardness

result is NP-hardness, it seems that more sophisticated

algorithmic techniques and/or complexity results are needed

to fully understand the INDEPENDENT SET problem in the

geometric setting.

A. Related Work

The maximum weight independent set of rectangles prob-

lem has been widely studied. There are several O(log n)
approximation algorithms known [2], [17], [20], and in fact

the hidden constant can be made arbitrarily small since

for any k there is a �logk n�-approximation algorithm due

to Berman et al. [5]. Eventually, a O(log n/ log log n)-
approximation algorithm has been presented by Chan and

Har-Peled [10]. Some algorithms have been studied which

perform better for special cases of MWISR. There is a

4q-approximation algorithm due to Lewin-Eytan, Naor, and

Orda [19] where q denotes the size of the largest clique in

the given instance. In case that the optimal independent set

has size βn for some β ≤ 1, Agarwal and Mustafa present

an algorithm which computes an independent set of size

Ω(β2n) [3].

In a break-through result, Chalermsook and Chuzhoy give

a O(log log n)-approximation algorithm for the cardinality

case [7], which is based on the natural LP-relaxation of the
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problem. In fact, it is a challenging open problem to deter-

mine the exact integrality gap of the LP. Currently the best

known upper bounds for it are O(log n/ log log n) [10] for

the weighted case, and O(log log n) [7] for the cardinality

case. The best known lower bounds on the integrality gap

are 3/2 [7] and 2 [21], both already for the cardinality case.

There is a strong connection between the integrality gap of

the LP and the maximum ratio between the coloring- and the

clique-number of a set of rectangles, see [8] and references

therein.

Interestingly, for the special case when all given rectangles

are squares of arbitrary sizes, the problem is much better un-

derstood. There is a polynomial time (1+ ε)-approximation

algorithm by Erlebach, Jansen and Seidel [12], which works

even for the more general case of arbitrary fat objects. For

the unweighted squares, and also for the more general setting

of unweighted pseudo-disks, even a simple local search

algorithm gives a PTAS [10].

Although the complexity is well-understood in the setting

of squares, for rectangles it is still widely open. In particular,

the techniques of the above approximation schemes for

squares do not carry over to rectangles. The PTAS from [12]

requires that every horizontal or vertical line intersects only a

bounded number of objects of the optimal solution that are

relatively large in at least one dimension. For rectangles,

this number can be up to Θ(n) which is too much. For

local search, one can easily construct examples showing that

for any size of the local search neighborhood (which gives

quasi-polynomial running time) the optimum is missed by

an arbitrarily large (superconstant) factor.

For line segments in the plane Agarwal and Mustafa [3]

give an algorithm which finds an independent set of size√
OPT/ log(2n/OPT ) which yields a worst case approx-

imation factor of n1/2+o(1). This was improved by Fox and

Pach to nε for any ε > 0 and their algorithm even works for

k-intersecting curves with constant k [14]. Note that already

for lines with at most one bend (i.e., lines forming an “L”)

the natural LP-relaxation has an integrality gap of Ω(n).
To the best of our knowledge, no inapproximability result

is known for MWISR (and not even for arbitrary shapes in

the 2D-plane). In particular, an important open problem is to

construct a polynomial time constant factor approximation

algorithm for MWISR.

B. Our Contribution and Techniques

We present the first (1 + ε)-approximation algorithm

for the Maximum Weight Independent Set of Rectan-

gles problem with a quasi-polynomial running time of

2poly(logn/ε). In contrast, the best known polynomial

time approximation algorithms achieve approximation ra-

tios of O(log n/ log log n) for the weighted case [10], and

O(log log n) for the cardinality case [7]. We are not aware

of any previous algorithms for the problem with quasi-

polynomial running time which would give better bounds

than the above mentioned polynomial time algorithms. Our

quasi-PTAS rules out the possibility that the problem is

APX-hard, assuming that NP � DTIME(2polylog (n)), and

thus it suggests that it should be possible to obtain signifi-

cantly better polynomial time approximation algorithms for

the problem. In addition, we present a PTAS for the case that

each rectangle is δ-large in at least one dimension, i.e., if

at least one of its edges has length at least δN for some

constant δ > 0, assuming that in the input only integer

coordinates within {0, ..., N} occur.

Key to our results is a new geometric dynamic program

GEO-DP whose DP-table has one entry for each axis-

parallel polygon P with at most k edges, where k is a fixed

parameter. Such a cell corresponds to a subproblem where

the input consists only of the input rectangles contained

in P . The algorithm solves each such subproblem by trying

every possible subdivision of P into at most k polygons

with again at most k edges each, and selects the partition

with maximum weight according to the DP-cells of all

subproblems.

For analyzing this algorithm, we show that there is a

recursive sequence of partitions such that the rectangles of

OPT intersected within that sequence have a total weight

of at most ε · OPT . For our QPTAS, we first provide

a method to tile the plane into polygons such that each

rectangle of the optimal solution is intersected only O(1)
times. Using a new stretching method for the input area, we

can guarantee that each face of our partition either contains

only rectangles of relatively small total weight, or contains at

most one rectangle. With a planar separator theorem from [4]

we can find a cut in the partition such that the intersected

rectangles have only marginal weight and both sides of the

cut contain rectangles whose total weight is upper bounded

by 2
3OPT . When using these cuts in every iteration, the

recursion terminates after O(log n/ε) levels and we show

that by setting k := ( logn
ε )O(1) we obtain an approximation

ratio of 1 + ε in quasi-polynomial time.

We demonstrate the potential of our new algorithm

by proving that it yields a polynomial time (1 + ε)-
approximation algorithm for the special case when each

rectangle is large in at least one dimension, as defined

above. For this result, we employ a finer partition of the

plane which ensures that in the initial partition only large

rectangles with small total weight are intersected. Even

more, each face of the subdivision is either a path or a

cycle of a small width (strictly smaller than the longer edge

of each large rectangle). Using this, we show that GEO-

DP solves each resulting subproblem within an accuracy

of 1 + ε by using only subpolygons with at most a con-

stant number of edges. Therefore, we prove that GEO-DP

parametrized by k := (1/ε)(1/δ)O(1) gives a polynomial

time (1 + ε)-approximation for δ-large rectangles (for any

constant δ > 0). In fact, this yields a PTAS for the case that

the lengths of the longer edges of the rectangles differ by
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at most a constant factor (when the parameter k is chosen

appropriately). We would like to point out that the initial

partition might be a useful ingredient for constructing a

PTAS for the general problem since it sparsely describes

the topology of the large rectangles while losing only an

ε-fraction of their total weight.

We can well imagine that our algorithmic approach finds

applications for solving the INDEPENDENT SET problem

for more general geometric shapes. Given the large gaps

in terms of approximation and hardness results for the

INDEPENDENT SET problem in such settings we hope that

our new techniques will help to bridge these gaps. Finally,

we would like to note that our DP might well yield a constant

factor approximation or even a PTAS for MWISR when

parametrized by a sufficiently large parameter k independent

of n, e.g., k = (1/ε)O(1). We leave this as an open question.

Due to space constraints some of the proofs were omitted in

this extended abstract, but can be found in the full version

of this paper [1].

C. Problem Definition

We are given a set of n axis-parallel rectangles R =
{R1, ..., Rn} in the 2-dimensional plane. Each rectangle Ri

is specified by two opposite corners (x
(1)
i , y

(1)
i ) ∈ N2 and

(x
(2)
i , y

(2)
i ) ∈ N2, with x

(1)
i < x

(2)
i and y

(1)
i < y

(2)
i , and a

weight w(Ri) ∈ R+. We define the area of a rectangle as the

open set Ri := {(x, y)|x(1)
i < x < x

(2)
i ∧ y

(1)
i < y < y

(2)
i }.

The goal is to select a subset of rectangles R′ ⊆ R such

that for any two rectangles R,R′ ∈ R′ we have R∩R′ = ∅.
Our objective is to maximize the total weight of the selected

rectangles w(R′) :=
∑

R∈R′ w(R). For each rectangle Ri

we define its width gi by gi := x
(2)
i −x

(1)
i and its height hi

by hi = y
(2)
i − y

(1)
i .

By losing at most a (multiplicative) factor of (1 − ε)−1

in the objective, we assume that 1 ≤ w(R) ≤ n/ε for each

rectangle R ∈ R. First, we scale the weights of all rectangles

such that maxR∈R w(R) = n/ε. Since then OPT ≥ n/ε,

all rectangles R′ with w(R′) < 1 can contribute a total

weight of at most n · 1 = ε · nε ≤ ε ·OPT . We remove them

from the instance which reduces the weight of the optimal

solution by at most ε ·OPT .

II. THE ALGORITHM GEO-DP

Our results are achieved by using a new geometric

dynamic programming algorithm which we call GEO-DP

and which we define in this section. The algorithm is

parametrized by a value k ∈ N which affects both the

running time and the achieved approximation ratio. In brief,

the algorithm has a DP-cell for each axis-parallel polygon

P with at most k edges, which represents the subproblem

consisting of all rectangles contained in P . When computing

a (near-optimal) solution for this subproblem, GEO-DP tries

all possibilities to subdivide P into at most k polygons with

at most k edges each and recurses.

0 2n− 1
0

2n− 1

P

P2
P3

P4

P6

P5

P1

P7

P8

Figure 1. The partition of a polygon P (gray area) into at most k smaller
polygons, each with at most k edges.

Without loss of generality we assume that

x
(1)
i , y

(1)
i , x

(2)
i , y

(2)
i ∈ {0, ..., 2n − 1} for each Ri ∈ R. If

this is not the case, we transform the instance in polynomial

time into a combinatorially equivalent instance with the

latter property.

Fix a parameter k ∈ N. Let P denote the set of all

polygons within the [0, 2n − 1] × [0, 2n − 1] input square

whose corners have only integer coordinates and which have

at most k axis-parallel edges each. Whenever we speak of

a polygon, we allow it to have holes and we do not require

it to be simple. In particular, by the edges of a polygon

with holes we mean both the outer edges and the edges

bounding the holes. We introduce a DP-cell for each polygon

P ∈ P , where a cell corresponding to P stores a near-

optimal solution sol(P ) ⊆ RP where RP denotes the set

of all rectangles from R which are contained in P .

Proposition 1. The number of DP-cells is at most nO(k).

To compute the solution sol(P ) for some polygon P ∈ P
we use the following procedure. If RP = ∅ then we set

sol(P ) := RP and terminate. Otherwise, we enumerate all

possibilities to partition P into k′ polygons P1, ..., Pk′ ∈ P
such that k′ ≤ k. See Figure 1 for a sketch. Since

by Proposition 1 we have |P| ≤ nO(k), the number of

potential partitions we need to consider is upper bounded

by
(
nO(k)

k

)
= nO(k2). Let P1, ..., Pk′ , where k′ ≤ k, be a

feasible partition (for any enumerated set {P1, ..., Pk′} ⊆ P
this can be verified efficiently since all polygons have axis-

parallel edges with integer coordinates in {0, ..., 2n − 1}).
For each polygon Pi ∈ {P1, ..., Pk′} we look up the DP-

table value sol(Pi) and compute
∑k′

i=1 w(sol(Pi)). We set

sol′(P ) := ∪k′
i=1sol(Pi) for the partition {P1, ..., Pk′} which

yields the maximum profit. Now we define sol(P ) :=
sol′(P ) if w(sol′(P )) > maxR∈RP

w(R), and otherwise

sol(P ) := {Rmax} for a rectangle Rmax ∈ RP with

maximum profit. At the end, the algorithm outputs the value

in the DP-cell which corresponds to the polygon containing
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the entire input region [0, 2n− 1]× [0, 2n− 1].
Since |P| ≤ nO(k) we get the following upper bound on

the running time of GEO-DP.

Proposition 2. When parametrized by k the running time
of GEO-DP is upper bounded by nO(k2).

For bounding the approximation ratio of GEO-DP for any

parameter k, it is sufficient to consider only the special case

that the input set R is already a feasible (optimal) solution.

Therefore, we will assume this from now on.

We note that in a sense GEO-DP is a generalization of an

algorithm presented in [6] for a special case of MWISR.

III. QUASI-POLYNOMIAL TIME APPROXIMATION

SCHEME

In this section we prove that GEO-DP achieves an approx-

imation ratio of 1+ε when parametrized by k = ( logn
ε )O(1)

and is thus a QPTAS for the MWISR problem (using

Proposition 2).

Key ingredient for our analysis is to show that for any set

of feasible rectangles there is a balanced cheap cut, i.e., a

polygon which consists of only few edges, which intersects

rectangles from R of marginal total weight, and which

separates the rectangles from R into two parts of similar

size. By applying such cuts recursively for O(log n/ε)
levels, we eventually obtain trivial subproblems. For proving

that such good cuts always exist, we partition the plane into

polygons in such a way that each rectangle is intersected

only O(1) times and each face of the partition consists

either of exactly one rectangle or intersects rectangles of

only small total weight. To ensure the latter, we apply a

stretching procedure to the input before actually defining the

partition. On the constructed partition we apply the weighted

planar graph separator theorem from [4] to obtain the cut.

A. Balanced Cheap Cuts

We introduce balanced α-cheap �-cuts, where α is a small

positive value. Intuitively, given any set of non-overlapping

rectangles R̄, such a cut is given by a polygon P with

at most � axis-parallel edges whose boundary intersects

rectangles with weight at most α·w(R̄) such that the interior

and the exterior of P each contain only rectangles whose

weight is at most 2/3 · w(R̄).

Definition 3. Let � ∈ N and α ∈ R with 0 < α < 1. Let R̄
be a set of pairwise non-overlapping rectangles. A polygon

P with axis-parallel edges is a balanced α-cheap �-cut if:

• P has at most � edges,

• for the set of all rectangles R′ ⊆ R̄ intersecting the

boundary of P we have w(R′) ≤ α · w(R̄),
• for the set of all rectangles Rin ⊆ R̄ contained in P it

holds that w(Rin) ≤ 2/3 · w(R̄), and

• for the set of all rectangles Rout ⊆ R̄ contained in

the complement of P , i.e., in R2 \ P , it holds that

w(Rout) ≤ 2/3 · w(R̄).

As we will show in the next lemma, GEO-DP performs

well if for any set of rectangles there exists a good cut.

Lemma 4. Let ε > 0. Let α > 0 with α < 1/2 and � ≥ 4 be
values such that for any set R̄ of pairwise non-overlapping
rectangles there exists a balanced α-cheap �-cut, or there
is a rectangle R ∈ R̄ such that w(R) ≥ 1

3 · w(R̄). Then
GEO-DP has approximation ratio (1 + α)O(log(n/ε)) when
parametrized by k = �2 ·O(log2(n/ε)).

Proof (sketch): Starting with the [0, 2n−1]×[0, 2n−1]
input square, we either find a rectangle R with w(R) ≥
1
3 ·w(R̄), or a balanced α-cheap �-cut. In either case we get

a decomposition of the problem into subproblems, where

each subproblem is defined by a polygon which contains

rectangles whose total weight is at most a 2/3-fraction

of w(R). Continuing for O(log n/ε) recursion levels, we

obtain subproblems consisting of at most one rectangle

each (as 1 ≤ w(R) ≤ n/ε for each R ∈ R). Each

appearing subproblem can be expressed as the intersection of

O(log n/ε) polygons with at most �+4 edges each (we have

to add 4 since the boundary of the input square can become

the outer boundary of a polygon). Thus, the boundary of

each considered subproblem consists of O(�2 · log2(n/ε))
edges. Additionally, we can show that each subproblem gives

rise to O(�2 · log2(n/ε)) subproblems in the next recursion

level. As GEO-DP tries all partitions of a polygon into

at most k polygons, each with at most k edges, at each

recursion level it will consider the partition corresponding

to the cut. Since at each level we lose rectangles whose

weight is at most an α-fraction of the total weight of the

rectangles from the current recursion level, we obtain the

claimed approximation ratio.

In the remainder of this section we prove that for any set

R̄ and any δ > 0 there is a balanced O(δ)-cheap
(
1
δ

)O(1)
-cut

or there is a rectangle R ∈ R̄ with w(R) ≥ 1
3 · w(R̄). This

implies our main result when choosing δ := Θ(ε/ log(n/ε)).
Note that from now on our reasoning does not need to be

(algorithmically) constructive.

B. Stretching the Rectangles

For the purpose of finding a good cut, we are free to

stretch or squeeze the rectangles of R. We do this as a

preprocessing step in order to make them well-distributed.

Definition 5. A set of rectangles R̄ with integer coordinates

in {0, ..., N} is well-distributed if for any γ > 0 and for any

t ∈ {0, ..., N} we have that all rectangles contained in the

area [0, N ] × [t, t + γ · N ] have a total weight of at most

2γ ·w(R). We require the same for the rectangles contained

in the area [t, t+ γ ·N ]× [0, N ].

We say that two sets of rectangles R, R̄ are combina-
torially equivalent if we can obtain one from the other

by stretching or squeezing the input area, possibly non-

uniformly.
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Lemma 6. Let R be a set of rectangles with arbitrary
weights. There is a combinatorially equivalent set R̄ using
only integer coordinates in {0, ..., 4 · |R|} which is well-
distributed.

Proof (sketch): Without loss of generality we assume

that x
(1)
i , y

(1)
i , x

(2)
i , y

(2)
i ∈ {0, ..., 2n− 1} for each Ri ∈ R,

where n = |R|. We stretch the original input square in such

a way that the lengths of its sides double (i.e., increase by

another 2|R|), and the distance between two original consec-

utive x-coordinates (y-coordinates) xi and xi + 1 increases

proportionally to the weight of all rectangles "starting" at the

x-coordinate (y-coordinate) xi. We then need to introduce

some rounding, as we want the new coordinates of all the

rectangles to be integral. The new set of rectangles is clearly

equivalent to the original one.

Consider any vertical stripe S in the modified input

square with left- and rightmost x-coordinates x′a and x′b,

respectively. There is a set of x-coordinates x1, x2, ..., xm

from the original instance which were mapped to val-

ues x′1, x
′
2, ..., x

′
m ∈ [x′a, x

′
b]. All rectangles contained in

S must have their respective leftmost x-coordinates in

{x′1, x′2, ..., x′m−1}. The total weight of rectangles with left-

most coordinate x′i is proportional to x′i+1 − x′i, for each

i. Hence, the total weight of rectangles contained in S is

proportional to x′m − x′1 ≤ x′b − x′a. The same is true for

horizontal stripes, and so the modified input instance is well-

distributed.

Observe that there is a balanced α-cheap �-cut for any

values α and � in the stretched instance if and only if

there is such a cut in the original instance. Thus, suppose

from now on that we have a well-distributed set of pairwise

non-intersecting rectangles R, using integer coordinates in

{0, ..., N} for some integer N , and a value δ > 0 such that

1/δ ∈ N. As we do not require any special bound on the

value of N , we can scale up all coordinates of the rectangles

by a factor of (1/δ)2, and therefore we can assume that δ2N
is an integer.

C. Partitioning the Plane

We define a procedure to partition the input square I :=
[0, N ] × [0, N ]. This partition is defined by only (1/δ)O(1)

lines, and it has the properties that each rectangle in R is

intersected only O(1) times and each face either surrounds

exactly one rectangle or it has non-empty intersection with

rectangles with small total weight of at most O(δ2w(R)).
We call a rectangle Ri ∈ R large if hi > δ2N or gi >

δ2N , and small if hi ≤ δ2N and gi ≤ δ2N . We denote the

subsets of R consisting of large and small rectangles by RL

and RS , respectively. We call a rectangle Ri ∈ R vertical if

hi > gi, and horizontal if hi ≤ gi. We say that a line L cuts
a rectangle R ∈ R, if R\L has two connected components.

We now present the construction of the partition. It will

consist of a set of straight axis-parallel lines L contained

a) b)

Figure 2. Creating the partition of the input square. The large rectangles
RL are depicted in gray. The bold edges represent the lines from L.

in the input square I , and containing the boundary of I .

A connected component of I \ L is called a face, and the

set of faces is denoted by F(L). Note that the faces are

open polygons and for any F ∈ F(L) and L ∈ L we have

F ∩ L = ∅.
Grid: We subdivide the input square I into 1

δ2× 1
δ2 grid

cells, where each grid cell is a square of size δ2N × δ2N .

Formally, for each i, j ∈ {0, ..., 1/δ2 − 1} we have a grid

cell [i · δ2N, (i + 1) · δ2N ] × [j · δ2N, (j + 1) · δ2N ]. As

δ2N is an integer, the corners of the grid cells have integer

coordinates. The lines subdividing the input square into the

grid cells are called grid lines.

We say that a rectangle R ∈ R intersects a grid cell Q, if

R∩Q �= ∅ (recall that rectangles have been defined as open

sets). Each rectangle R ∈ RL intersects at least two grid

cells, and each rectangle R ∈ RS intersects at most four

grid cells. We say that a rectangle R ∈ R crosses a grid

cell Q, if R intersects Q and R has non-empty intersection

with two opposite edges of Q. Notice that small rectangles

do not cross any grid cells.

Rectangle faces: For each large vertical rectangle

which is cut by a vertical grid line, and for each large

horizontal rectangle which is cut by a horizontal grid line,

we add the edges of the rectangle to the set of lines L (see

Figure 2a). The added edges are called rectangle edges,

and the faces corresponding to such rectangles are called

rectangle faces.

Lemma 7. The number of rectangle faces is at most
2(1/δ)4.

Notice that if a large vertical rectangle is not contained

in a rectangle face then it is contained in a single column

of grid cells. Similarly, if a large horizontal rectangle is not

contained in a rectangle face then it is contained in a single

row of grid cells.

Lines within the grid cells.: We now consider each grid

cell Q separately, and proceed as follows. Let RQ denote

the set of rectangles from R which are not contained in

the rectangle faces, and which cross Q. Notice that, as the

rectangles from R are pairwise non-overlapping, RQ cannot

contain both vertical and horizontal rectangles.
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• If RQ = ∅, we add to L the whole boundary of Q,

with the exception of the fragments which are in the

interior of the rectangle faces (see Figure 3a).

Notice that the boundaries of the rectangle faces are in

L, so in this case L ∩Q is connected.

• If RQ consists of vertical rectangles, let L� and Lr

be the leftmost and the rightmost vertical edge of a

rectangle from RQ. We add to L the lines L� ∩Q and

Lr ∩Q, and the boundary of Q with the exception of

the fragments which are between L� and Lr, or in the

interior of the rectangle faces (see Figure 3b).

Notice that the lines added to L while considering the

grid cell Q do not intersect any rectangles from RQ.

• If RQ consists of horizontal rectangles, we proceed as

before, considering horizontal lines instead of vertical

(see Figure 3c).

Notice that the lines from L can overlap (i.e., we can

have L1, L2 ∈ L s.t. L1∩L2 is an interval), but they do not

intersect properly (i.e., if for L1, L2 ∈ L we have L1∩L2 =
{p}, then p is an endpoint of at least one of the lines L1, L2).

The lines from L cover the boundary of the input square I .

An example of the partition can be seen in Figure 2b.

Graph G(L): We now construct a graph G(L) =
(V,E) embedded in the input square I , representing the

partition L. Any point p ∈ I becomes a vertex of G(L)
if and only if there is at least one line L ∈ L with an

endpoint in p. For any pair of vertices v, w ∈ V for which

there is a line L ∈ L such that {v, w} ∈ L, and for which

no vertex lies on the straight line strictly between v and w,

we add an edge vw to G(L) (i.e., edges of G(L) represent

subdivisions of lines in L). As
⋃

L∈L L =
⋃

e∈E e, the faces

of G(L) are exactly F(L). The claim of the next lemma is

directly implied by the construction.

Lemma 8. The graph G(L) is planar and has O((1/δ)4)
vertices and O((1/δ)4) edges.

The following lemmas will be needed to show the exis-

tence of a balanced cut in G(L).
Lemma 9. Each rectangle from R can be intersected by at
most four edges of the graph G(L).
Lemma 10. Let F ∈ F(L). The boundary of F intersects
rectangles from R of total weight at most 8δ2w(R). If F
is not a rectangle face, then F has non-empty intersection
with rectangles from R of total weight at most 8δ2w(R).

Proof (sketch): The lemma clearly holds for rectangle

faces. Let F ∈ F(L) be face which is not a rectangle face.

If F is contained in one grid cell Q then one can show that

all rectangles intersecting F must be contained in the area

defined by grid column and grid row containing Q together

with the two adjacent grid rows. On the other hand, if F
spans several grid cells, one can show that all rectangles

intersecting it must be contained in a single grid row or

column. In both cases, the claim follows since R is well-

distributed.

D. Defining the Cut
For obtaining our desired cut, we apply the following

theorem from [4] for the graph G(L). A V-cycle C is a

Jordan curve in the embedding of a given planar graph G
which might go along the edges of G and also might cross

faces of G. The parts of C crossing an entire face of G are

called face edges.

Theorem 11 ([4]). Let G denote a planar, embedded graph
with weights on the vertices and faces and with costs on
the edges. Let W denote the total weight, and M the total
cost of the graph. Then, for any parameter k̄, we can find
in polynomial time a separating V-cycle C such that the
interior and exterior of C each has weight at most 2W/3,
C uses at most k̄ face edges, and C uses ordinary edges of
total cost O(M/k̄).

First, we need to assign costs to the edges of G(L) and

weights to the vertices and faces of G(L). For each edge e ∈
E we define its cost ce to be the total weight of rectangles

intersecting e. The weights of all vertices are zero. For each

face F we define its weight wF to be the total weight of

all rectangles contained in F , plus a fraction of the weight

of the rectangles which intersect the boundary of F . If a

rectangle R ∈ R has non-empty intersection with m faces,

each of these faces obtains a 1/m-fraction of the weight of

R. From Lemmas 9 and 10 we obtain the following bounds.

Lemma 12. The total cost of edges in G(L) is at most
4w(R). The weight of each non-rectangle face F is at most
8δ2 · w(R). The total weight of the faces equals w(R).

For constructing the cut we apply Theorem 11 with

parameter k̄ = 1/δ to the graph G(L). The obtained V-

cycle C yields a cut in the plane. We replace each face edge

crossing some face F ∈ F(L) by the edges going along

the boundary of F . If w(R) ≤ w(R)/3 for each rectangle

R ∈ R and if δ < 1/5, then, from Lemma 10, each face

has weight at most w(R)/3. We can then ensure that each

side of the modified cut contains rectangles of total weight

at most 2w(R)/3. Using the upper bound on the number of

edges of G(L) from Lemma 8, and upper bounding the total

weight of rectangles intersected by the modified cut (using

Lemmas 10 and 12) implies the following result.

Lemma 13. Assume that 1/5 > δ > 0. For any set R
of pairwise non-overlapping rectangles not containing a
rectangle of weight at least w(R)/3 there exists a balanced
O(δ)-cheap O((1/δ)4)-cut.

When choosing δ := Θ(ε/ log(n/ε)), from Lemma 4 and

Lemma 13 we obtain that GEO-DP is a QPTAS.

Theorem 14. The algorithm GEO-DP parametrized by
k = ( logn

ε )O(1) yields a quasi-polynomial time approxi-
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a) b) c)

L� Lr

Q
d)

Figure 3. a)-c) Constructing the lines within a single grid cell Q. The depicted gray rectangles are either in RQ or they are rectangles from RL which
have their own respective rectangle face. The bold lines correspond to the lines of L within the grid cell. d) The thick lines denote the lines in L0 added
for the grid cell Q. The blocks of the considered instance are depicted in gray.

mation scheme for the maximum weight independent set of
rectangles problem.

IV. A PTAS FOR LARGE RECTANGLES

In this section we show that GEO-DP yields a polyno-

mial time approximation scheme for input instances which

contain only large rectangles, i.e., in which every rectangle

has width or height greater than a δ-fraction of the length

of the edges of the input square, for some constant δ > 0.

As a corollary, we obtain a PTAS for the special case of the

MWISR problem when the lengths of the longer edges of

the rectangles differ only by a constant factor, i.e., for some

constant δ > 0 we have max{hi, gi} ≤ 1/δ ·max{hi′ , gi′}
for all rectangles Ri, Ri′ .

Let ε > 0 and δ > 0. Let R be a set of rectangles, and

let N be an integer such that for each rectangle Ri ∈ R we

have x
(1)
i , x

(2)
i , y

(1)
i , y

(2)
i ∈ {0, ..., N}. We call a rectangle

Ri ∈ R δ-large if hi > δN or gi > δN . In this section we

assume that the input consists of a setR of δ-large rectangles

for some constant δ > 0. Assume w.l.o.g. that 1/δ ∈ N and

δN ∈ N. As in the previous section, for the analysis of GEO-

DP we can assume that R itself is the optimal solution, i.e.,

no two rectangles in R overlap.

Overview: First, we show that there is a way to partition

the plane using a set of at most 1
ε · ( 1δ )O(1) lines, such

that the intersected rectangles have small total weight and

each face of the partition is a path or a cycle of “width” at

most δN . Note that the latter bound is strictly smaller than

the length of the longer edge of each rectangle. In a sense,

this partition sparsely describes the topology of the (large)

rectangles while losing only rectangles of negligible weight.

Then, we show that for each face GEO-DP can solve the

resulting subproblem within a (1 + ε)-accuracy, without an

increase in the complexity of the subproblems during the

recursion.

When given an input instance, GEO-DP first preprocesses

it so that all rectangles have coordinates which are integers

in {0, ..., 2n − 1}. Note, however, that this routine might

cause that some rectangles are not δ-large anymore. There-

fore, in the analysis in this section, we show that a good

recursive subdivision of the input square exists for the orig-
inal input with coordinates in {0, ..., N} for some integer N ,

and where all the rectangles are δ-large. As the preprocessing

consists essentially of stretching and squeezing of the input

area, there is a corresponding recursive subdivision of the

preprocessed input instance, whose polygons have the same

complexity, and which will be considered by GEO-DP.

A. Constructing the Partition for Large Rectangles

We define a set of lines L forming a partition in the input

square [0, N ]×[0, N ]. The lines in L will have the properties

that

• |L| ≤ 1
ε · ( 1δ )O(1),

• the rectangles intersected by a line in L have a total

weight of at most ε · w(R), and

• each face in the partition obtained by L which contains

rectangles from R is either a path or a cycle with

“width” at most δN .

Without saying explicitly, from now on each considered line

is either horizontal or vertical and its endpoints have integral

coordinates.

Grid and blocks: We construct a grid consisting of 1
δ ×

1
δ grid cells in the input square [0, N ]× [0, N ], i.e., for each

i, j ∈ {0, ..., 1/δ − 1} there is a grid cell with coordinates

[i · δN, (i+ 1) · δN ]× [j · δN, (j + 1) · δN ].
We slice all rectangles parallel to their longer edge into

blocks, i.e., rectangles of unit width or height. Formally, we

cut each rectangle Ri ∈ R with hi > gi into x
(2)
i − x

(1)
i

vertical blocks, with the corners (j, y
(1)
i ) and (j + 1, y

(2)
i )

for j = {x(1)
i , x

(1)
i + 1, . . . , x

(2)
i − 1}. With a symmetric

operation we generate horizontal blocks for each rectangle

Ri ∈ R with hi ≤ gi. We denote by B the set of all

generated blocks and observe that also they have integer

coordinates. Like the rectangles, we define the blocks as

open sets. We will first find a partition for the blocks, which

essentially means that in the first version of the partition

we can cut the rectangles arbitrarily parallel to their longer

edges. Later we will show how to adjust the partition—

by introducing some detours—so that these cuts will be

eliminated.
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We use the following notation. A line L touches a

rectangle R if L ∩ (R ∪ ∂R) �= ∅. A line L intersects a

rectangle R if L ∩ R �= ∅. A line L hits a rectangle R
if L touches R, L does not intersect R, but extending L
would result in L intersecting R. A line L cuts a rectangle

R if R \ L has two connected components. We say that a

rectangle R (a block B, a line L) intersects a grid cell Q if

R ∩ int(Q) �= ∅ (B ∩ int(Q) �= ∅, L ∩ int(Q) �= ∅). Each

rectangle R ∈ R, as well as each block B ∈ B, intersects

at least two grid cells. We say that a block B ∈ B ends in a

grid cell Q, if B intersects Q, and for a short edge e (i.e.,

an edge with unit length) of B we have e ⊆ Q.
Initial set of lines: We start by introducing an initial set

of lines L0 as follows. First, we add to L0 four lines which

form the boundary of the input square [0, N ]× [0, N ].
Consider a grid cell Q and its bottom edge e. If possible,

we add to L0 the following maximal lines which do not

intersect any block or any line previously added to L0, which

touch e, and which are strictly longer than δN :

• a vertical line with the smallest possible x-coordinate,

• a vertical line with the largest possible x-coordinate,

• a vertical line L which maximizes the length of L∩Q.

If there are several such lines, we add two: one with the

smallest and one with the largest x-coordinate. Lines

maximizing |L∩Q| are called sticking-in lines for e in

Q.

We do the same operation for the top, left and right

edges of Q, where for the left and right edges we take

horizontal lines, considering the y-coordinates instead of

the x-coordinates. We do this in a fixed order, e.g., first

we add all vertical lines, and then all horizontal lines. See

Figure 3d) for an example. We do not want L0 to be a multi-

set and thus we add each line at most once. Note that for

any two lines L1, L2 ∈ L0 the intersection L1∩L2 is either

empty or consists of one single point (which is the endpoint

of one of the lines). All lines in L0 are maximal, which

means that they cannot be extended without intersecting any

perpendicular block or a perpendicular line in L0.

Proposition 15. The set L0 consists of at most 16( 1δ )
2 + 4

lines.

Extending lines: A line in L0 might have loose ends
which are endpoints which are not contained in some other

line in L0. We fix this by adding a set of lines Lext. We

extend each loose end p of a line in L0 by a path connecting

p either to a line in L0 or to a line in the so far computed

set Lext. Such a path will contain O(1/(εδ2)) horizontal or

vertical line segments, and will cut only rectangles of total

weight O(εδ2 · w(R)) parallel to their shorter edges. We

add the lines of this path to Lext and continue with the next

loose end of a line in L0.
Due to space constraints we present just the idea of

the construction. As all lines from L0 are maximal, if an

endpoint of a line L ∈ L0 does not hit a line from L0

a)

L

L1

L2

L3

L̄

p

b)

L

L1

L2

L3

L4
L5

L′

L̄

p

Figure 4. The construction of the lines Lext. A new path is constructed,
starting at a loose end p of a line L ∈ L0. In case a) the construction of
the path ends when L3 hits a line L̄ ∈ L0. In case b) we make a "cheap
shortcut", by ending the path L1, . . . , L5 with a line L′, which connects
L5 with a line L̄ ∈ L0. L′ cuts rectangles of small total weight.

then it must hit a perpendicular block B ∈ B. The first line

L1 on the path goes along the boundary of B such that

it crosses the boundary of a grid cell (as blocks are not

contained in a single grid cell, their longer edges always

cross the boundary of a grid cell). We extend L1 so that it

either touches a line from L0 ∪ Lext (and the construction

of the path is finished), or hits some perpendicular block.

In the latter case we proceed with the construction of the

path, considering a loose end of L1 instead of L. Notice that

in this part of the construction the path does not intersect

any rectangles parallel to their shorter edges (i.e., it does not

intersect any blocks). After O(1/(εδ2)) steps either the path

ends by touching a line from L0 ∪ Lext, or we can make a

shortcut by adding a line L′ at the end of the path such that

L′ goes along a grid cell boundary, connects the path with

a line from L0 ∪ Lext, and cuts rectangles of total weight

O(εδ2 · w(R)) parallel to their shorter edges. See Figure 4

for an example of the construction.

We say that a set of lines L is nicely connected if no two

lines L,L′ ∈ L overlap (i.e., share more than one point)

or intersect properly (i.e., such that L ∪ L′ \ {L ∩ L′} has

four connected components) and for any endpoint p of a line

L ∈ L there is a line L′ ∈ L, perpendicular to L, such that

L ∩ L′ = {p}.
Lemma 16. The set of lines L0 ∪Lext is nicely connected,
|Lext| ≤ 1

ε · ( 1δ )O(1), and the total weight of rectangles in
R cut by some line in L0 ∪ Lext parallel to their shorter
edge is upper bounded by ε · w(R). Also, all lines in Lext

cutting rectangles in R lie on some grid line and for each
line L ∈ Lext there exists no cell Q such that L ⊆ int(Q).

Faces of the partition: The lines L0 ∪ Lext subdivide

the input square into a set of faces which are the connected

components of I \(L0∪Lext) (so in particular, the faces are

open sets). Denote by F(L0∪Lext) the set of all faces of this

partition, and by F+(L0 ∪ Lext) the set of all faces which

contain at least one block from B. As the next lemma shows,

inside of each grid cell each face from the set F+(L0∪Lext)
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has a simple structure. We say that a polygon P is an L-
shape if its boundary has exactly six axis-parallel edges.

Lemma 17. Consider a face F ∈ F+(L0 ∪ Lext) and let
Q be a grid cell with F ∩Q �= ∅. Consider one connected
component C of F ∩ Q. Then int(C) is the interior of a
rectangle or the interior of an L-shape. Also, C∩∂Q consists
of one or two disjoint lines.

Now we study the structure of the faces in F+(L0∪Lext)
at the boundary of the grid cells. In the following lemma we

show that multiple connected components of a face inside

one grid cell Q′ cannot merge into one component in a

neighboring grid cell Q.

Lemma 18. Let Q and Q′ be grid cells such that Q∩Q′ =
{e} for an edge e. Consider a face F ∈ F+(L0 ∪ Lext)
such that F ∩Q �= ∅, and let C be a connected component
of F ∩ Q such that C ∩ e �= ∅. Then there is exactly one
connected component C ′ of F ∩Q′ such that C ∩ C ′ �= ∅.

Circumventing some rectangles: As the last step of the

construction of the partition, we want to ensure that if a line

L in our construction intersects a rectangle R ∈ R, then it

cuts R parallel to its short edge. We achieve this as follows:

whenever a line L ∈ L0∪Lext intersects a rectangle R ∈ R
such that R\L has only one connected component or R∩L
is longer than δN , then we add the four edges of R as new

lines and remove all parts of lines from L0∪Lext which are

inside R. For any line in L0 ∪ Lext this operation adds at

most O(1/δ) new lines. Denote by L the resulting final set

of lines. Similarly as above, the set F(L) denotes all faces,

and the set F+(L) denotes all faces which contain at least

one rectangle.
Using the bounds on the number of edges in L0 ∪ Lext

from Proposition 15 and Lemma 16, and the upper bound

on the total weight of rectangles in R cut by a line from

L0 ∪ Lext parallel to its shorter edge (Lemma 16), we can

show the following result.

Lemma 19. The set of lines L has the properties that |L| ≤
1
ε ·

(
1
δ

)O(1)
and the total weight of intersected rectangles is

upper bounded by ε · w(R).

B. Solving the Subproblems for the Faces
We transform the set of lines L into a graph G(L) =

(V,E) in the same way as in Section III. From

Lemma 19 we get that |V | ≤ (1/ε)(1/δ)O(1) and |E| ≤
(1/ε)(1/δ)O(1). The algorithm GEO-DP parametrized with

k ≥ (1/ε)(1/δ)O(1) tries to subdivide the input square into

the faces F(L) and then recurses on the subproblems given

by the faces. Observe that each face in F(L) \ F+(L) does

not contain any rectangle from R and thus we ignore those

faces from now on. We distinguish two types of faces in

F+(L): faces which are homeomorphic to a straight line, and

those homeomorphic to a cycle. Note that due to Lemma 17

and Lemma 18 no more complex shapes can arise.

(a) (b)

Figure 5. The thick lines show a cut of a face (a) into two paths with the
same complexity as the original path and (b) into a path and a cycle with
the same complexity as the original cycle.

Let F ∈ F+(L) be homeomorphic to a straight line. We

claim that GEO-DP finds an optimal solution for F . To get

some intuition, let us pretend that F is the union of a set

of complete grid cells and that all rectangles inside F are

blocks, i.e., gi = 1 or hi = 1 for each Ri ∈ R with

Ri ⊆ F . Then there exists a cut through F which splits

F into two sub-faces without intersecting any rectangle (see

Figure 5a). Moreover, the boundary of each sub-face will

not be more complex than the boundary of F itself. Due to

this, the complexity of the subproblems does not increase

during the recursion process, and the algorithm GEO-DP

finds an optimal solution for F . While for arbitrary faces

homeomorphic to a straight line and arbitrary rectangles

instead of blocks the analysis is more technical, and in

particular requires circumventing rectangles within F , the

key concept is the same.

Lemma 20. Consider a face F ∈ F+(L) which is homeo-
morphic to a straight line. Then GEO-DP parametrized by
a value k ≥ (1/ε)(1/δ)O(1) computes an optimal solution
for the DP-cell corresponding to F .

Now consider a face F ∈ F+(L) which forms a cycle,

i.e., which is homeomorphic to S1. Let us pretend again that

F is the union of some complete grid cells and all rectangles

in F are blocks. Then we can split F into a path-face F1

and a smaller cycle F2 while ensuring that the boundary

of the faces F1 and F2 consists of at most (1/ε)(1/δ)O(1)

edges each (see Figure 5b). The recursion terminates when

at some recursion level F2 = ∅. When doing this operation

repeatedly, we ensure that the total weight of intersected

rectangles is only an ε-fraction of the total weight of the

rectangles in the paths that we detached from the cycle.

Using this construction we can show that GEO-DP

parametrized by sufficiently large k computes a (1 + ε)-
approximation for F , using that it solves the subproblems

for path-faces optimally. Again, for arbitrary rectangles and

more general cycle-faces F the reasoning is more technical

while the core idea stays the same.

Lemma 21. Consider a face F ∈ F+(L) which is home-
omorphic to S1. Then GEO-DP parametrized by a value
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k ≥ 1
ε (

1
δ )

O(1) computes a (1 + ε)-approximative solution
for the DP-cell corresponding to F .

When constructing the partition given by the lines L we

intersect (and thus lose) rectangles of total weight at most

ε ·w(R). When solving the subproblems given by the faces

of the partition we again lose rectangles of total weight at

most ε · w(R). Thus, by choosing k := (1/ε)(1/δ)O(1),

GEO-DP yields a PTAS.

Theorem 22. Let ε > 0 and δ > 0 be constants. The
algorithm GEO-DP parametrized by k = 1

ε (
1
δ )

O(1) is a
polynomial time (1 + ε)-approximation algorithm for the
maximum weight independent set of rectangles problem for
instances with only δ-large rectangles.

Using standard shifting technique arguments we obtain

the following corollary.

Corollary 23. Let ε > 0 and δ > 0 be constants. The
algorithm GEO-DP parametrized by k = ( 1

ε·δ )
O(1) is a poly-

nomial time (1 + ε)-approximation algorithm for instances
of MWISR where for all rectangles Ri, Ri′ it holds that
max{hi, gi} ≤ (1/δ) ·max{hi′ , gi′}.
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