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Abstract—In this paper, we study a generalization of the
classical Voronoi diagram, called clustering induced Voronoi
diagram (CIVD). Different from the traditional model, CIVD
takes as its sites the power set U of an input set P of objects. For
each subset C of P , CIVD uses an influence function F (C, q)
to measure the total (or joint) influence of all objects in C
on an arbitrary point q in the space R

d, and determines the
influence-based Voronoi cell in R

d for C. This generalized
model offers a number of new features (e.g., simultaneous
clustering and space partition) to Voronoi diagram which are
useful in various new applications. We investigate the general
conditions for the influence function which ensure the existence
of a small-size (e.g., nearly linear) approximate CIVD for a set
P of n points in R

d for some fixed d. To construct CIVD, we
first present a standalone new technique, called approximate
influence (AI) decomposition, for the general CIVD problem.
With only O(n log n) time, the AI decomposition partitions the
space R

d into a nearly linear number of cells so that all points
in each cell receive their approximate maximum influence from
the same (possibly unknown) site (i.e., a subset of P ). Based on
this technique, we develop assignment algorithms to determine
a proper site for each cell in the decomposition and form
various (1−ε)-approximate CIVDs for some small fixed ε > 0.
Particularly, we consider two representative CIVD problems,
vector CIVD and density-based CIVD, and show that both
of them admit fast assignment algorithms; consequently, their
(1− ε)-approximate CIVDs can be built in O(n logd+1 n) and
O(n log2 n) time, respectively.

Keywords-Voronoi diagram; clustering; clustering induced
Voronoi diagram; influence function; approximate influence
decomposition;

I. INTRODUCTION

Voronoi diagram is a fundamental geometric structure

with numerous applications in many different areas [5], [6],

[33]. The ordinary Voronoi diagram is a partition of the

space R
d into a set of cells induced by a set P of points (or

other objects) called sites, where each cell ci of the diagram

is the union of all points in R
d which have a closer (or

farther) distance to a site pi ∈ P than to any other sites.

There are many variants of Voronoi diagram, depending

on the types of objects in P , the distance metrics, the

dimensionality of the space, the order of Voronoi diagram,

etc. In some sense, the cells in a Voronoi diagram are formed

by competitions among all sites in R
d, such that the winner

site for any point q in R
d is the one having a larger influence

on q defined by its distance to q.

A common feature shared by most known Voronoi dia-

grams is that the influence from every site object is inde-

pendent from one another and does not combine together.

However, it is quite often in real world applications that the

influence from multiple sources can be “added” together to

form a joint influence. For example, in physics, a particle

q may receive forces from a number of other particles and

the set of such forces jointly determines the motion of q.

This phenomenon also arises in other areas, such as social

networks where the set of actors (i.e., nodes) in a community

may have joint influence on a potential new actor (e.g., a

twitter account with a large number of followers may have

a better chance to attract more followers). In such scenarios,

it is desirable to identify the subset of objects which has the

largest joint influence on one or more particular objects.

To develop a geometric model for joint influence, in this

paper, we generalize the concept of Voronoi diagram to

clustering induced Voronoi diagram (CIVD). In CIVD, we

consider a set P of n points (or other type of objects) and a

non-negative influence function F which measures the joint

influence F (C, q) from each subset C of P to any point q
in R

d. The Voronoi cell of C is the union of all points in R
d

which receive a larger influence from C than from any other

subset C ′ ⊆ P . This means that CIVD considers all subsets

in the power set U = 2P of P as the sites (called cluster
sites), and partitions R

d according to their influences. For

some interesting influence functions, it is possible that only

a small number of subsets in U have non-empty Voronoi

cells. Thus the complexity of a CIVD is not necessarily

exponential.

CIVD thus defined considerably generalizes the concept

of Voronoi diagram. To our best knowledge, there is no

previous work on the general CIVD problem. It obviously

extends the ordinary Voronoi diagrams [6], where each site

is a one-point cluster. (Note that the ordinary Voronoi dia-

grams are all special CIVDs equipped with proper influence

functions.) Some Voronoi diagrams [33], [34] allow a site

to contain multiple points, but the distance functions used

are often defined by the closest (or farthest) point in such

a site, not by a collective effect of all points of the site.

The k-th order Voronoi diagram [33], where each cell is the

union of points in R
d sharing the same k nearest neighbors
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in P , may be viewed as having clusters of points as sites,

and the “distance” functions are defined on all points of

each site; but all cluster “sites” of a k-th order Voronoi

diagram have the same size k and its “distance” function

is quite different from the influence function in our CIVD

problem. Some two-point site Voronoi diagrams were also

studied [8], [9], [18], [19], [25], [28], [36], in which each site

has exactly two points and the distance functions are defined

by certain “combined” features of point pairs. In some sense,

such Voronoi diagrams may be viewed as special CIVDs.

CIVD enables us to capture not only the spatial proximity

of points, but more importantly their aggregation in the

space. For example, a cluster site C with a non-empty

Voronoi cell may imply that the points in C form a lo-

cal cluster inside that cell. This provides an interesting

connection between clustering and space partition and a

potential to solve clustering and space partition problems

simultaneously. Such new insights could be quite useful

for applications in data mining and social networks. For

instance, in social networks, clustering can be used to deter-

mine communities in some feature space, and space partition

may allow to identify the nearest (or best-fit) community

for any new actor. Furthermore, since each point in P may

appear in multiple cluster sites with non-empty Voronoi

cells, this could potentially help find all communities in

a social network without having to apply the relatively

expensive overlapping clustering techniques [1], [7], [10],

[17] or to explicitly generate multiple views of the network

[14], [16], [21], [32].

Of course, CIVD in general can have exponentially many

cells, and an interesting question is what meaningful CIVD

problems have a small number (say, polynomial) of cells.

Thus, generalizing Voronoi diagrams in this way brings

about a number of new challenges: (I) How to efficiently

deal with the exponential number of potential cluster sites;

(II) how to identify those non-empty Voronoi cells so that the

construction time of CIVD is proportional only to the actual

size of CIVD; (III) how to partition the space and efficiently

determine the cluster site for each non-empty Voronoi cell

in CIVD.

We consider in this paper the CIVD model for a set P of

n points in R
d for some fixed d, aiming to resolve the above

difficult issues. We first investigate the general sufficient

conditions which allow the influence function to yield only a

small number of non-empty approximate Voronoi cells. Our

focus is thus mainly on the family of influence functions

satisfying these conditions. We then present a standalone

new technique, called approximate influence decomposition
(or AI decomposition), for general CIVD problems. In

O(n log n) time, this technique partitions the space R
d into

a nearly linear number (i.e., O(n log n)) of cells so that for

each such cell c, there exists a (possibly unknown) subset

C ⊆ P whose influence to any point q ∈ c is within a

(1− ε)-approximation of the maximum influence that q can

receive from any subset of P , where ε > 0 is a fixed small

constant. For this purpose, we develop a new data structure

called box-clustering tree, based on an extended quad-tree

decomposition and guided by a distance-tree built from the

well separated pair decomposition [11]. In some sense, our

AI decomposition may be viewed as a generalization of the

well separated pair decomposition.

The AI decomposition partially overcomes challenges (II)

and (III) above. However, we still need to assign a proper

cluster site (selected from the power set U of P ) to each

resulting cell. To illustrate how to resolve this issue, we

consider some important CIVDs and make use of both

the AI decomposition and the specific properties of the

influence functions of these problems to build approximate

CIVDs. Particularly, we study two representative CIVD

problems. The first problem is vector CIVD in which the

influence between any two points p and q is a force-like

vector (e.g., gravity force) and the joint influence is the

vector sum. Clearly, this problem can be used to construct

Voronoi diagrams in some force-induced fields. The second

problem is density-based CIVD in which the influence from

a cluster C to a point q is the density of the smallest

ball centered at q and containing C. This problem enables

us to generate all density-based clusters as well as their

approximate Voronoi cells. Since density-based clustering

is widely used in many areas such as data mining, computer

vision, pattern recognition, and social networks [12], [13],

[15], [30], [35], we expect that the density-based CIVD

is also applicable in these areas. For both these problems,

we show efficient assignment algorithms that determine a

proper cluster site for each cell in the AI decomposition

in polylogarithmic time. Thus, (1 − ε)-approximate CIVDs

for both problems can be constructed in O(n logd+1 n) and

O(n log2 n) time, respectively.

Since the conditions and the AI decomposition are all

quite general and do not require to know the exact form of

the influence function, we expect that our techniques will be

applicable to many other CIVD problems.

It is worth pointing out that although significant differ-

ences exist, several problems/techniques can be viewed as

related to CIVD. The first one is the approximate Voronoi
diagram or nearest neighbor problem [2], [3], [4], [26], [27],

[29], which shares with our approximate CIVD the same

strategy of using regular shapes to approximate the Voronoi

cells. However, since its sites are all single-point, it is thus

quite different from our approximate CIVD problem. The

second one is the Fast Multipole Method (FMM) for the N-

body problem [22], [23], [24] which shares with the Vector

CIVD a similar idea of modeling joint force by influence

functions. The difference is that FMM mainly relies on

simple functions (i.e., kernels) to reduce the computational

complexity, while Vector CIVD uses perturbation and prop-

erties of the influence function to achieve faster computation.

Due to space limit, all proofs are left to the full paper.
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II. OVERVIEW OF APPROXIMATE CIVD

In this section, we give an overview of the main ideas in

computing approximate CIVDs. In subsequent sections, we

will unfold the details of our ideas.

Let P = {p1, p2, . . . , pn} be a set of n points in R
d for

some fixed d, C be a subset of P , and q be an arbitrary

point in R
d (called a query point). The influence from C

to q is a function F (C, q) on the vectors from every point

p ∈ C to q (or from q to p). Let Cm(P, q) ⊆ P denote the

cluster site which has the maximum influence, Fmax(q), on

q, called the maximum influence site of q. Below we define

the (1− ε)-approximate CIVD induced by F .

Definition 1: Let R = {c1, c2, . . . , cN} be a partition

of the space R
d, and C = {C1, C2, . . . , CN} be a set

(possibly multiset) of cluster sites of P . The set of pairs

{(c1, C1), (c2, C2), . . . , (cN , CN )} is a (1− ε)-approximate

CIVD with respect to the influence function F if for each

ci ∈ R, F (Ci, q) ≥ (1 − ε)Fmax(q) for any point q ∈ ci,
where ε > 0 is a small constant. Each ci is an approximate
Voronoi cell, and Ci is the approximate maximum influence
site of ci.

From the above definition, we know that to compute an

approximate CIVD, there are two major tasks: (1) partition

R
d into a set R = {c1, c2, . . . , cN} of cells, and (2) deter-

mine Ci ⊆ P for each ci. We call task (2) the assignment
problem, which finds an approximate maximum influence

site Ci from the power set U of P for each cell ci of R.

Since the choice of Ci often depends on the properties of

the specific influence function, we need to develop a specific

assignment algorithm for each CIVD problem. In Sections

V and VI, we present efficient assignment algorithms for

two CIVD problems.

We call task (1) the space partition problem. For this prob-

lem, we develop a standalone technique, called Approximate
Influence (AI) Decomposition, for general CIVDs. The size

of a CIVD (or an approximate CIVD) in general can be

exponential. Thus, in Section III, we investigate the general

and sufficient conditions that ensure the existence of a small-

size approximate CIVD. The AI decomposition makes use

of only these general conditions and need not know the exact

form of the influence function.

Roughly speaking, the general conditions aim to achieve

simultaneously two objectives at the resulting cells of the

space partition: (a) Cells that are far away from the input

points should be of as “large” sizes as possible (where “far

away” means that the size of the cell is small comparing to

the distance from the cell to the nearest input point), and

(b) cells that are close to the input points should not be too

small. Each objective helps reduce the number of cells in

the space partition from a different perspective.

Corresponding to the two objectives above, the AI de-

composition presented in Section IV partitions R
d into two

types of cells: type-1 cells and type-2 cells. Type-1 cells

are those close to some input points (i.e., corresponding to

objective (b)), and type-2 cells are those far away from the

input points (i.e., corresponding to objective (a)). The AI

decomposition has the following properties.

1) The space R
d is partitioned (in O(n log n) time) into

a total of O(n log n) type-1 and type-2 cells.

2) A type-1 cell c is a box region (i.e., an axis-aligned

hypercube) or the difference of two box regions, and

is associated with a known approximate maximum

influence site C.

3) A type-2 cell c is a box region with a diameter of

D(c) ≤ 2rλ1(ε)/3, where r is the minimum distance

between c and any point in P . All points in a type-2

cell c share a (not yet identified) cluster site C ⊆ P as

their common approximate maximum influence site.

As stated above, every type-1 cell in the AI decomposition

is associated with a known approximate maximum influence

site. Thus, our assignment algorithms only need to focus on

determining approximate maximum influence sites for the

type-2 cells.

III. INFLUENCE FUNCTION

In this section, we discuss the general conditions for the

influence function to yield a small-size approximate CIVD.

By the definition of CIVD, for a given influence function,

it is possible that most cluster sites in 2P have a non-empty

Voronoi cell, and hence the resulting CIVD is of exponential

size. Fortunately, many influence functions in applications

have certain good properties that induce CIVDs of much

smaller sizes. Thus, it is desirable to understand how an

influence function affects the size of the corresponding

CIVD. For this purpose, we investigate the general and

sufficient conditions of the influence functions which allow

to yield a small-size (approximate) CIVD.

Note that since an influence function can be arbitrary,

we shall focus on its general properties rather than its

exact form. We will make some reasonable and self-evident

assumptions about the influence function.

Let q be an arbitrary query point in R
d and C be a subset

of P . The influence from C to q is defined as follows.

Definition 2: The influence from C to q is a function

F (C, q) satisfying the following condition: F (C, q) =
f(G(C, q)), where G(C, q) = {p−q | p ∈ C} is the multiset

of vectors defined by C and q and f(·) is a non-negative

function defined over all possible multisets of vectors in R
d.

For convenience, f is also called the influence function.

In the above definition, the influence depends solely on

the set of vectors pointing from q to each point p ∈ C
or from p to q. This implies that the influence of C on q
remains the same under translation.

The influence function is also required to have good

properties on scaling and rotation, as follows.

Property 1 (Similarity Invariant): Let φ be a transforma-

tion of scaling or rotation about q, and C be any set (possibly
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multiset) of points in R
d. The ratio F (φ(C), q)/F (C, q) (if

F (C, q) �= 0) only depends on φ.

The above property implies that the maximum influence

site Cm(P, q) of q remains the same under any similarity

transformation (including translation, scaling, and rotation

about q). Thus Property 1 is also called the similarity
invariant property, and is necessary for the following locality

property.

As discussed in the last section, to ensure a small-size

approximate CIVD, we expect that the cells (in the CIVD)

that are far away from the input points should be “large” (i.e.,
objective (a)) and the cells that are close to the input points

should not be too small (i.e., objective (b)). This means that

many spatially close points in R
d would have to share the

same approximate maximum influence site, which implies

that the influence function must have a certain degree of

locality (to achieve objective (a)). Below we give the precise

meaning of the locality property.

Definition 3: Let q be a point and C be a set (possibly

multiset) of points in R
d. A 1-to-1 mapping ψ from C to

ψ(C) in R
d is called an ε-perturbation with respect to q

if ‖p − ψ(p)‖ ≤ ε‖p − q‖ for every point p ∈ C, where

0 < ε < 1 is the error ratio and q is the witness point of ψ.

Intuitively speaking, from the witness point’s view, an ε-
perturbation only changes slightly the position of a point it

maps from.

Definition 4: Let q be a point and C be a set (possibly

multiset) of points in R
d. For any γ with 0 < γ < 1, let

δ be a continuous and monotone function with δ(γ) < 1
and limx→0 δ(x) = 0. An influence function F is said to

be (δ, γ)-stable at (C, q) if for any ε-perturbation C ′ of C
with ε ≤ γ < 1, (1 − δ(ε))F (C, q) ≤ F (C ′, q) ≤ (1 +
δ(ε))F (C, q).

In the above definition, (C, q) is called a (δ, γ)-stable pair

or simply stable pair.

Definition 5: Let C be a set (possibly multiset) of points

in R
d, q be a query point, and F be the influence function.

(C, q) is a maximal pair of F if for any subset C ′ of C,

F (C ′, q) ≤ F (C, q).
From the above definition, we know that any maximum

influence site and its corresponding query point form a

maximal pair. Since each maximal pair could potentially

correspond to a non-empty Voronoi cell and any locality

requirement on the influence function has to ensure stability

on all Voronoi cells, it is sufficient to define the locality

based on the stability of all maximal pairs.

Property 2 (Locality): The influence function F is (δ, γ)-
stable at any maximal pair (C, q) for some monotone func-

tion δ and a small constant 0 < γ < 1.

The locality property above means that a small perturba-

tion on P only changes slightly the maximum influence on

a query point q. This implies that we can use the perturbed

points of P to determine an approximate maximum influence

site for each q. The following lemma further shows that a

good approximation of the maximum influence site for q is

still a good approximation after an ε-perturbation.

Lemma 1: Let F be any influence function satisfying

Property 2, and ψ be an ε-perturbation on P (with a witness

point q and ε ≤ γ). Let C be any subset of P with influence

F (C, q) ≥ (1 − ε)Fmax(q). If F is (δ, γ)-stable at (C, q),
then there exist a constant ε < γ′ < 1 and a monotone

function Δ with Δ(γ′) < 1 and limx→0Δ(x) = 0 such

that F (C ′, q) ≥ (1 − Δ(ε))F ′max(q), where P ′ = ψ(P ),
C ′ = ψ(C), and F ′max(q) = F (Cm(P

′, q), q).
In the above lemma, the error caused by the perturbation

can be estimated by the function Δ. Thus Δ is also called the

error estimation function. Since Δ is a monotone function

around 0, for a sufficiently small value ε > 0, Δ−1(ε) exists

(this fact will be used later on). For ease of analysis, we

assume that ε is sufficiently small so that Δ−1(ε) < 1/2.

By Property 2, we know that the locality of an influence

function is defined based on perturbation. Since perturbation

uses relative error, locality is not uniform throughout the

entire space. Such non-uniformity enables us to achieve

objective (a) (discussed in Section II), but does not help

attain objective (b). This means that if the influence function

has only the locality property, then two query points, say

q1 and q2, close to an input point p and having a distance

larger than 2εmax{‖p− q1‖, ‖p− q2‖} cannot be grouped

into the same Voronoi cell. Since there are infinitely many

query points arbitrarily close to p, we would need an infinite

number of Voronoi cells to approximate their influences.

Thus some additional property is needed to obtain a small-

size CIVD (i.e., to achieve objective (b)).

To get around this problem, we may imagine a situation

that when a query point q is very close to a subset C ⊆ P , it

is reasonable to assume that the influence from C completely

“dominates” the influence from all other points in P \ C.

This means that when determining the influence for q, we

can simply ignore all points in P \C, without losing much

accuracy. This suggests that the influence function should

also have the following Local Domination property.

Property 3 (Local Domination): There exists a polyno-

mially bounded function P(·) such that for a point q in

R
d and any subset P ′ ⊆ P , if there is a point p ∈ P ′ with

P(n)‖q−p‖ < ε·‖q−p′‖ for all p′ ∈ P \P ′, then F ′max(q) >
(1− ε)Fmax(q), where F ′max(q) = F (Cm(P

′, q), q).
The above property suggests that there is a dominating

region for each input point p of P . Consider a ball centered

at p and with a radius
ε‖p−p′‖

2(P(n)+ε) , where p′ is the nearest

neighbor of p in P . By Property 3, for any query point q
inside this ball, its influence mainly comes from p.

The above properties and Lemma 1 suggest a way to

construct an approximate CIVD. By Property 2, we know

that it suffices to use a perturbation of P to construct an

approximate CIVD. Since the influence function considers

only the vectors between a query point q and the input

points of P , we can equivalently perturb all query points
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(i.e., the entire space R
d), instead of the input points, and

still obtain an approximate CIVD. This means that we can

first approximate the space by partitioning it into small

enough regions, and then associate each such region with a

cluster site having an (approximate) maximum influence on

it. The set of regions together forms an approximate CIVD.

During the partition process, we use Property 3 to avoid

generating regions of too small sizes, hence preventing a

large number of regions. This leads us to the approximate

influence decomposition.

IV. APPROXIMATE INFLUENCE DECOMPOSITION

In this section, we present a general space-partition tech-

nique called approximate influence (AI) decomposition for

constructing an approximate CIVD. We assume that the

influence function satisfies the similarity invariant, locality,

and local domination properties.

To build an approximate CIVD, we utilize the locality

and local domination properties to partition the space R
d

into two types of cells (i.e., type-1 and type-2 cells). Our

idea for partitioning R
d is based on a new data structure

called box-tree, which is constructed by an extended quad-

tree decomposition and guided by another new data structure

called distance-tree built by the well separated pair decom-

position [11]. Roughly speaking, the box-tree construction

begins with a big enough bounding box of the input point

set P (i.e., an axis-aligned hypercube), recursively partitions

each box into smaller boxes, and stops the recursion on a box

when a certain condition is met. There are two types of boxes

in the partition: One is a box generated by the normal quad-

tree decomposition, and the other involves the intersection or

difference of two boxes. The stopping condition for a box B
is that either B is small enough comparing to its distance to

the closest point in P (and hence can be viewed as a type-2

cell), or B is inside the dominating region of some cluster

site C ⊆ P (and thus B can be viewed as a type-1 cell).

For the first case, by Property 2, we know that all points in

B can be viewed as perturbations of a single query point

and hence share the same approximate maximum influence

site. For the second case, by Property 3, we know that the

approximate maximum influence site for all points in B is

C. During the above space-partition process, a box becomes

a cell if no further decomposition of it is needed.

In order for the resulted cells to have the desired properties

(see Section II), we need to overcome a number of difficul-

ties: (1) How to efficiently maintain the distances between all
potential cells (i.e., the boxes) and the input points in P so
that their types can be distinguished? (2) How to efficiently
generate the two types of cells? (3) How to bound the total
number of cells and the running time of the space-partition
process? Below we discuss our ideas for resolving these

difficulties.

For Difficulty (1), we know that the type of a cell is

determined mainly by its distance to the input points in P .

Thus, corresponding to the two types of cells, we need to

maintain two types of distances for a box B generated by

the space-partition process: (i) the distance, denoted by rmin,

between B and the closest input point, and (ii) the distance,

denoted by rc, between B and the second closest input

point or cluster site. A straightforward way to maintain such

information is to explicitly determine the values of rmin

and rc for each generated box B. But, this would be rather

inefficient because the number of possible different values to

check could be very large. A seemingly possible way for this

problem is to keep track of only the distances between B and

the closest and second closest input points. This means that

we consider only the dominating region of a single input

point (i.e., only checking whether B is in the dominating

region of its closest input point). Unfortunately, this could

cause the space-partition process to generate unnecessarily

many boxes.

To understand this, consider an example in the 2D space

which has only three input points, (0, 0), (1, 0), and (M, 0),
for some large number M . The size of the dominating region

of (1, 0) is small since its nearest neighbor is (0, 0). The

space between (1, 0) and (M, 0) is then decomposed into

many (small) boxes in order to generate small enough boxes

that are fully contained in the dominating region of (1, 0).
One way to avoid this pitfall is that when a subset C

of P is far away from other points of P , we treat C as

a single point. In the above example, we may view (0, 0)
and (1, 0) as forming a “heavy” point (with a “weight”). The

dominating region size is then based on the distance between

the “heavy” point and (M, 0), which is significantly larger

than 1. In this manner, we can reduce the total number of

boxes.

To implement the idea, we employ a data structure called

distance-tree, in which every node stores the location of one

input point together with a value (whose exact meaning will

be discussed later).

For easy of analysis, we assume the error tolerance β < 1
2 .

Below are the main steps of our preprocessing algorithm

(Algorithm 1).

Note that in Algorithm 1, G(W ) forms a spanner of P
with a stretch factor of 2 [11]. In the resulting distance-tree

Tp, each node v (called a distance-node) is associated with

a point set, Pv , with a diameter upper-bounded by s(v) and

with l(v) as its representative point. Pv is the subset of input

points in P associated with the leaves of the subtree of Tp
rooted at v. When a query point q is far away from Pv , each

point in Pv can be viewed as a perturbation of any others.

Thus, it will not cause too much error if we simply treat

them as one “heavy” point, represented by l(v). E(v) gives

the boundary for the query point q, i.e., when q is outside

E(v), it is safe to view Pv as a single point (i.e., when q
is outside the bounding box E(v), q is viewed as far away
from Pv). E′(v) is defined only for analysis purpose.

After constructing Tp, we now discuss our idea for
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Algorithm 1 Preprocessing(P, β)

Input: A set P of n points in R
d, and an error tolerance

0 < β < 1/2.

Output: A tree structure Tp, in which every node v stores

a value s(v), an input point l(v), and is associated with a

bounding box E(v) in R
d.

1: Compute a 12-well separated pair decomposition W =
{(A1, B1), (A2, B2), . . . , (Am0

, Bm0
)} of P .

2: Construct a graph G(W ) by connecting the representa-

tives of Ai and Bi, for every (Ai, Bi) ∈W .

3: Build a min-priority queue Q for all edges in G(W ),
base on their edge lengths.

4: Build a tree Tp in the following bottom-up manner.

For each p ∈ P , there is a leaf node vp in Tp (i.e.,
Tp is initially a forest of |P | single-node trees), with

s(vp) = 0, l(vp) = p, and E(vp) and E′(vp) both being

0-sized bounding boxes containing p.

While Tp is not a single tree Do
• Extract from Q the shortest edge e = (p1, p2) with

edge length w(e). If vp1
and vp2

are leaves of two

different trees in Tp rooted at v1 and v2, then create

a new node v in Tp as the parent of v1 and v2, and

let s(v) = s(v1)+s(v2)+w(e), l(v) be either l(v1)
or l(v2), E

′(v) be the box centered at l(v) and with

size
4·s(v)

β , and E(v) be the box centered at l(v) and

with size
8·s(v)

β .

efficiently building the box-tree Tq (i.e., Difficulty (2)).

To build Tq , consider an arbitrary box-node u of Tq . The

key question regarding u is to determine whether its asso-

ciated box B(u) should be further decomposed. To resolve

this issue, we maintain for u a list L = {v1, v2, . . . , vk}
of distance-nodes in Tp ( inherited from u’s parent or

predetermined if u is the root of Tp). Each distance-node

vi ∈ L is associated with a subset Pvi
of input points which

may possibly give arise to the distance rmin for B(u) (and

also possibly the distance rc). The value of rc is recursively

maintained to approximate the closest distance from B(u)
to all points in P \ ∪k

i=1Pvi
(i.e., all input points not in L).

To determine whether B(u) should be decomposed, we

examine all distance-nodes in L. There are three cases to

consider for each vi ∈ L. The first case is that the bounding

box E(vi) of vi significantly overlaps with B(u). In this

case, the region B(u)∩E(vi) is not far away from Pvi
and

we cannot view Pvi
as a single “heavy” point. This means

that we cannot use l(vi) (i.e., the representative point of Pvi
)

to compute the value of rmin. To handle this case, we replace

vi in L by its two children, say vi,1 and vi,2, in the distance-

tree Tp. This can potentially increase the distance between

B(u) and each of Pvi,1
and Pvi,2

, and hence enhance the

chance for B(u) to be far away from these two child nodes.

The second case is that B(u) is far away from Pvi
. For

this case, we remove vi from L and save its distance (to

B(u)) in rc if it is smaller than the current value of rc.

If all distance-nodes are removed from L in this way, then

it means that B(u) is far away from all input points and

therefore becomes a type-2 cell. In this case, the value of

rmin is the value of rc at the time when L becomes empty.

The third case is that vi does not fall in any of the

above two cases. In this scenario, if vi is the only distance-

node left in L and B(u) (or part of B(u)) is inside the

dominating region of Pvi
, then the part of B(u) outside

E(vi) becomes a type-1 cell, and the part of B(u) inside

E(vi) will be recursively determined for its decomposition.

Otherwise, either more than one distance-node are still in L
or B(u) is not in the dominating region of Pvi

. For both

cases, we decompose B(u) (or the remaining part of B(u))
into 2d sub-boxes and recursively process each sub-box.

To generate the box-tree Tq , we use a recursive algorithm

called AI-Decomposition, in which P(·) is the polynomially

bounded function in Property 3. The core of this algorithm

is a procedure, called Decomposition, which produces the

box-subtree rooted at a box-node u that is part of the input

to the procedure. In the procedure Decomposition, Step 1

corresponds to the first case; Steps 2 and 3 are for the second

case; Steps 4 and 5 handle the third case.

Algorithm 3 AI-Decomposition(P , β)

Input: A set P of n points in R
d, and a small error tolerance

β > 0.

Output: A box-tree Tq .

1: Run the preprocessing algorithm on P and

obtain a distance-tree Tp. Let u be the root

of Tp. View E(u) as a box-tree node. Run

Decomposition(E(u), β, {u}, Tp,∞).
2: Output the box-tree rooted at E(u) as Tq .

A. Algorithm Analysis (Difficulty (3))

We show some interesting properties of the Tp as well as

the correctness and running time.

Definition 6: A distance-node v ∈ Tp is said to be

recorded for a box-node u if v is removed from the list

L in Step 2.2 of Algorithm 2 when processing u or one of

u’s ancestors. The value of rmin in the iteration when v is

removed from L is the recorded distance of v for u. If v is

recorded for u, then any point p ∈ Pv is also recorded for

u with the same recorded distance as v.

Lemma 2: If p ∈ P is recorded for a box-node u with a

recorded distance x, then for any point q ∈ B(u),
(1− β)x ≤ ‖p− q‖ ≤ (1 + β)x.

The following two lemmas show some important proper-

ties of the type-2 cells.
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Algorithm 2 Decomposition(u, β, L, Tp, rc)

Input: A box-node u with box B(u), error tolerance β > 0,

distance-tree Tp, linked list L, and a value rc. Output: A

subtree of Tq rooted at u.

1: While ∃ v in L such that the length of at least one edge

of B(u) ∩ E(v) is no smaller than
size(B(u))

2 do
• Replace v in L by its two children in Tp, if any.

2: Let D(u) be the diameter of B(u). For each node v in

L do
2.1 Let rmin be the distance between B(u) and l(v).
2.2 If D(u) < rminβ/2, remove v from L, and if

rc > rmin, let rc = rmin.

3: If L is empty, return, and B(u) becomes a type-2 cell.

4: If there is only one element v in L, let rmin be the

smallest distance between l(v) and B(u).

4.1 If
rmin+D(u)

rc
< β

2P(n) ,

4.1.1 If E(v) ∩ B(u) = φ or v is a leaf node in Tp,

B(u) is a type-1 cell dominated by v. Return.

4.1.2 Let B′ be the smallest hyper-cubic box in B(u)
fully containing B(u) ∩ E(v). Create two box

nodes u0 and u1, with u0 corresponding to B′

and u1 corresponding to the difference of B(u)
and B′. Let u0 and u1 be children of u in Tq . In

this case, u1 is a type-1 cell dominated by v.

4.1.3 Replace v in L by its two children v1 and v2
in Tp. Call Decomposition(u0, β, L, Tp, rc), and

return.

5: Decompose B(u) into 2d smaller boxes, and make the

corresponding nodes u1, u2, . . . , u2d as the children of

u in Tq . Call Decomposition(ui, β, L, Tp, rc) for each

ui. Return.

Lemma 3: For any type-2 cell c produced by Algorithm
3, the set of distance-nodes (also viewed as subsets of the

input points) recorded for c forms a partition of P .

Lemma 4: For any type-2 cell c and p ∈ P , let D(c) be

the diameter of c and r be the shortest distance between c
and p. Then

D(c) ≤ 2rβ

3
.

The lemma below characterizes the type-1 cells.

Lemma 5: If c is a type-1 cell dominated by a distance-

node v, then for any q ∈ c and p′ ∈ P \ Pv ,

‖q − l(v)‖
‖q − p′‖ ≤ β

P(n) .

The following definition is mainly for Theorem 1.

Definition 7: In R
d, let C be a set of k coincident points

and q be any query point. The maximum duplication function
ρ for an influence function F satisfying Property 1 is defined

as ρ(k) = |Cm(C, q)| (i.e., the cardinality of Cm(C, q)).

For any set C ′ of k points in R
d (not necessarily coincident

points), the selection mapping η maps C ′ to an arbitrary

subset η(C ′) of C ′ with cardinality ρ(k).
Note that in the above definition, it is possible that, for

some influence function F , the maximum influence of a set

C of k coincident points on a query point q is attained by

a subset of C. By Property 1, we know that ρ(k) depends

only on the influence function F and is independent of C
and q.

The following theorem ensures that all points in each

cell generated by the AI decomposition have a common

approximate maximum influence site (i.e., the correctness

of the AI decomposition).

Theorem 1: Let c be any cell generated by the AI-

Decomposition algorithm with an error tolerance β =
Δ−1(ε), where Δ is the error estimation function. Then the

following holds.

1) If c is a type-1 cell dominated by a distance-node v,

then F (η(Pv), q) ≥ (1 − ε)F (Cm(P, q), q) for any

query point q in c.
2) If c is a type-2 cell and q′ is an arbitrary point in c, then

F (Cm(P, q
′), q) ≥ (1− ε)F (Cm(P, q), q) for any q ∈

c. Furthermore, if there exists a subset C ⊆ P such

that F (C, q′) ≥ (1 − β)F (Cm(P, q
′), q′) and (C, q′)

is a stable pair, then F (C, q) ≥ (1−ε)F (Cm(P, q), q)
for any q in c.

3) For any query point q outside the bounding box

B(uroot), F (η(Pvroot), q) ≥ (1 − ε)F (Cm(P, q), q),
where uroot is the root of Tq and vroot is the root of

Tp.

The following packing lemma is a key to bounding the

total number of type-1 and type-2 cells and the running time

of the AI decomposition (i.e., Theorem 2).

Lemma 6 (Packing Lemma): Let oc be any point in R
d,

and Sin and Sout be two d-dimensional boxes (i.e., axis-

aligned hypercubes) co-centered at oc and with edge lengths

2rin and 2rout, respectively, with 0 < rin < rout. Let B
be a set of mutually disjoint d-dimensional boxes such that

for any B ∈ B, B intersects the region S′ = Sout − Sin

(i.e., the region sandwiched by Sin and Sout) and its edge

length L(B) ≥ C · r, where r is the minimum distance

between B and oc and C is a positive constant. Then

|B| ≤ C ′(C, d) log(rout/rin), where C ′(C, d) is a constant

depending only on C and d.

Theorem 2: For any set of n input points in R
d and an in-

fluence function F satisfying the three properties in Section

III, the AI-Decomposition algorithm yields O(n log n) type-

1 and type-2 cells in O(n log n) time, where the constant

hidden in the big-O notation depends on the error tolerance

β and d.

V. DENSITY-BASED CIVD

In this section, we show how to augment the AI decom-

position algorithm to generate a (1− ε)-approximate CIVD
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for the density-based CIVD problem.

The density-based CIVD problem for a set P of n points

in R
d is to partition the space into cells so that all points

in each cell share the same subset C of P as their densest
cluster. For a given query point q ∈ R

d, the densest cluster

Cm(P, q) of q is the subset C of P which maximizes the

influence F (C, q) = |C|/V (C, q) over all subsets of P ,

where V (C, q) = π
d
2 ld

Γ( d
2+1)

is the volume of the smallest

ball centered at q and containing all points in C, l is the

maximum distance from q to any point in C, and Γ is the

gamma function. In other words, Cm(P, q) is the cluster

with the highest density around q.

Clearly, density-based CIVD is closely related to the

widely used density-based clustering problem [12], [13],

[15], [30], [35]. Since density-based clustering is used in

many data mining, pattern recognition, medical imaging, and

social network applications, we expect that the density-based

CIVD is also applicable in these areas.

The following theorem shows that the problem satisfies

the three properties in Section III.

Theorem 3: The density-based CIVD Problem satisfies

the three properties in Section III.

The above theorem indicates that AI Decomposition can

be used to build an approximate density-based CIVD. To

solve the associated assignment problem, our idea is to

modify the AI-Decomposition algorithm (Algorithm 3) so

that some additional information is maintained for us to

assign a cluster to each resulting type-2 cell. (Note that by

Theorem 1, for each type-1 cell c, we can simply use the

distance-node v which dominates it as its densest cluster.

) In this way, we can obtain the approximate CIVD at the

same time of completing the AI decomposition.

Recall that an input point p is recorded in the AI-

Decomposition algorithm only when its distance to the

current to-be-decomposed box is large enough. Therefore,

for a cell c, it is most likely that an input point recorded

earlier is farther away from c than an input point recorded

later. Intuitively, recorded distances (of input points) should

be roughly in a decreasing order with respect to the order in

which they are recorded. Below we discuss how to use this

observation to modify the AI-Decomposition algorithm.

To understand how to modify the AI-Decomposition algo-

rithm, we first consider an example. Let q be a query point,

and P = {p1, p2, . . . , pn} be a set of input points in the

decreasing order of their distances to q (i.e., ‖pi − q‖ >
‖pj − q‖ for all 1 ≤ i < j ≤ n, and no two points

have the same distance to q). To find Cm(P, q), we can

use the following approach which scans P only once in

its sorted order and uses O(1) additional space. For each

1 ≤ i ≤ n, we compute Di =
cd(n−i+1)
‖pi−q‖d , and store the

largest Di during the scanning process, where cd =
Γ( d

2+1)

π
d
2

.

Since the ball centered at q with radius ‖pi − q‖ contains

exactly n − i + 1 points, {pi, pi+1, . . . , pn}, the largest Di

value, along with the corresponding i value, gives us the

desired densest cluster Cm(P, q) = {pi, pi+1, . . . , pn}.
With the above understanding, we can now modify the

Decomposition algorithm (Algorithm 2) as follows. Partic-

ularly, we change Step 2 of the Decomposition algorithm,

since this is the step distance-nodes are removed from L.

Before the execution of Step 2, we sort the distance-nodes

in L by the decreasing order of their distances to the current

box-node u (if there are nodes with the same distance, we

order them arbitrarily). Then, we execute Step 2 and try to

remove distance-nodes from L according to this sorted order.

We assume that in the Decomposition algorithm, a number

M is maintained for storing the total number of input points

which are recorded for the current box-node u. During the

execution of Step 2, after removing each distance-node v,

we compute a value D = cd(n−M)
rd

and then update M (i.e.,
increase M by the cardinality |Pv| of v). We save the largest

value D along with the corresponding distance-node v and

the box-node u. In each recursive call to the Decomposition

algorithm, we pass the stored D, u, and v to the next level

of the recursion.

Clearly, such a modification on Step 2 of the Decom-

position algorithm resembles the computation in the above

example. The only difference is that in the above example,

input points are considered strictly in the decreasing order

of their distances to the query point q, but in the modified

Decomposition algorithm distance-nodes are not always

removed by the decreasing order of their distances to some

query point q. This is because at different recursion levels,

distance-nodes may not be removed in a strictly decreasing

order. Below we show that despite such a difference, it is still

possible to use the modified AI Decomposition procedure to

obtain a (1− ε)-approximate densest cluster CIVD.

Let c be a type-2 cell generated by the AI decomposition

and q be a query point in c. Consider the root-to-leaf path in

the recursion tree of the Decomposition algorithm for c. Let

v1, v2, . . . , vm be the sequence of distance-nodes removed

from L along this recursion path (sorted by the increasing

order of the time that they are removed), and x1, x2, . . . , xm
be the closest distances to their corresponding box-node u
at the time when they are removed. Let Dmax be maximum

value of D passing through the recursion path and vmax,

and umax be the corresponding box-node and distance-node

when D achieves its maximum value.

Below we prove the claim that if vmax = vi, then the

union of vi, vi+1, . . . , vm is almost the densest cluster for

q for a properly chosen β. Since v1, v2, . . . , vm are all

distance-nodes recorded for the type-2 cell c, by Lemma

3, we know that they form a partition of P . For any p ∈ vj ,

by Lemma 2 we have

(1− β)xj ≤ ‖q − p‖ ≤ (1 + β)xj . (1)

Let ψ be a mapping defined as follows: For any p ∈ vj ,

ψ(p) is on the ray that emits from q and passes through
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p, and with ‖p − q‖ = xj . Let C denote the union of

vi, vi+1, . . . , vm. By Lemma 1, we know that to prove the

claim, it is sufficient to show that F (ψ(C), q) is almost

as large as F (Cm(P
′, q), q), where P ′ = ψ(P ). Clearly,

P ′ can be partitioned into subsets ψ(v1), ψ(v2), . . . , ψ(vm),
with all points in each ψ(vi), for i = 1, . . . ,m, having the

same distance xi to q. From the above discussion, we know

that if x1, x2, . . . , xm is in decreasing order, ψ(C) is exactly

Cm(P
′, q). The following lemma shows that x1, x2, . . . , xm

are actually in roughly sorted order, which is sufficient for

us to obtain an approximate densest cluster.

Lemma 7: In the modified AI-Decomposition algorithm

with error tolerance β, xj ≤ (1+ β)xi for any 1 ≤ i < j ≤
m.

Lemma 8: F (ψ(C), q) ≥ (1 + β)−dF (Cm(P
′, q), q).

Theorem 4: For any β satisfying the conditions 1 −
(1 + β)−d ≤ Δ−1(ε) and β ≤ Δ−1(ε)/3, the modified

AI decomposition algorithm outputs a (1 − ε) approximate

density-based CIVD in O(n log2 n) time.

VI. VECTOR CIVD

In this section, we show that the AI decomposition can be

combined with an assignment algorithm to build a (1− ε)-
approximate CIVD for the vector CIVD problem.

Let P be a set of n points in R
d and F be the influence

function. For each point p ∈ P and a query point q in R
d, the

influence F ({p}, q) is a vector in the direction of p− q (or

q−p) and with a magnitude of ‖p−q‖−t for some constant

t ≥ 1. Such a function may represent force-like influence

between objects, such as the gravity force between planets

and stars (with t = d−1) or electric force between physical

bodies like electrons and protons (with t = 2). For a cluster

site C of P , the influence from C to a query point q is the

vector sum of the individual influences from each point of

C to q. The vector CIVD problem is to partition the space

into Voronoi cells such that each cell is the union of points

sharing the same maximum influence site.

Theorem 5: The vector CIVD problem satisfies the three

properties in Section III for any constant t ≥ 1.

The above theorem suggests that AI decomposition can be

used to build an approximate Vector CIVD. To complete the

construction, we still need an assignment algorithm to assign

a cluster site to each type-2 cell. For this purpose, we choose

β to be Δ−1(ε). By Theorem 1, we know that to determine

an approximate maximum influence site for a type-2 cell c,
it is sufficient to pick an arbitrary point q ∈ c and find the

cluster site which gives q the maximum influence.

The following observation is the key to determining the

approximate maximum influence site.

Observation 1: In the vector CIVD problem, if a subset

C is the maximum influence site of a query point q, there

exists a hyperplane H passing through q and with all points

of C locating at one side of H and all points in P \ C at

the other side of H .

The above observation suggests that Cm(P, q) can be

obtained by enumerating all possible partitions of P induced

by a hyperplane passing through q and finding the Optimal
Hyperplane Partition (OHP). Since there are n input points,

a total of O(nd) such hyperplanes need to be considered.

Thus straightforwardly solving the OHP problem could be

too costly. To improve the running time, our idea is to

significantly reduce the number of input points involved

in the OHP problem. The main strategy for reducing the

number of points is to perturb the aggregated input points

so that each aggregated point cluster is mapped to a single

point. Also, those points that are far away from q and have

little influence on q are ignored. In this way, we can reduce

the number of input points from n to O(log n).
A quad-tree decomposition based aggregation-tree T is

built to help identify those point clusters that can be per-

turbed. The to-be-perturbed point clusters form an effective
cover (i.e., a set of disjoint point clusters not too far away

from q) in the aggregation-tree T . Straightforwardly com-

puting the effective cover takes O(n) time. To improve the

time complexity, a key problem is to avoid searching a long-

path (with a possible length of O(n)) in T . We use a number

of techniques, such as the majority path decomposition, to

build some auxiliary data structures for T so that we can

perform binary search on this long path and therefore speed

up the computation from O(n) time to O(log2 n). With this

and a fact that the effective cover has a size of O(log n),
we obtain an assignment algorithm which assigns a (1− ε)-
approximate maximum influence site to any type-2 cell in

O(logd n) time.

Theorem 6: A (1− ε)-approximate vector CIVD can be

constructed in O(n logd+1 n) time, where n is the number

of points in P and d ≥ 2 is the dimensionality of the space.
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