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Abstract—In this paper we establish a substantially improved
lower bound on the k-colorability threshold of the random
graph G(n,m) with n vertices and m edges. The new lower
bound is ≈ 1.39 less than the 2k ln k− ln k first-moment upper
bound (and ≈ 0.39 less than the 2k ln k − ln k − 1 physics
conjecture). By comparison, the best previous bounds left a
gap of about 2 + ln k, unbounded in terms of the number of
colors [Achlioptas, Naor: STOC 2004]. Furthermore, we prove
that, in a precise sense, our lower bound marks the so-called
condensation phase transition predicted on the basis of physics
arguments [Krzkala et al.: PNAS 2007]. Our proof technique
is a novel approach to the second moment method, inspired by
physics conjectures on the geometry of the set of k-colorings
of the random graph.

Keywords-random structures, phase transitions, graph color-
ing.

I. INTRODUCTION

Let G(n,m) be the random graph on the vertex set V =
{1, . . . , n} with m edges. Unless specified otherwise, we
assume that m = �dn/2� for a number d > 0 that remains
fixed as n→∞ and that k ≥ 3 is an n-independent integer.
We say that G(n,m) has a property E with high probability

(‘w.h.p.’) if limn→∞ P [G(n,m) ∈ E ] = 1.

The theory of random graphs started with the famous 1960

article by Erdős and Rényi [18], in which the existence of

a phase transition was established by proving the sudden

emergence of a giant component at d ∼ 1. Erdős and Rényi

also set the agenda for future research by posing a number

of questions on further phase transitions. To date, all but one

of these questions have been answered. The last open one

concerns the chromatic number of G(n,m).1 More precisely,

to date it is widely conjecture that there is a sharp phase

transition for k-colorability for any k ≥ 3 (e.g., [1]).

Achlioptas and Friedgut [1] showed that for any fixed

k ≥ 3 there exists a sharp threshold sequence dk−col =
dk−col(n). This sequence is such that for any ε > 0
the random graph G(n,m) is k-colorable w.h.p. if the

average degree is less than (1 − ε)dk−col(n), but there

is no k-coloring w.h.p. for average degrees greater than

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement n. 278857–PTCC.

1We owe this observation to Charilaos Efthymiou.

(1 + ε)dk−col(n).
2 While this is a pure existence result, in

a landmark paper Achlioptas and Naor [6] used the second

moment method to prove that

dk−col ≥ dk,AN =2(k − 1) ln(k − 1) = (1)

= 2k ln k − 2 ln k − 2 + ok(1),

where the ok(1) hides a term that tends to zero for large k.

By comparison, a simple “first moment” calculation shows

dk−col ≤ dk,first = 2k ln k − ln k. (2)

This leaves a gap of about 2+ ln k, a function that diverges

as k gets larger.

Independently of the rigorous work, the random graph col-

oring problem has been studied in statistical physics under

the snappy title of “diluted mean-field Potts antiferromag-

net”. In fact, over the past decade physicists have developed

a deep but mathematically non-rigorous formalism called the

“cavity method” for locating phase transitions in discrete

structures [26], [27]. According to the cavity method [22],

[28], [29], [31],

dk−col = 2k ln k − ln k − 1 + ok(1). (3)

In addition, the cavity method has inspired new message

passing algorithms called Belief/Survey Propagation Guided
Decimation [11], [26].

Recently, there has been progress in verifying the physi-

cists’ predictions on the phase transitions in binary prob-

lems. For instance, the current gap between the best lower

and upper bounds in random k-SAT is ≈ 0.19 [13]. In ran-

dom k-NAESAT the gap is as tiny as 2−(1−ok(1))k [12], [15].

This leaves graph k-coloring as the single most prominent

example with a gap that is unbounded in terms of k.

This large gap remains because the techniques of [12],

[13], [15] do not extend easily beyond binary problems.

More specifically, the presence of k possible colors (in

physics jargon, ‘spins’) per vertex dramatically complicates

the use of the second moment method, the mainstay for

proving lower bounds.

Here we develop a new approach to the second moment

method in the presence of more than two spins. This

2In order to prove that there actually is a sharp k-colorability threshold
one would have to show that dk−col(n) converges.
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approach, based on an analysis of the geometry of the set

of k-colorings and a local variations argument, is directly

inspired by physics ideas. We view this technique as an

important step towards the long-term goal of providing a

rigorous foundation for the ‘cavity method’. Our main result

is summarized in the following theorem.

Theorem 1.1: The k-colorability threshold satisfies

dk−col ≥ dk,cond − ok(1), with

dk,cond = 2k ln k − ln k − 2 ln 2. (4)

The gap between the new lower bound (4) and the ele-

mentary upper bound (2) is an additive 2 ln 2+ok(1) ≈ 1.39,

rather than a function that grows with k. Moreover, the

gap between (4) and the physics prediction (3) is a mere

2 ln 2− 1 ≈ 0.39.

In fact, Theorem 1.1 determines the chromatic number

of G(n,m) exactly for “most” average degrees d. More

precisely, let us say that a (measurable) set A ⊂ R≥0 has

density α if limz→∞ 1
z

∫ z

0
1A = α, where 1A is the indicator

of A.

Corollary 1.2: There exist a set A ⊂ R≥0 of density 1
and a function F : A → Z≥0 such that for all average

degrees d ∈ A we have χ(G(n,m)) = F (d) w.h.p.

To be specific, A is the union of the intervals

(dk−1,first, dk,cond − ok(1)) where Theorem 1.1 and (2)

show that G(n,m) is k-colorable but not k − 1-colorable

w.h.p.

Corollary 1.2 improves a result from [6], who used (1)

and (2) to determine the chromatic number on a set A′ of

density 1
2 . Furthermore, Corollary 1.2 answers a question

of Alon and Krivelevich whether the chromatic number of

G(n,m) is concentrated on a single integer for most d “in

an appropriately defined sense” [8] in the case m = O(n).3

Finally, why doesn’t our second moment argument de-

termine the threshold dk−col precisely? According to the

cavity method, the demise of the second moment method at

dk,cond is due to a phase transition called condensation that

marks a change in the geometry of the set of k-colorings.

According to the physics predictions, when the average

degree is smaller than dk,cond − ok(1), the k-colorings are

arranged in well-separated “clusters”, each comprising only

an exponentially small fraction of the total number of k-

colorings. As the average degree crosses dk,cond + ok(1),
this formation changes: the size of the largest cluster has the

same order of magnitude as the total number of k-colorings

w.h.p. In effect, a bounded number of clusters dominate the

entire set of k-colorings. Hence the term “condensation”.

3A proof that the threshold sequence dk−col(n) converges would imply a
one-point concentration result for the chromatic number outside a countable
set of average degrees. However, the known non-uniform sharp threshold
result does not.

Based on our techniques we can verify that indeed, in

a precise sense, a phase transition occurs at dk,cond (see

Proposition 2.1 below). But before we come to that we need

to discuss the second moment method and its relationship

to the physics predictions.

II. GRAPH COLORING AND THE SECOND MOMENT

METHOD

Most of the current results on phase transitions in random

constraint satisfaction problems are based on the second
moment method. Suppose that Z = Z(G(n,m)) ≥ 0 is

a random variable such that Z(G) > 0 only if G is k-

colorable. To prove that dk−col ≥ d − o(1), it suffices

to show that lim inf P [Z(G(n,m)) > 0] > 0, and then

use the sharp threshold result from [1]. To show that

lim inf P [Z(G(n,m)) > 0] > 0, we prove that there is a

number C = C(d, k) > 0 that may depend on the average

degree d such that

0 < E
[
Z2

] ≤ C · E [Z]
2
, (5)

and use the Paley-Zygmund inequality

P

[
Z ≥ 1

2
E [Z]

]
≥ E [Z]

2

4E [Z2]
. (6)

A. Balanced colorings and the Birkhoff polytope

Perhaps the most obvious choice of random variable is the

total number Zk−col of k-colorings of G(n,m). However,

following [6] we are going to work with a particular type

of colorings to simplify our calculations: we call a map σ :
V → [k] balanced if |σ−1(i)| = n/k for all i ∈ [k].4 Let B
be the set of all such balanced maps and let Zk,bal be the

number of balanced k-colorings of G(n,m). As it turns out,

the second moment bound (5) does not hold for either Zk−col

or Zk,bal in the entire range 0 < d < dk,cond. To remedy

this problem, we need to understand its origin. Thus, let us

sketch the approach taken in [6] in the following paragraphs.

To get started, we compute the first moment. More pre-

cisely, since the first moment scales exponentially with n,

we estimate its logarithm. By Stirling’s formula the number

of balanced σ : V → [k] is |B| = kn−o(n). Furthermore,

for any balanced σ a random edge is bichromatic with

probability 1 − 1/k + O(1/n). Since G(n,m) consists of

m ∼ dn/2 nearly independent random edges, we obtain

1

n
ln E [Zk,bal] ∼ ln k +

d

2
ln(1− 1/k). (7)

Working out the second moment is not quite so straight-

forward. Since E[Z2
k,bal] is nothing but the expected number

of pairs of balanced k-colorings, we need to compute the

probability that two balanced σ, τ ∈ B simultaneously hap-

pen to be k-colorings of G(n,m). Of course, this probability

will depend on how “similar” σ, τ are.

4We assume for the sake of presentation that n is divisible by k.
Otherwise one requires ||σ−1(i)| − n/k| ≤ 1 instead.
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In binary problems such as k-SAT similarity can be

quantified just by the number of variables on which the two

assignments coincide. However, for σ, τ ∈ B knowing the

number of vertices that receive the same color is insufficient.

For instance, τ could be obtained from σ simply by permut-

ing the color classes, in which case σ, τ are indistinguishable

as far as the k-coloring problem goes without coloring a

single vertex the same. Moreover, it is easy to construct

examples where even applying the “obvious” permutation

does not help. Therefore, we introduce the k × k overlap
matrix ρ(σ, τ) whose entries

ρij(σ, τ) =
k
n · |σ−1(i) ∩ τ−1(j)|

represent the proportion of vertices with color i under σ and

color j under τ . The need for this high-dimensional overlap

parameter is the root of our troubles.

The upshot is that ρ(σ, τ) contains all the information

necessary to determine the probability that both σ, τ are

k-colorings. In fact, let Zρ,bal be the number of pairs of

balanced k-colorings with overlap ρ. Then

1

n
ln E [Zρ,bal] ∼ f(ρ) = ln k − 1

k

[ k∑
i,j=1

ρij ln ρij

]
+ (8)

+
d

2
ln

[
1− 2

k
+

1

k2
‖ρ‖22

]
,

with ‖ρ‖2 =
[∑k

a,b=1 ρ
2
ab

]1/2
. (We use the convention that

0 ln 0 = 0.)5

LetR denote the set of all possible overlap matrices. Then

E[Z2
k,bal] =

∑
ρ∈R E [Zρ,bal] . Furthermore, because we

confined ourselves to balanced k-colorings, all the overlap

matrices ρ ∈ R are doubly-stochastic, i.e., all rows and

columns sum to one. In fact, as n grows R is dense in the

set D of all doubly stochastic k × k matrices, the Birkhoff
polytope. Hence, we can express the second moment as an

optimization problem over D, namely

1
n ln E[Z2

k,bal] ∼ maxρ∈D f(ρ). (9)

(Upon taking logarithms the sum
∑

ρ∈R E [Zρ,bal] turns into

a max because the total number |R| of summands is easily

bounded by nk2

, a polynomial in n.)

Let ρ̄ = 1
k1 be the matrix with all entries equal to 1

k ,

the barycenter of the Birkhoff polytope. A glimpse at (7)

reveals that f(ρ̄) ∼ 2
n ln E [Zk,bal], which corresponds to the

square of the first moment. Therefore, a necessary condition

for the success of the second moment method is that the

maximum (9) is attained at ρ̄. Indeed, if f(ρ) > f(ρ̄) for

some ρ ∈ D, then E[Z2
k,good] exceeds E [Zk,good]

2
by an

exponential factor, because (9) is on a logarithmic scale.

5Equation (8) follows because by inclusion/exclusion a single ran-
dom edge is bichormatic under both σ, τ with probability 1 − 2

k
+

1
k2

∑k
i,j=1 ρ

2
ij + O(1/n). Moreover, the number of pairs (σ, τ) with

overlap ρ is kn−o(n)
( n
ρ11

n
k
,...,ρkk

n
k

)
(cf. [6]).

This necessary condition turns out to be sufficient, i.e.,

the second moment method succeeds iff the dominant con-

tribution to (9) comes from ρ̄. Combinatorially, this means

that pairs σ, τ that, judging by their overlap, look completely

uncorrelated make up the lion’s share of E[Z2
k,bal].

B. A first attempt: the singly-stochastic bound

Unfortunately, solving (9) proves seriously difficult. Ach-

lioptas and Naor resort to a relaxation: letting S denote the

set of all k×k singly stochastic matrices (with all row sums

equal to one but no constraints on the column sums), they

study maxρ∈S f(ρ). This optimization problem turns out to

be much more amenable, In fact, while in (9) all matrix

entries are tied together by the constraint that ρ be doubly

stochastic, in maxρ∈S f(ρ) the constraints are confined to

single rows. Thus, maxρ∈S f(ρ) decomposes into k separate

optimization problems, each over a k-dimensional simplex.

Yet even solving this relaxation is quite non-trivial.

Achlioptas and Naor perform a sophisticated “global” anal-

ysis based on chasing the zeros of the differentials of certain

functions related to f , the signs of the second differentials at

these points, etc. (up to the sixth derivative). They manage

to solve the relaxed problem completely. The result is that

its maximum and thus that of (9) is attained at the doubly-

stochastic ρ̄ for d ≤ dk,AN, about an additive ln k below

dk−col (cf. (1)).

But for larger densities the maximum of f(ρ) over singly-

stochastic ρ is attained at a matrix that fails to be doubly-

stochastic. Indeed, the maximizer is very close to the matrix

ρhalf whose first k/2 rows coincide with those of the identity

matrix id (with ones on the diagonal and zeros elsewhere)

and whose last k/2 rows have all entries equal to 1/k. Of

course, ρhalf fails to be doubly-stochastic. Hence, one might

hope that ρ̄ remains the maximizer of (9) for d up to dk,cond.

That is, however, not the case. Indeed, consider the doubly-

stochastic

ρstable = (1− 1/k)id + k−21, (10)

where 1 denotes the matrix with all entries equal to one.

A simple calculation reveals that f(ρstable) > f(ρ̄), and

thus that the second moment argument for Zk,bal fails, for

d strictly below dk,cond.

C. The new approach

Thus, to prove Theorem 1.1 we need to work with a

different random variable. The key observation behind its

definition is that the second moment (9) is driven up by

certain “pathological” k-colorings σ. Their number behaves

like a lottery: while the random graph typically has few

such colorings, a tiny fraction of graphs have an abundance,

boosting the second moment. To exclude these pathological

cases, we define a notion of “good” colorings. This induces

a decomposition Zk,bal = Zk,good + Zk,bad such that
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E [Zk,good] ∼ E [Zk,bal]. The second moment bound (5)

holds for Zk,good so long as d ≤ dk,cond − ok(1).
The notion of “good” is inspired by statistical physics

predictions on the geometry of the set of k-colorings. More

precisely, according to the cavity method [21], [31], for (1+
ok(1))k ln k < d < dk,cond the set of all k-colorings, viewed

as a subset of [k]
n

, decomposes into tiny “clusters” that are

well-separated from each other. To formalize this, we define

the cluster of a balanced k-coloring σ of G(n,m) as the set

C(σ) = {τ ∈ [k]
n
: τ is a balanced k-coloring and

ρii(σ, τ) > 0.51 for all i ∈ [k]}. (11)

In words, C(σ) contains all balanced k-colorings τ in which

more than 51% of the vertices in each color class of σ retain

their color. The definition of “good” imposes constraints on

the cluster size and separation.

Computing the second moment of Zk,good boils down to

an optimization problem as well. However, in comparison

to (9), this problem is over a significantly reduced domain

Dgood ⊂ D, reflecting the physics predictions on the

clustered geometry of k-colorings:

1

n
ln E[Z2

k,good] ∼ max
ρ∈Dgood

f(ρ). (12)

Thus, instead of relaxing (9) as in [6], our approach is to add
constraints to the problem. In particular, ρstable �∈ Dgood.

Furthermore, to solve the maximization problem (12), we

pursue a novel approach: instead of performing a global

analysis as in [6], we use an argument based on local
variations, somewhat reminiscent of a gradient method in

mathematical programming. Sections IV and V fill in the

details.

D. The condensation transition

Finally, why does the second moment method fail beyond

dk,cond? According to the (again, non-rigorous) physics

predictions, as d increases up to dk,cond, both the total

number Zk−col of k-colorings and the cluster sizes decrease.

However, Zk−col drops at a faster rate, and at dk,cond+ok(1)
the size of the largest cluster C(σ) has the same order of

magnitude as the total number of k-colorings w.h.p. In effect,

a bounded number of clusters dominate the entire set of k-

colorings.

This prediction explains the demise of the second moment

method at dk,cond. Indeed, as we saw above, the second

moment method succeeds iff two random colorings σ, τ
of G(n,m) “look uncorrelated” in the sense that their

overlap is ρ̄ w.h.p. Once there is condensation, this type

of decorrelation does no longer occur because σ, τ belong

to the same cluster (and thus are highly correlated) with a

non-vanishing probability.

But can we prove the existence of a “phase transition”

at dk,cond in any sense? The second moment argument

enables us to trace both the cluster size and the number

of k-colorings for d < dk−col − ok(1). If one extrapolates

these formulas to larger d, one finds that the formula for the

cluster size exceeds the extrapolation of the total number of

k-colorings by an exponential factor! Of course, in actuality

Zk−col cannot possibly be less than the size of a single

cluster. Thus, under an appropriate scaling the limiting

behavior of Zk−col and/or the cluster size has to change

at dk,cond. Indeed, in physics jargon a phase transition is a

point d0 where the function

ϕ(d) = lim
n→∞E[Z

1/n
k−col] (13)

is non-analytic.6 We believe this to occur at dk,cond+ok(1).
However, the limit (13) is not currently known to exist for

all d. Therefore, we have to phrase the following result with

a bit of care.

Proposition 2.1: There is εk = ok(1) such that the

following is true.

1) The limit ϕ(d) exists and is analytic for all d <
dk,cond − εk. Indeed, ϕ(d) = k(1− 1/k)d/2.

2) By contrast, either ϕ(d) does not exist for some d ∈
(dk,cond− εk, dk,cond + εk) or, if it exists for all such

d, the limiting function ϕ(d) is non-analytic at some

point in this interval.

While (13) is not known to exists for all d, Bayati,

Gamarnik and Tetali [9] proved the existence of a closely

related limit, the so-called “free energy”. Emboldened by

their result, we pose

Conjecture 2.2: For any k ≥ 3 and any d > 0 the

limit (13) exists.

III. RELATED WORK

Over the years the random graph coloring problem has

attracted a lot of attention. Shamir and Spencer used mar-

tingale tail bounds to proved concetration results [30]. Their

work was enhanced first by Łuczak [24] and then by Alon

and Krivelevich [8], who proved that the chromatic number

of G(n,m) is concentrated on two consecutive integers if

m � n3/2. In a breakthrough contribution, Bollobás [10]

determined the asymptotic value of the chromatic number

of dense random graphs (with m = Ω(n2)). This result

improved prior work by Matula [25], whose “merge-and-

exposure” technique Łuczak built upon to approximate the

chromatic number of sparse random graphs [23].

Due to the ok(1) error term in (4), Theorem 1.1 does

not yield improved bounds on dk−col for small values of k.

For instance, the best current bound on the threshold for 3-

colorability remains 4.03 [3]. This bound is constructive. It

is obtained by tracing a certain linear time algorithm via the

6We use the term “analytic” in the sense of complex analysis (i.e., the
function admits an expansion into a power series with a positive radius
of absolute convergence). The physics tradition is to actually consider
limn→∞ 1

n
E[lnZ] (cf. [27]). We work with the nth root instead as

Z = Zk−col may be zero.
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differential equations method. While we have not attempted

to optimize the error term in Theorem 1.1, it would be

interesting to see if our techniques render better results for,

say, k = 3, 4, 5 as well.

The techniques of Achlioptas and Naor [6] have been

used to prove several further important results. For instance,

Achlioptas and Moore [4] identified three (and for some

d just two) consecutive integers on which the chromatic

number of the random d-regular is concentrated. This was

reduced to two integers for all fixed of d (and one for

about half of all d) by adding in the small subgraph

conditioning technique [20]. We expect that our techniques

can be combined with small subgraph conditioning as well

to get improved results for random d-regular graphs.

Both [6] and our Theorem 1.1 deal with the case that

the average degree d remains fixed as n → ∞. In [14] the

second moment method from [6] was combined with the

concentration argument from [8] to determine three (and in

some cases two) integers on which the chromatic number of

G(n,m) is concentrated for m� n5/4. We expect that the

present techniques allow for an improvement.

Recently Dyer, Frieze and Greenhill [17] generalized the

second moment argument from [6] to the problem of k-

coloring j-uniform random hypergraphs (with average de-

gree d fixed as n→∞ and k, j ≥ 3 fixed as well). As in [6],

a key step in their proof is to relax an optimization problem

over doubly-stochastic matrices to the singly-stochastic case.

Thus, it would be interesting to see if the present techniques

allow for improved results in the hypergraph case.

Dani, Moore and Olson [16] studied a “decorated” color-

ing problem in which each pair of (u, v) of vertices comes

with a permutation πu,v of the k possible colors. These

permutations are chosen independently and uniformly at

random for each edge. This leads to a notion of decorated k-

colorings that involves the permutations on the edges. They

conjecture that the threshold for k-colorability in the “deco-

rated” problem coincides with the common dk−col. It might

be interesting to see if our approach yields better bounds

for the decorated k-coloring problem, possibly matching its

condensation transition.

The use of the second moment method in random con-

straint satisfaction problems was pioneered by Achlioptas

and Moore [5] and Frieze and Wormald [19], who dealt

with random k-SAT. Recently improved results on binary
random constraint satisfaction problems have been obtained

via enhanced second moment arguments [12], [13], [15].

As mentioned earlier, the crucial difference between the

previous and the present work is that we deal with a problem

in which each “variable” (i.e., vertex) has more than two

“spins” (colors) to choose from. That said, we harness

the idea, first suggested in [15], of combining the second

moment method with physics predictions on the geometry

of the solution space. To study these geometric properties

we build upon and extend techniques from [2], [7].

IV. THE RANDOM VARIABLE

The goal in this section is to define the random variable

Zk,good on which our second moment argument is based

and to compute its expectation. At the expense of the ok(1)
error term in (4) we may assume throughout that k ≥ k0 for

a big constant k0. We may also assume that n is sufficiently

large.

The definition of Zk,good is guided by the statistical me-

chanics predictions on the geometry of the set of k-colorings,

according to which for densities (1 + ok(1))k ln k ≤ d ≤
dk,cond the k-colorings come in well-separated clusters;

recall the formal definition (11) of the “cluster” C(σ).
To formalize the concept of “well-separated”, we call a

balanced k-coloring σ separable if for any other balanced

k-coloring τ and any i, j ∈ [k] such that ρij(σ, τ) > 0.51 we

indeed have ρij(σ, τ) ≥ 1− κ, where κ = ln9 k/k = ok(1).
In other words, the overlap matrix ρ(σ, τ) does not have

entries in the interval (0.51, 1− κ). This definition ensures

that the clusters of two separable colorings σ, τ are either

disjoint or identical (to see this, apply the condition to the

diagonal entries ρii(σ, τ)).
Furthermore, according to the physics calculations each

cluster only contains a small fraction of all balanced k-

colorings w.h.p. Since w.h.p. their total number does not

exceed the expectation E [Zk,bal] by much (Markov’s in-

equality), we definitely expect that each cluster has size at

most E [Zk,bal] w.h.p. These considerations lead us to

Definition 4.1: A balanced k-coloring σ is good if it is

separable and |C(σ)| ≤ E [Zk,bal].

Let Zk,good be the number of good k-colorings. A key

fact is that for d ≤ dk,cond the expectation of Zk,good

coincides with the expectation of Zk−col, the total number

of k-colorings, up to a sub-exponential factor. Hence, we

merely rule out a (for our purposes) negligible fraction of

“bad” colorings.

Proposition 4.2: For dk,AN ≤ d ≤ dk,cond − ok(1) we

have

1

n
ln E [Zk,good] ∼ 1

n
ln E [Zk] ∼ ln k +

d

2
ln(1− 1/k) > 0.

(14)

The notion of “good” turns out to be sufficient to ensure the

success of the second moment method. More precisely, the

core of this work is to establish

Proposition 4.3: There is C = C(k) > 0 such that

E[Z2
k,good] ≤ C · E [Zk,good]

2

for all dk,AN ≤ d ≤ dk,cond − ok(1).

Propositions 4.2 and 4.3 together with Eq. (5) and (6)

imply Theorem 1.1. We are going to sketch the second

moment argument in Section V. But before we come to that,

we deal with the first moment.
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Proving Proposition 4.2. We compute the first moment by

way of the “planted model”. Let Λ be the set of all pairs

(G, σ) such that G is a graph on V = [n] with m edges and

σ is a balanced k-coloring of G. Moreover, let Λgood be the

set of all (G, σ) ∈ Λ such that σ is a good k-coloring of G.

Letting N =
((n2)

m

)
equal the total number of graphs with m

edges, we see that

E [Zk,bal] = |Λ| /N, E [Zk,good] = |Λgood| /N.

Since we already know the expectation of Zk,bal (from (7)),

we just need to show |Λgood| ∼ |Λ|.
The planted distribution provides a simple way to draw

a pair (G,σ) ∈ Λ uniformly at random:

P1. First, draw a balanced map σ : V → [k] uniformly at

random.

P2. Then, draw a graph G with m edges that are bichro-

matic under σ uniformly at random.

This experiment induces the uniform distribution on Λ
because each balanced σ is a proper k-coloring for an

equal number of graphs. (This is not generally true for non-

balanced colorings.)

Hence, to show that |Λgood| ∼ |Λ| it suffices to verify that

(G,σ) ∈ Λgood w.h.p. Standard expansion arguments show

that w.h.p. σ is separable in G. Furthermore, with respect

to the cluster size we find

Lemma 4.4: Suppose that dk,AN ≤ d ≤ 2k ln k. Then
1
n ln |C(σ)| = (1 + ok(1))

ln 2
k w.h.p.

The proof of Lemma 4.4 is fairly intricate. It draws on

techniques developed in [2], [7]. Roughly speaking, we

establish that w.h.p. G is dominated by a core Ĝ comprising

of vertices that each have at least, say, 100 neighbors in Ĝ of

each color other than their own. Due to expansion properties,

no vertex in Ĝ can be recolored without leaving the cluster

C(σ). Furthermore, w.h.p. most vertices v �∈ Ĝ that have at

least one neighbor in each color class other than their own

are “attached” to the core. This means that switching the

color of v necessitates recoloring a vertex in Ĝ, which is

impossible inside C(σ).
Thus, the volume of the cluster (mostly) stems from ver-

tices v that fail to have a neighbor of some color i �= σ(v).
Standard calculations show that there are about n

k such v
w.h.p., and that for most of them there is only one “free”

color i �= σ(v). Hence, v has two colors to choose from.

These choices turn out to be more or less independent for

all v. In effect, the cluster size is 2(1+ok(1))n/k w.h.p., which

is less than E[Zk,bal] for d < dk,cond − ok(1).

V. THE SECOND MOMENT

As outlined in Section II, the “vanilla” second moment

argument is based on optimizing the function f(ρ) over the

entire set D of doubly-stochastic matrices. But the notion

of “good” colorings enables us to restrict the domain over

which we need to optimize significantly. More precisely, let

us call ρ ∈ D separable if for any i, j ∈ [k] such that ρij >
0.51 we have ρij ≥ 1−κ (with κ = ln9 k/k). Furthermore,

we say that ρ is s-stable if there are precisely s pairs (i, j) ∈
[k]×[k] such that ρij ≥ 1−κ. Clearly, any doubly-stochastic

matrix is s-stable for some 0 ≤ s ≤ k, and in each row (and

column) at most one entry is ≥ 1− κ. Let

Dgood = {ρ ∈ D :ρ is separable and

s-stable for some 0 ≤ s ≤ k − 1}.
In other words, Dgood consists of all ρ ∈ D with at most

k−1 entries that are at least 1−κ, while all other entries are

at most 0.51. In particular, Dgood does not contain k-stable

matrices such as ρstable from (10).
Geometrically, the set Dgood is obtained from the Birkhoff

polytope D by cutting out “cylinders” consisting of matrices

with an entry in (0.51, 1− κ). In effect, Dgood is a discon-

nected set. It decomposes into the sets Ds,good of s-stable

ρ ∈ Dgood for 0 ≤ s ≤ k − 1.
These sets Ds,good can be interpreted nicely in terms of

the faces of the Birkhoff polytope. More precisely, as all

ρ ∈ Ds,good are s-stable there are precisely s entries ρij
such that ρij ≥ 1− κ. By permuting the rows and columns

suitably, we may assume that ρii ≥ 1− κ for i = 1, . . . , s.

Thus, ρ is close to the k−s-dimensional face of the Birkhoff

polytope where the first s diagonal entries are equal to one.

Furthermore, since all other entries of ρ are ≤ 0.51 (because

ρ is separable), ρ is in fact close to a point “deep inside”

this face. In fact, we are going to show that the maximum

of f(ρ) over Ds,good is attained at a point very close to the

barycenter of the face. The result of this analysis is

Proposition 5.1: For any 0 ≤ s ≤ k − 1 we have

maxρ∈Ds,good
f(ρ) ≤ f(ρ̄), with equality only for s = 0.

Before we come to the proof of Proposition 5.1, let us

indicate how it implies the second moment bound.

Proof of Proposition 4.3 (assuming Proposition 5.1). Let

Zs be the number of pairs (σ, τ) of good k-colorings whose

overlap matrix is s-stable. Then (by Cauchy-Schwarz)

Z2
k,good =

[ k∑
s=0

Zs

]2
≤ (k + 1)

k∑
s=0

Z2
s . (15)

By construction, the overlap matrix of any two good color-

ings is separable. Hence, Proposition 5.1 yields

1

n
ln

k−1∑
s=0

E
[Z2

s

] ∼ max
ρ∈Dgood

f(ρ)

= f(ρ̄) ∼ 2

n
ln E [Zk,good] . (16)

With a bit of calculus (“Laplace method”) we rid (16) of

the logarithms to find C ′ = C ′(k) > 0 such that

k−1∑
s=0

E
[Z2

s

] ≤ C ′ · E [Zk,good]
2
. (17)
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Figure 1. the function values f(μs) for k = 1000.

Finally, let σ, τ be two good colorings such that ρ(σ, τ)
is k-stable. A suitable permutation of the color classes of τ
yields a good τ̂ ∈ C(σ). Since all good k-colorings satisfy

|C(σ)| ≤ E [Zk,good], we obtain

E
[Z2

k

] ≤ E

[ ∑
σ good

k!|C(σ)|
]
≤ (18)

≤ E [k! · E [Zk,good] · Zk,good] ≤ k! · E [Zk,good]
2
.

Combining (15), (17) and (18), we find that E[Z2
k,good] ≤

C · E [Zk,good]
2

for some C = C(k) > 0. �

Proving Proposition 5.1. The basic idea behind the proof

of Proposition 5.1 is to show that the function f(ρ) is

maximised on each “splinter” Ds,good by a particular matrix

μs whose value f(μs) can be estimated easily. Roughly

speaking, the idea is to show that for each ρ ∈ Ds,good

there is a path from ρ to μs along which the function value

increases monotonically. Although this path may leave the

Birkhoff polytope temporarily, the target matrices μs are in

Dgood.

The matrices μs are “candidate local maxima” of a

particularly simple form. The top-left s×s block of μs is of

the form (1−α)id+β1. The bottom (k−s)×(k−s) square

is ζ1. The off-diagonal s×(k−s) and (k−s)×s blocks are

of the form γ · 1. Clearly, α, β, γ, ζ must be chosen so that

μs is doubly-stochastic, i.e., 1 − α + s · β + (k − s)γ =
s · γ + (k − s)ζ = 1, and, of course, α, β, γ, ζ ≥ 0.

Furthermore, to ensure that μs ∈ Ds,good we need that

α − β ≤ κ. We let μs be the matrix that maximizes f
subject to these constraints. The values f(μs) turn out to

be negative for intermediate
√
k ≤ s < k, and the overall

maximum lies at s = 0 (see Figure 1 for an illustration).

Note that μ0 = ρ̄.

In fact, the parameters β, γ in the definition of μs tend

to 0 rapidly as k gets larger. In effect, μs is close to the

doubly-stochastic matrix μ̂s whose top-left s × s block is

the identity matrix and whose bottom-right (k−s)× (k−s)
block is the flat matrix (k − s)−11. This matrix μ̂s is the

barycenter of the k − s-dimensional face of D defined by

the equations ρii = 1 for i = 1, . . . , s.

We are going to demonstrate the maximization of f(ρ)
over Ds,good in two cases. First, for s = 0, where the overall

maximum is attained; this turns out to be the simplest case

technically.

Proposition 5.2: For any stochastic matrix ρ such that

maxi,j ρij ≤ 0.51 we have f(ρ) ≤ f(ρ̄).

In addition, we deal with one somewhat more intricate case.

Proposition 5.3: Suppose that 1 ≤ s ≤ k0.99. Then for

any s-stable ρ ∈ Dgood we have f(ρ) < f(ρ̄).

Proof of Proposition 5.2. We are going to argue that we can

increase the function value by making the rows “flatter”,

eventually replacing each of them by the vector with all

entries equal to 1/k. Indeed, suppose that row i is not

“flat”, i.e., there exist j, l such that ρij < ρil. A straight

computation shows that in the extreme case ρij = 0 we

have f(ρ) < f((1 − ε)ρ + ερ̄) for a small enough ε > 0.

In other words, the maximum of f does not occur on the

boundary. Hence, we may assume that ρij > 0. If we

increase ρij slightly at the expense of ρil, what will happen

to the function value?

Lemma 5.4: Suppose that ρ is stochastic and that

0 < ρij = min
q∈[k]

ρiq < ρil ≤ 0.49.

Then
∂f

∂ρij
− ∂f

∂ρil
> 0.

Proof: A direct computation shows that

∂f

∂ρij
= −1 + ln ρij

k
+

d · ρij
k2 − 2k + ‖ρ‖22

.

Hence,

∂f

∂ρij
− ∂f

∂ρil
=

1

k
ln

(
ρil
ρij

)
+

d · (ρij − ρil)

k2 − 2k + ‖ρ‖22
.

Taking exponentials, we find that

sign

{
∂f

∂ρij
− ∂f

∂ρil

}
= (19)

sign

{
1 +

ρil − ρij
ρij

− exp

(
d · (ρil − ρij)

k − 2 + k−1 ‖ρ‖22

)}

386



(with the convention that sign(z) = ±1 if z is posi-

tive/negative, and sign(0) = 0). Thus, we need to figure

out where the linear function z �→ 1 + z/ρij intersects the

exponential z �→ exp[z · d/(k − 2 + ‖ρ‖22 /k)].
We claim that for 0 < z ≤ 0.49,

1 +
z

ρij
> exp

(
d · z

k − 2 + k−1 ‖ρ‖22

)
. (20)

Indeed, by convexity, the line and the exponential function

intersect in at most one point z∗ > 0, and for 0 < z < z∗

the linear function is greater. Therefore, it suffices to verify

that (20) holds at z = 0.49. On the one hand, because d ≤
2k ln k, we have

exp

(
0.49d

k − 2 + ‖ρ‖22 /k

)
≤ exp

(
0.98k ln k

k − 2

)
≤ k0.99,

provided that k is not too small. On the other hand, because

ρij is the smallest entry in row i and ρ is stochastic, we

have ρij ≤ 1/k and thus 1 + z∗/ρij ≥ 0.49k > k0.99.

Corollary 5.5: Suppose that ρ is stochastic and that

0 < ρij = min
q∈[k]

ρiq < ρil = max
q∈[k]

ρiq ≤ 0.49.

Let ρ̂ be the matrix obtained from ρ by replacing the ith
row by 1

k1. Then f(ρ) < f(ρ̂).

Proof: Let Q be the set of all stochastic matrices

ρ̃ that coincide with ρ outside row i, and that satisfy

maxq∈[k] ρ̃iq ≤ 0.49. Then Q is a compact set and thus f
attains a maximum on Q. Assume for contradiction that the

maximum is attained at ρ itself. Since ρil < 0.49, we clearly

have 0 < z = ρil−ρij ≤ 0.49. Hence, Lemma 5.4 and (19)

show that increasing ρij by a tiny ε > 0 and decreasing ρil
by the same ε yields a stochastic matrix ρ̃ ∈ Q with a strictly

greater function value. Since this argument applies whenever

there are two distinct entries in row i, the maximum of f
on Q is attained strictly at the matrix ρ̂ where all entries in

row i are equal.

Geometrically, the proof of Corollary 5.5 can be viewed

as showing that there is a path from ρ to ρ̂ along which the

function value increases. We use a similar argument to show

Corollary 5.6: Suppose that ρ is stochastic and that

0.49 < ρil = max
q∈[k]

ρiq ≤ 0.51.

Let ρ̂ be the matrix obtained from ρ by replacing the ith
row by 1

k1. Then f(ρ) < f(ρ̂).

Proof: We may assume without loss that i = 1 and

ρ11 ≥ · · · ≥ ρ1k > 0. There are two cases to consider,

depending on the value of ρ12. The first case is that

ρ12 < 0.49. Let ρ̃ be the matrix obtained from ρ by replacing

each of ρ12, . . . , ρ1k by 1−ρ11

k−1 . Using (19) as in the proof

of Corollary 5.5, we find that f(ρ) ≤ f(ρ̃). Furthermore,

direct calculations yield

H(ρ̃)−H(ρ̂) ≤ ln 2− 0.49 ln k

k
,

E(ρ̃)− E(ρ̂) ≤ 0.27 ln k

k
.

In particular, f(ρ) ≤ f(ρ̃) < f(ρ̂). An analogous argument

applies in the case ρ12 ≥ 0.49.

Corollaries 5.5 and 5.6 allow us to “flatten” the rows of

a matrix ρ as in Proposition 5.2 one by one. Ultimately,

this yields the desired bound f(ρ) ≤ f(ρ̄), and thus

Proposition 5.2.

Proof of Proposition 5.3. Somewhat more delicate argu-

ments are necessary to deal with ρ ∈ Ds,good for 1 ≤ s ≤
k − 1. By permuting the rows and columns suitably, we

may assume that ρii ≥ 1 − κ for i = 1, . . . , s and that all

other entries are less than 0.51. Think of the matrix ρ as

consisting of four blocks: the upper-left s × s matrix, the

off-diagonal s × (k − s) and (k − s) × s blocks, and the

bottom-right (k− s)× (k− s) matrix. Roughly speaking, to

estimate f(ρ) we apply local variations arguments combined

with estimates of their contributions to f to each of these

four blocks.

We outline the proof of Proposition 5.3 to demonstrate

this approach. Thus, suppose that ρ ∈ Ds,good for some

1 ≤ s ≤ k0.99. Assume that ρii ≥ 1 − κ for 1 ≤ i ≤ s.

We are going to compare f(ρ) with f(μ̂s), where μ̂s is the

doubly-stochastic matrix whose top-left s × s block is the

identity matrix and whose bottom-right (k− s)× (k− s) is
1

k−s1. A direct calculation yields

f(μ̂s) < f(ρ̄)− 1 + ok(1)

k
. (21)

Local variations arguments akin to those in the proofs of

Lemma 5.4 and Corollaries 5.5–5.6 yield the following

estimate.

Lemma 5.7: Let ρ̂ be the stochastic matrix with entries

ρ̂ij =

{
ρij if i ∈ [k] , j ≤ s,

1
k−s

∑
l>s ρil if i ∈ [k] , j > s.

Then f(ρ) ≤ f(ρ̂).

We are going to compare f(ρ̂) with f(μ̂s). Because ρ is

doubly stochastic, we have

κs ≥
s∑

i=1

∑
j>s

ρ̂ij =
s∑

i=1

∑
j>s

ρij = (22)

=
∑
i>s

s∑
j=1

ρij =
∑
i>s

s∑
j=1

ρ̂ij .

Let

qi =

{
1− ρii for i ∈ [s] ,∑s
j=1 ρ̂ij for i > s.
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Because ρ̂ is a stochastic matrix, we can view

H(ρ̂i) = −
k∑

j=1

ρ̂ij ln ρ̂ij

as the entropy of the probability distribution (ρ̂ij)j∈[k] on

[k]. Since the uniform probability distribution maximizes the

entropy and as ρii ≥ 1− κ for i ∈ [s], we find for i ∈ [s]

H(ρ̂i) ≤− (1− qi) ln(1− qi) + qi ln(k/qi) ≤ (23)

≤ −(1− κ) ln(1− κ) + κ ln(k/κ).

Similar estimates show that for i > s

H(ρ̂i) ≤ (1− qi) ln
k − s

1− qi
+ qi ln(s/qi) + (1− qi) ln(k − s)

≤ −(1− qi) ln(1− qi) + qi ln(s/qi) + ln(k − s).
(24)

Further, because the function z �→ −z ln(z)−(1−z) ln(1−z)
is concave, we obtain from (22) and (24)

1

k

∑
i>s

H(ρ̂i) ≤ k − s

k
ln(k − s)− (1− κs/k) ln(1− κs/k)

+
κs

k
ln(k/κ). (25)

Combining (23) and (25) and simplifying yields

ln k − 1

k

k∑
i,j=1

ρ̂ij ln ρij ≤ ln k +
k − s

k
ln(k − s) + o(1/k).

(26)

Because ρ̂ is stochastic we have ‖ρ̂i‖22 ≤ 1 for i = 1, . . . , s,

and by construction ρ̂ satisfies for every i > s

∑
j>s

ρ̂2ij = (k − s)

(∑
j>s ρij

k − s

)2

≤ 1/(k − s).

Further, as
∑

i>s

∑s
j=1 ρ̂ij ≤ κs by (22), we see that

∑
i>s

s∑
j=1

ρ̂2ij ≤ (κs)2.

Combining these bounds, and the fact that s ≤ k0.99, we

obtain

‖ρ̂‖22 ≤ s+ 1 + (κs)2 ≤ s+ 1 + ln−2 k. (27)

By estimating the derivative of the function

z �→ d

2
ln(1− 2/k + k−2z2),

we obtain from (27)

d

2
ln(1− 2/k + k−2 ‖ρ̂‖22) ≤

≤ d

2
ln(1− 2/k + k−2 ‖μ̂s‖22) + o(1/k). (28)

Finally, combining (21), (26) and (28), we obtain f(ρ) ≤
f(ρ̂) ≤ f(μ̂s) + o(1/k) < f(ρ̄), as desired.
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