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Abstract—We present a series of almost settled inapproximability
results for three fundamental problems. The first in our series
is the subexponential-time inapproximability of the independent
set problem, a question studied in the area of parameterized com-
plexity. The second is the hardness of approximating the bipartite
induced matching problem on bounded-degree bipartite graphs.
The last in our series is the tight hardness of approximating the k-
hypergraph pricing problem, a fundamental problem arising from
the area of algorithmic game theory. In particular, assuming the
Exponential Time Hypothesis, our two main results are:

• For any r larger than some constant, any r-approximation
algorithm for the independent set problem must run in at least
2n

1−ε/r1+ε

time. This nearly matches the upper bound of 2n/r

[23]. It also improves some hardness results in the domain of
parameterized complexity (e.g., [26], [19]).

• For any k larger than some constant, there is no polynomial
time min

{
k1−ε, n1/2−ε

}
-approximation algorithm for the k-

hypergraph pricing problem , where n is the number of vertices
in an input graph. This almost matches the upper bound of
min

{
O(k), Õ(

√
n)

}
(by Balcan and Blum [3] and an algorithm

in this paper).

We note an interesting fact that, in contrast to n1/2−ε hardness
for polynomial-time algorithms, the k-hypergraph pricing prob-
lem admits nδ approximation for any δ > 0 in quasi-polynomial
time. This puts this problem in a rare approximability class in
which approximability thresholds can be improved significantly
by allowing algorithms to run in quasi-polynomial time.

The proofs of our hardness results rely on unexpectedly tight
connections between the three problems. First, we establish a
connection between the first and second problems by proving
a new graph-theoretic property related to an induced matching
number of dispersers. Then, we show that the n1/2−ε hardness
of the last problem follows from nearly tight subexponential time
inapproximability of the first problem, illustrating a rare applica-
tion of the second type of inapproximability result to the first one.
Finally, to prove the subexponential-time inapproximability of the
first problem, we construct a new PCP with several properties;
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it is sparse and has nearly-linear size, large degree, and small
free-bit complexity. Our PCP requires no ground-breaking ideas
but rather a very careful assembly of the existing ingredients in
the PCP literature.

Index Terms—Approximation Algorithms; Subexponential-Time
Algorithms; Algorithmic Pricing

I. INTRODUCTION

This paper presents results of two kinds, lying in the intersec-

tions between approximation algorithms and other subareas of

theoretical computer science. The first kind of our results is

a tight hardness of approximating the k-hypergraph pricing

problem in polynomial time. This problem arose from the

area of algorithmic game theory, and its several variants have

recently received attentions from many researchers (see, e.g.,

[43], [44], [30], [10], [3], [9], [41], [13]). It has, however, re-

sisted previous attempts to improve approximation ratio given

by simple algorithms. Indeed, no sophisticated algorithmic

techniques have been useful in attacking the problem in its

general form. The original motivation of this paper is to show

that those simple algorithms are, in fact, the best one can

do under a reasonable complexity theoretic assumption. In

showing this, we devise a new reduction from another problem

studied in discrete mathematics and networking called the

bipartite induced matching problem. Our reduction, unfortu-

nately, blows up the instance size exponentially, and apparently

this blowup is unavoidable (this claim will be discussed pre-

cisely later). Due to the exponential blowup of our reduction,

showing a tight polynomial-time hardness of approximating

the bipartite induced matching problem is not enough for

settling the complexity of the pricing problem. What we

need is, roughly speaking, the hardness of approximation

result that is tight even for subexponential time approximation

algorithms, i.e., proving the lower bound on the approximation

ratio that any subexponential time algorithms can achieve.

This motivates us to prove the second type of results: hardness
of subexponential-time approximation. The subject of subex-

ponential time approximation and the closely related subject

of fixed-parameter tractable (FPT) approximation have been

recently studied in the area of parameterized complexity (e.g.,

[23], [29], [26], [19]). Our main result of this type is a
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sharp trade-off between the running time and approximation

ratio for the bipartite induced matching problem, and since

our proof crucially relies on the hardness construction for

the independent set problem, we obtain a sharp trade-off for

approximating the independent set problem as a by-product.

The independent set problem is among fundamental problems

studied in both approximation algorithms and FPT literature

(since it is W[1]-hard), and it is of interest to figure out

its subexponential-time approximability. Our trade-off result

immediately answers this question, improves previous results

in [26], [19] and nearly matches the upper bound in [23].

The main contributions of this paper are the nearly tight con-
nections among the aforementioned problems (they are tight

in the sense that any further improvements would immediately

refute the Exponential Time Hypothesis (ETH)), which essen-

tially imply the nearly tight (subexponential time) hardness

of approximation for all of them. Interestingly, our results

also illustrate a rare application of the subexponential-time

inapproximability to the inapproximability of polynomial-time

algorithms. The key ideas of our hardness proofs are simple

and algorithmic even though it requires a non-trivial amount

of work to actually implement them.

Finally, we found a rather bizarre phenomenon of the k-

hypergraph pricing problem (when k is large) in the quasi-

polynomial time regime. While both induced matching, inde-

pendent set and many other natural combinatorial optimization

problems do not admit much better approximation ratios in

quasi-polynomial time (e.g., n1−ε hardness of approximating

the independent set and bipartite induced matching problem

still hold against quasi-polynomial time algorithms), the story

is completely different for the pricing problem: That is, the

pricing problem admits nδ approximation in quasi-polynomial

time for any δ > 0, even though it is n1/2−ε hard against

polynomial-time approximation algorithms. This contrast puts

the pricing problem in a rare approximability class in which

polynomial time and quasi-polynomial time algorithms’ per-

formances are significantly different.

k-Hypergraph Pricing: In the unlimited supply k-hypergraph
vertex pricing problem [3], [10], we are given a weighted n-

vertex m-edge k-hypergraph (each hyperedge contains at most

k vertices) modeling the situation where consumers (repre-

sented by hyperedges) with budgets (represented by weights of

hyperedges) have their eyes on at most k products (represented

by vertices). The goal is to find a price assignment that

maximizes the revenue. In particular, there are two variants

of this problem with different consumers’ buying rules. In the

unit-demand pricing problem (UDP), we assume that each

consumer (represented by a hyperedge e) will buy the cheapest

vertex of her interest if she can afford it. In particular, for a

given hypergraph H with edge weight w : E(H) → R≥0

(where R≥0 is the set of non-negative reals), our goal is

to find a price function p : V (H) → R≥0 to maxi-

mize profitH,w(p) =
∑

e∈E(H) paye(p) where paye(p) =
minv∈e p(v) if minv∈e p(v) ≤ w(e) and 0 otherwise. The

other variation is the single-minded pricing problem (SMP),

where we assume that each consumer will buy all vertices if

she can afford to; otherwise, she will buy nothing. Thus, the

goal is to maximize profitH,w(p) =
∑

e∈E(H) paye(p) where

paye(p) =
∑

v∈e p(v) if
∑

v∈e p(v) ≤ w(e) and 0 otherwise.

The pricing problem naturally arose in the area of algorithmic

game theory and has important connections to algorithmic

mechanism design (e.g., [4], [18]). Its general version (where k
could be anything) was introduced by Rusmevichientong et al.

[43], [44], and the k-hypergraph version (where k is thought of

as some constant) was first considered by Balcan and Blum

[3]. (The special case of k = 2 has also received a lot of

attention [3], [14], [35], [41].) There will be two parameters

of interest to us, i.e., n and k. Its current approximation

upper bound is O(k) [10], [3] while its lower bound is

Ω(min(k1/2−ε, nε)) [9], [13], [15].

Bipartite Induced Matching: Informally, an induced matching

of an undirected unweighted graph G is a matching M of G

such that no two edges in M are joined by an edge in G. To be

precise, let G = (V,E) be any undirected unweighted graph.

An induced matching of G is the set of edgesM⊆ E(G) such

thatM is a matching and for any distinct edges uu′, vv′ ∈M,

G has none of the edges in {uv, uv′, u′v, u′v′}. The induced
matching number of G, denoted by im(G), is the cardinality

of the maximum-cardinality induced matching of G. Our goal

is to compute im(G) of a bipartite graph G.

The notion of induced matching has naturally arisen in discrete

mathematics and computer science. It is, for example, studied

as the “risk-free” marriage problem in [47] and is a subtask of

finding a strong edge coloring. This problem and its variations

also have connections to various problems such as maximum

feasible subsystem [25], [15], maximum expanding sequence

[11], storylines extraction [36] and network scheduling, gath-

ering and testing (e.g., [27], [47], [34], [39], [7]). In general

graphs, the problem was shown to be NP-complete in [47],

[12] and was later shown in [20] to be hard to approximate

to within a factor of n1−ε and d1−ε unless P = NP, where

n is the number of vertices and d is the maximum degree

of a graph. In bipartite graphs, assuming P �= NP, the

induced matching problem was shown to be n1/3−ε-hard

to approximate in [25]. Recently, we [15] showed its tight

hardness of n1−ε (assuming P �= NP) and a hardness of d1/2−ε

on d-degree-bounded bipartite graphs. This hardness leads to

tight hardness of several other problems. In this paper, we

improve the previous hardness to a tight d1−ε hardness, as

well as extending it to a tight approximability/running time

trade-off for subexponential time algorithms.

Independent Set: Given a graph G = (V,E), a set of vertices

S ⊆ V is independent (or stable) in G if and only if G
has no edge joining any pair of vertices x, y ∈ S. In the

independent set problem, we are given an undirected graph

G = (V,E), and the goal is to find an independent set S of G
with maximum size. Hardness results for the independent set
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problem heavily rely on developments in the PCP literature.

The connection between the independent set problem and the

probabilistic checkable proof system (PCP) was first discov-

ered by Feige et al. [28] who showed that the independent

set problem is hard to approximate to within a factor of

2log
1−ε n, for any ε > 0, unless NP ⊆ DTIME(npolylog(n)).

The inapproximability result has been improved by Arora

and Safra [2] and Arora et al. [1], leading to a polynomial

hardness of the problem [1]. Later, Bellare and Sudan [6]

introduced the notion of the free-bit complexity of a PCP

and showed that, given a PCP with logarithmic randomness

and free-bit complexity f , the independent set problem is

hard to approximate to within a factor of n1/(1+f)−ε, for

all ε > 0, unless NP = ZPP. There, Bellare and Sudan [6]

constructed a PCP with free-bit complexity f = 3+ δ, for all

δ > 0, thus proving the hardness of n1/4−ε for the independent

set problem. The result has been subsequently improved by

Bellare et al. in [5] who gave a construction of a PCP with

free-bit complexity f = 2+δ. Finally, Håstad [31] constructed

a PCP with arbitrary small free-bit complexity f > 0, thus

showing the tight hardness (up to the lower order term) of

n1−ε, for all ε > 0, for the independent set problem. A

PCP with optimal free-bit complexity was first constructed by

Samorodnitsky and Trevisan [45]. The PCP of Samorodnitsky

and Trevisan in [45] has imperfect completeness, and this has

been improved by Håstad and Khot [32] to a PCP that has

both perfect completeness and optimal free-bit complexity.

Recently, Moshkovitz and Raz [40] gave a construction of a

projective 2-query PCP with nearly-linear size, which can be

combined with the result of Samorodnitsky and Trevisan [45]

to obtain a PCP with nearly-linear size and optimal free-

bit complexity. The soundness of a PCP with optimal free-

bit complexity was improved in a very recent breakthrough

result of Chan [17]. The complexity assumption of early tight

hardness results of the independent set problem (e.g., [31]) is

NP �= ZPP because of a random process in the constructions.

This process was derandomized in [49] by Zuckerman, thus

proving tight hardness under the P �= NP assumption.

Our Results: We present several tight hardness results both

for polynomial and subexponential-time algorithms, as sum-

marized in Table I. Most our results rely on a plausible com-

plexity theoretic assumption stronger than P �= NP, namely,

Exponential Time Hypothesis (ETH), which, roughly speaking,

states that SAT cannot be decided by any subexponential time

algorithm (see Section II for detail).

Our first result, which is our original motivation, is the tight

hardness of approximating the k-hypergraph pricing problems

in polynomial time. These problems (both UDP and SMP) are

known to be O(k)-approximable [3], [10] and the hardness

of Ω(k1/2−ε) and Ω(nδ), for some constant δ > 0, are

known based on the assumption about hardness of refuting

a random 3SAT formula [9]. A series of recent results leads

to a disagreement on the right approximability thresholds of

the problem. On one hand, the current best approximation

algorithm is so simple that one is tempted to believe that

a more sophisticated idea would immediately give an im-

provement on the approximation ratio. On the other hand, no

algorithmic approach could go beyond the barrier of O(k) so

far, thus leading to a belief that Ω(k1−ε) and Ω(n1−ε) hardness

should hold. In this paper, we settle the approximability status

of this problem. Somewhat surprisingly, the right hardness

threshold of this problem turns out to lie somewhere between

the two previously believed numbers: the believed hardness of

Ω(k1−ε) was correct but only for k = O(n1/2).

Theorem I.1. The k-hypergraph pricing problems (both UDP
and SMP) are Ω(min(k1−ε, n1/2−ε)) hard to approximate in
polynomial time unless the ETH is false1. Moreover, they are
Õ(min(k, (n log n)1/2))-approximable in polynomial time.

The main ingredient in proving Theorem I.1 is proving tight

hardness thresholds of subexponential-time algorithms for the

independent set and the induced matching problems in d-

degree-bounded bipartite graphs2. Besides playing a crucial

role in proving Theorem I.1, these results are also of an inde-

pendent interest. Our first subexponential-time hardness result

is for the independent set problem. While the polynomial-

time hardness of this problem has been almost settled, the

question whether one can do better in subexponential time

has only been recently raised in the parameterized complexity

community. Cygan et al. [23] and Bourgeois et al. [8] in-

dependently observed that better approximation ratios could

be achieved if subexponential running time is allowed. In

particular, they showed that an r approximation factor can

be obtained in O(2n/r poly(n)) time. Recently, Chitnis et

al. [19] showed that, assuming the ETH, an r-approximation

algorithm requires Ω(2n
δ/r) time, for some constant δ > 03.

Our hardness of the independent set problem improves upon

the lower bound of Chitnis et al. and essentially matches the

upper bounds of Cygan et al. and Bourgeois et al.

Theorem I.2. Any r approximation algorithm for the inde-
pendent set problem must run in time 2n

1−ε/r1+ε

unless the
ETH is false.

An important immediate step in using Theorem I.2 to prove

Theorem I.1 is proving the subexponential-time hardness of

the induced matching problem on d-degree-bounded bipartite

graphs. The polynomial-time hardness of n1−ε for this prob-

lem has only been resolved recently by the authors of this

paper in [15], where we also showed a hardness of d1/2−ε

when the input graph is bipartite of degree at most d. In this

paper, we improve this bound to d1−ε and extend the validity

1The k1−ε hardness only requires NP �= ZPP when k is constant.
2We note that, indeed, the connection to the pricing problem is via a closely

related problem, called the semi-induced matching problem, whose hardness
follows from the same construction as that of the induced matching problem;
see Section II.

3We note that their real statement is that for any constant ε > 0, there
is a constant F > 0 depending on ε such that CLIQUE (or equivalently the

independent set problem) does not have an nε-approximation in O(2OPTF/ε ·
poly(n)) time. Their result can be translated into the result we state here.
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Problem Upper Lower
k-hypergraph pricing Previous O(k) [3], [10] Ω(k1/2−ε) and Ω(nδ) [9], [13], [15]

(polynomial time) This paper O(min(k, (n logn)1/2)) Ω(min(k1−ε, n1/2−ε))
k-hypergraph pricing Previous - -

(quasi-polynomial time) This paper nδ-approx. algo in nδ-approx. algo requires

O(2(logm)
1−δ
δ log logm poly(n,m))-time Ω(2(logm)

1−δ−ε
δ ) time

Independent set Previous O(2n/r poly(n)) time [23] Ω(2n
δ/r) time [19]

(subexpo.-time r-approx. algo) This paper - Ω(2n
1−ε/r1+ε

) time

Induced matching on Previous O(d) (trivial) Ω(d1/2−ε) [15]
d-deg.-bounded bip. graphs This paper - Ω(d1−ε)
(polynomial time)
Induced matching on bip. graphs Previous - -

(subexpo.-time r-approx. algo) This paper O(2n/r poly(n)) time Ω(2n
1−ε/r1+ε

) time

TABLE I
SUMMARY OF RESULTS.

scope of the results to subexponential-time algorithms. The

latter result is crucial for proving Theorem I.1.

Theorem I.3. Let ε > 0 be any constant. For any d ≥ c,
for some constant c (depending on ε), there is no d1−ε

approximation algorithm for the induced matching problem
in d-degree-bounded bipartite graphs unless NP = ZPP.
Moreover, any r approximation algorithm for the bipartite
induced matching problem must run in time 2n

1−ε/r1+ε

unless
the ETH is false.

Finally, we note an interesting fact that, while the polynomial-

time hardness of the k-hypergraph pricing problem follows

from the hardness of the independent set and the bipartite

induced matching problems, its subexponential time approx-

imability is quite different from those of the other two prob-

lems. In particular, if we want to get an approximation ratio

of nε for some constant ε > 0. Theorems I.2 and I.3 imply

that we still need subexponential time to achieve such an

approximation ratio. In contrast, we show that, for the case

of the k-hypergraph pricing problem, such an approximation

ratio can be achieved in quasi-polynomial time.

Theorem I.4. For the k-hypergraph pricing problem and
any constant δ > 0, there is an algorithm that gives
an approximation ratio of O(nδ) and runs in time

O(2(logm)
1−δ
δ log logm poly(n,m)).

We also prove that the above upper bound is tight.

Techniques: The key ingredients in our proofs are tight con-

nections between 3SAT, independent set, induced matching,

and pricing problems. Our reductions are fairly tight in the

sense that their improvement would violate the ETH. They

are outlined in Figure 1 Among several techniques we have to

use, the most important new idea is a simple new property of
dispersers. We show that an operation called bipartite double
cover will convert a disperser G to another bipartite graph H
whose induced matching number is essentially the same as

the size of a maximum independent set of G. This property

crucially relies on the fact that G is a disperser. We note that

the disperser that we study here is not new – it has been around

for at least two decades (e.g., [21], [46]) – but the property

that we prove is entirely new.

Our hardness proof of the induced matching problem in d-

degree-bounded graphs is inspired by the (implicit) reduction

of Briest [9] and the previous (explicit) reduction of ours [15].

These previous reductions are not tight in two aspects: (i)

they do not result in a tight d1−ε hardness for the bipartite

induced matching problem (Briest’s reduction in [9] only gives

a hardness of dδ for some δ > 0, and our previous reduction

in [15] only gives a hardness of d1/2−ε), and (ii) they do

not give any hardness for subexponential-time approximation

algorithms. In this paper, we make use of additional tools

to improve these two aspects to get a tight reduction. The

first tool is the new property of the disperser as we have

discussed. The second tool is a new PCP which results from

carefully combining known techniques and ideas from the PCP

literature.

Our PCP requires an intricate combination of many known

properties: That is, it must be sparse, as well as, having nearly-

linear size, large degree, and small free-bit complexity. We

explain some of the required properties here. The sparsity and

the size of the PCP are required in order to boost hardness of

the k-hypergraph pricing problem to n1/2−ε (without these, we

would not go beyond nδ for some small δ). The large degree of

the PCP is needed to ensure that our randomized construction

is successful with high probability. Finally, the small free-

bit complexity is needed to get the d1−ε hardness for the

bipartite induced matching and the independent set problems

in d-degree-bounded graphs; this is the same idea as those

used in the literature of proving hardness of the independent

set problem.

Our proof of the hardness of the k-hypergraph pricing problem

from the hardness of the bipartite induced matching problem

is inspired by the previous proofs in [11], [13]. Both previous

proofs require a hardness of some special cases of the bipartite

induced matching problem (e.g., [15] requires that the input

instance is a result of a certain graph product) in order to derive

373



SAT CSP
Deg-Bounded

Indep. Set
Deg-Bounded Bip.
Induced Mathching

k-Hypergraph
Pricing

PCP
+ amplification

+ sparsification

(Section III)

FGLSS +
Disperser
Replacement Disperser Lem. 2O(Δ) blowup

(Section V)

(Section IV)

Fig. 1. Hardness proof outline.

the hardness of the k-hypergraph pricing problem. In this

paper, we provide insights that lead to a reduction that simply

exploits the fact that the input graph has bounded degree,

showing a clearer connection between the two problems.

II. PRELIMINARIES

We use standard graph terminologies as in [24]. Denote any

graph by G = (V,E). When we consider more than one graph,

notations V (G) and E(G) are used for vertices and edges of

G, respectively. A set of vertices S ⊆ V is independent (or

stable) in G if and only if G has no edge joining a pair of

vertices u, v ∈ V . A set of edges M ⊆ E is a matching in G
if and only if no two edges of M share an end-vertex, and a

matching M is an induced matching in G is the subgraph of

G induced by M is exactly M .

Semi-Induced Matching: Given a permutation (a.k.a, a total
order) σ of V , a set of edges M ⊆ E is a σ-semi-induced
matching in G if and only if, for every pair of edges uv, ab ∈
M such that σ(u) < σ(a), G has none of the edges ua, ub.
Given any graph G and a total order σ, we use the notation

simσ(G) to denote the size of a maximum σ-semi-induced

matching in G, and let sim(G) = maxσ simσ(G). Notice that

for any σ, if M is an induced matching in G, then M is also

a σ-semi-induced matching in G, so we must have im(G) ≤
simσ(G) ≤ sim(G). In the semi-induced matching problem,

our goal is to compute sim(G).

Our hardness proof of the bipartite induced matching problem

will, in fact, show a stronger property than just bounding

the size of a maximum induced matching. That is, in the

completeness case, the reduction guarantees that im(G) ≥ c
while in the soundness case, it gives sim(G) ≤ s (where s and

c are soundness and completeness parameters, respectively).

Notice that sim(G) ≤ s implies im(G) ≤ s, so this stronger

property implies the (c/s)-hardness of approximating the

bipartite induced matching problem as a consequence.

The Pricing Problems: In an equivalent formulation of the k-

hypergraph pricing problem, the pricing instance is given by

two sets (C, I) where C and I are the sets of consumers and

items, respectively. Each consumer c ∈ C is associated with

a budget Bc and item set Sc ⊆ I, |Sc| ≤ k. Notice that this

formulation is equivalent to the hypergraph formulation, i.e.,

each vertex corresponds to an item and each edge corresponds

to a consumer, and the additional constraint |Sc| ≤ k ensures

that the size of each hyperedge is at most k. We will be mostly

using this formulation.

Constraint Satisfaction Problems: One of the most fundamen-

tal problems in theoretical computer science is k-SAT, where

we are given a CNF formula ϕ, and the goal is to decide

whether there is an assignment to boolean variables of ϕ that

satisfies all the formula. In the maximization version of k-SAT,

the goal is to find an assignment that maximizes the number

of clauses of ϕ satisfied.

The k-constraints satisfaction problem (k-CSP) is a general-

ization of k-SAT, in which each clause is a boolean function

Πj on k variables. The goal of k-CSP is to find an assignment

to variables that satisfies as many clauses as possible. That is,

the goal is to find an assignment f such that Πj(fj) = 1 for all

clause Πj , where fj is a partial assignment restricted to only

variables that appear in Πj . We use the term assignment of a
clause Πj to mean a partial assignment restricted to variables

in Πj .

Hypothesis II.1 (Exponential-Time Hypothesis (ETH)). For
any integer k ≥ 3, there is a constant 0 < q0(k) < 1 such that
there is no 2qN time algorithm, for all q < q0(k), that solves
k-SAT where N is the size of the instance. In particular, there
is no 2o(N) time algorithm that solves 3-SAT.

The ETH was originally stated in terms of the number of

variables. Impagliazzo, Paturi and Zane [33] showed that the

statement is equivalent for all the parameters, i.e., N in the

statement can be the number of variables, the number of

clauses or the size of the instance. For more discussion related

to the ETH, we refer readers to a comprehensive survey by

Lokshtanov et al. [37] and references therein.

III. NEARLY-LINEAR SIZE SPARSE PCP WITH SMALL

FREE-BIT COMPLEXITY AND LARGE DEGREE

We construct the following CSP. Its proof is provided in the

full version.

Theorem III.1 (Nearly-linear size sparse PCP with small

free-bit complexity and large degree). Let k, t be parameters
and ε = 1/k. Also, let δ > 0 be any parameter. There is a
randomized polynomial-time algorithm that transforms a 3SAT
formula of size N to a (tq)-CSP formula ϕ, where q = k2+2k,
that satisfies the following properties:

• (Small Number of Variables and Clauses) The number of
variables is at most qN1+ε, and the number of clauses is
M = 100q2t(k

2+1)N1+ε+δ .
• (Big Gap between Completeness and Soundness) The value
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of the YES-INSTANCE is at least c = 1/2t+1, and the value
of NO-INSTANCE is s = 2−t(k2+2).
• (Free-Bit Complexity) For each clause in ϕ, the number of
satisfying assignments for such clause is w = 22kt. Moreover,
for each variable xj that appears in a clause, the number
of satisfying assignments for which xj = 0 is equal to the
number of satisfying assignments for which xj = 1.
• (Large Degree) For each variable xj , the total number of
clauses in which xj appears is Mj ≥ N δ2t(k

2+1).

IV. TIGHT HARDNESS OF SEMI-INDUCED MATCHING

Here we prove the (almost) tight hardness of the induced

matching problem on a Δ-degree bounded bipartite graph.

Theorem IV.1 (Hardness of Δ-Degree Bounded Bipartite

Semi-induced Matching). Let ε > 0 be any constant and t > 0
be a positive integer. There is a randomized algorithm that
transforms a SAT formula ϕ of input size N into a Δ-degree
bounded bipartite graph, where Δ = 2t(

1
ε2

+O( 1
ε )) such that:

(YES-INSTANCE:) ϕ is satisfiable =⇒ im(G) ≥ |V (G)|
Δε .

(NO-INSTANCE:) ϕ is not satisfiable =⇒ sim(G) ≤ |V (G)|
Δ1−ε .

The construction size is |V (G)| ≤ N1+εΔ1+ε, and the run-
ning time is poly(N,Δ). Also, as long as t ≤ 5ε2 logN , the
reduction is guaranteed to be successful with high probability.

Theorem IV.2 (Hardness of d-Degree-Bounded Independent

Set). Let ε > 0 be any sufficiently small constant and t > 0
be a positive integer. There is a randomized algorithm that
transforms a SAT formula ϕ on input of size N into a d-
degree-bounded graph G, where d = 2t(

1
ε2

+O( 1
ε )) such that:

(YES-INSTANCE:) ϕ is satisfiable =⇒ α(G) ≥ |V (G)|
dε .

(NO-INSTANCE:) ϕ is not satisfiable =⇒ α(G) ≤ |V (G)|
d1−ε .

The construction size is |V (G)| = N1+εd1+ε, and the running
time is poly(N, d). Also, as long as t ≤ 5ε2 logN , the
reduction is guaranteed to be successful with high probability.

The results in Theorems I.2 and I.3 are obtained as a by-

product of Theorems IV.1 and IV.2.

The Reduction Our reduction is as follows. Take an instance

ϕ of (qt)-CSP as in Theorem III.1 that has N variables and

M clauses.

The FGLSS Graph Ĝ with Disperser Replacement: First, we

construct from ϕ a graph G̃ by the FGLSS construction, and

then the graph G̃ will be transformed to graph Ĝ by the

disperser replacement step. For each clause ϕj of ϕ, for each

possible satisfying assignment C of ϕj , we create in G̃ a vertex

v(j, C) representing the fact that “ϕj is satisfied by assignment

C”. Then we create an edge v(j, C)v(j′, C ′) ∈ E(G̃) if there

is a conflict between partial assignments C and C ′, i.e., there

is a variable xi appearing in clauses ϕj and ϕj′ such that

C assigns xi = 0 whereas C ′ assigns xi = 1. So, the total

number of vertices is |V (G̃)| = w · M . The independence

number of a graph G̃ corresponds to the number of clauses

of ϕ that can be satisfied. In particular, we can choose at

most one vertex from each clause ϕj (otherwise, we would

have a conflict between v(j, C) and v(j, C ′)), and we can

choose two vertices v(j, C), v(j′, C ′) ∈ V (G̃) if and only if

the assignment C and C ′ have no conflict between variables.

Thus, the number of satisfiable clauses of ϕ is the same as the

independence number α(G̃). Hence, in the YES-INSTANCE,

we have α(G̃) ≥ c · M , and in NO-INSTANCE, we have

α(G̃) ≤ s ·M . This gives a hard instance of the independent

set problem, but the degree of G̃ can be very high.

Next, we reduce the degree of G̃ via the disperser replacement

step as in [48]. Consider an additional property of G̃. For

each variable xi in ϕ, let Oi and Zi denote the set of vertices

v(j, C) corresponding to the (partial) assignments for which

xi = 1 and xi = 0, respectively. It can be deduced from

Theorem III.1 that |Oi| = |Zi| = Mi/2 ≥ 2t(k
2+1)N δ , for

some constant δ > 0.

There is a conflict between every vertex of Oi and Zi. This

forms a complete bipartite subgraph G̃i = (Oi, Zi, Ẽi) ⊆ G̃,

where Ẽi = {uw : u ∈ Oi, w ∈ Zi}. If we replace each

subgraph G̃i of G by a d-degree bounded bipartite graph, the

degree of vertices in the resulting graph reduces to qtd. To

see this, we may think of each vertex u of G̃ as a vector

with qt coordinates (since it corresponds to an assignment

to some clause ϕj which has qt related variables). For each

coordinate � of u corresponding to a variable xi, there are

d neighbors of u having a conflict at coordinate � (since the

conflict forming in each coordinate are edges in G̃i, and we

replace G̃i by a d-degree bounded bipartite graph). Thus, each

vertex u has at most qtd neighbors. However, as we wish to

preserve the independence number of G, i.e., we want α(Ĝ) ≈
α(G̃), we require such a d-degree bounded graph to have some

additional properties. To be precise, we construct the graph Ĝ
by replacing each subgraph G̃i of G̃ by a (d, γ)-disperser
Hi = (Oi, Zi, Ei), defined below.

Definition IV.3 (Disperser). A (d, γ)-disperser H =
(U ′,W ′, E′) is a d-degree bounded bipartite graph on n′ =
|U ′| = |W ′| vertices such that, for all X ⊆ U ′, Y ⊆ W ′, if
|X|, |Y | ≥ γn′, then there is an edge xy ∈ E′ joining a pair
of vertices x ∈ X and y ∈ Y .

Intuitively, the important property of the disperser Hi is that

any independent set S in Hi cannot contain a large number

of vertices from both Oi and Zi; otherwise, we would have

an edge joining two vertices in S. All these ideas of using

disperser to “sparsify” the graphs were used by Trevisan [48]

to prove the hardness of the bounded degree independent set

problem. The key observation that makes this construction

work for our problem is that a similar property that holds

for the size of a maximum independent set also holds for the

size of a maximum σ-semi-induced matching in B[Hi], i.e.,

B[Hi] cannot contain a large σ-semi-induced matching, for

any permutation σ.
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Now, we proceed to make the intuition above precise. A

(d, γ)-disperser can be constructed by a randomized algorithm.

If d is constant, we may construct a (d, γ)-disperser by a

deterministic algorithm in [42], which has a running time

exponential in terms of d.

Lemma IV.4. For all γ > 0 and sufficiently large n, there
is a randomized algorithm that with success probability 1 −
e−nγ(log(1/γ)−2), outputs a d-regular bipartite graph H =
(O,Z,E), |O| = |Z| = n, where d = (3/γ) log(1/γ) such
that, for all X ⊆ Z, Y ⊆ O, if |X|, |Y | ≥ γn, there is an
edge (x, y) ∈ E joining some vertices x ∈ X and y ∈ Y .

The condition that ni is sufficiently large is satisfied because

|Oi| = |Zi| ≥ Mi ≥ N δ2tk
2

for all i (since each variable xi

appears in Mi clauses, and for each such clause, there is at

least one accepting configuration for which xi = 0 and one

for which xi = 1.) Also, since the success probability in

constructing each disperser is high (i.e., at least 2N
δ

), we can

guarantee that all the dispersers are successfully constructed

with high probability. By setting appropriate value of γ (which

we will do later) and following analysis in [48], we have

the following completeness and soundness parameters with

high probability: (YES-INSTANCE:) α(Ĝ) ≥ 2−tM and (NO-

INSTANCE:) α(Ĝ) ≤ 2−t(k2+2)M + γqt(wM).

The Final Graph G: We construct the final graph G by

transforming Ĝ into a bipartite graph as follows: first create

two copies V ′ and V ′′ of vertices of Ĝ, i.e., each vertex

u ∈ V (G) has two corresponding copies u′ ∈ V ′ and

u′′ ∈ V ′′; then create an edge joining two vertices u′ ∈ V ′

and w′′ ∈ V ′′ if and only if there is an edge uw ∈ E(Ĝ)
or u = w. Thus, G = B[Ĝ] = (U ∪ W,E1 ∪ E2) where

U = {(u, 1) : u ∈ V (Ĝ)}, W = {(w, 2) : w ∈ V (Ĝ)},
E1 = {(u, 1)(u, 2) : u ∈ V (Ĝ)}, and E2 = {(u, 1)(w, 2) :
u,w ∈ V (Ĝ) ∧ (uw ∈ E(Ĝ))}.
The graph G is a (2qtd + 1)-degree bounded bipartite graph

on 2|V (Ĝ)| vertices. Edges in G of the form (u, 1)(u, 2) cor-

respond to a vertex in Ĝ. Thus, a (semi) induced matching in

G whose edges are in this form corresponds to an independent

set in Ĝ. Although this is not the case for every (semi) induced

matching M in G, we will show that we can extract a (semi)

induced matching M′ from M in such a way that M′ maps

to an independent set in G, and |M′| ≥ Ω(|M|).
Analysis First, we prove the properties of a disperser.

Lemma IV.5 (Disperser Lemma). Every (d, γ)-disperser H =
(O,Z,E) on 2n vertices has the following properties: (1) For
any independent set S of H , min{|S ∩ O|, |S ∩ Z|} ≤ γn.
(2) For any permutation (ordering) σ of the vertices of H , the
graph B[H] = (U,W,F ) has simσ(B[H]) ≤ 4γn.

Proof: The first property follows from the definition of

the (d, γ)-disperser H . That is, letting X = S ∩ O and Y =
S ∩ Z, if |X|, |Y | > γn, then we must have an edge xy ∈
E(H) joining some vertex x ∈ X to some vertex y ∈ Y ,

contradicting the fact that S is an independent set in H .

Next, we prove the second property. Consider the set of edges

M that form a σ-semi-induced matching in B[G]. We claim

that |M| ≤ 4γn. By way of contradiction, assume that |M| >
4γn. Observe that, for each edge (u, 1)(v, 2) ∈ M, either

(1) u ∈ O and v ∈ Z or (2) v ∈ O and u ∈ Z. Since the two

cases are symmetric, we analyze only the set of edges of the

first case, denoted by M̂. Also, we assume wlog that at least

half of the edges of M are in M̂; thus, |M̂| ≥ |M|/2 > 2γn.

Denote by V (M̂) the set of vertices that are adjacent to some

edges in M̂. Then we get a contradiction from the next claim.

Claim IV.6. There are two subsets X ⊆ U ∩ V (M̂) : |X| =
γn and Y = W ∩ V (M̂) : |Y | ≥ γn such that σ(x) < σ(y),
for any x ∈ X and y ∈ V (M̂) \ X . Moreover, there is no
M̂-edge between vertices in X and Y .

The second property follows from Claim IV.6: If there were

such two sets X,Y , then we can define the “projection” of X
and Y onto the graph H by X ′ = {u ∈ V (H) : (u, 1) ∈ X}
and Y ′ = {v ∈ V (H) : (v, 2) ∈ Y }. So, X ′ ⊆ O and Y ′ ⊆ Z

(due to the definition of M̂). From the property of disperser,

there must be an edge in E(H) joining some x ∈ X ′ and

y ∈ Y ′. This implies there is an edge (x, 1)(y, 2) ∈ E(B[H])
where x ∈ X and y ∈ Y , and there are edges (x, 1)(x′, 2) ∈
M̂ and (y′, 1)(y, 2) ∈ M̂, contradicting the fact that M is σ-

semi-induced matching. To finish, we prove Claim IV.6 below.

Recall that we have the ordering σ that is defined on the

vertices of B[H], not the vertices of H . We construct X and

Y as follows. Order vertices in U ∩ V (M̂) according to the

ordering σ and define X to be the first γn vertices according to

this ordering. So, we have obtained X ⊆ U ∩V (M̂) with the

property that for any x ∈ X and y ∈ V (M̂)\X , σ(x) < σ(y).

Now, we define Y ⊆W ∩V (M̂) as the set of vertices that are

not matched by M̂ with any vertices in X . Since |X| = γn,

the number of vertices in W ∩V (M̂) that are matched by M̂
is only γn, so we can choose arbitrary γn vertices that are

not matched as our set Y .

As a corollary of Lemma IV.5, we relate the independent

number the FGLSS graph G̃ to the final graph G.

Corollary IV.7. Let G̃ and G be the graphs constructed as
above. Then, for any permutation (ordering) σ of vertices of
G, α(Ĝ) ≤ simσ(G) ≤ α(Ĝ) + 4γ|V (Ĝ)|

Proof: Recall that E(G) = E1 ∪ E2. To prove the left-

hand-side, consider the set of edges E1. Observe that edges of

E1 = {(v, 1)(v, 2) : u ∈ V (Ĝ)} correspond to vertices of Ĝ as

Ĝ and Ĝ share the same vertex set. Let S be an independent set

in Ĝ. We claim that the set ES = {(u, 1)(u, 2) : u ∈ S} must

be an induced matching in G, and this would immediately

imply the first inequality: Assume that there was an edge

(u, 1)(v, 2) ∈ E(G) for some (u, 1)(u, 2), (v, 1)(v, 2) ∈ ES .

Then we must have u, v ∈ S and uv ∈ E(Ĝ) ⊆ E(Ĝ). This
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contradicts the fact that S is an independent set.

To prove the right-hand-side, let M be a σ-semi-induced

matching in G. We decompose M into M = M1 ∪ M2.

By an argument similar to the previous one, we clearly have

|M1| ≤ α(Ĝ): From M1, we define a set S ⊆ V (G̃) by

S = {u ∈ V (G̃) : (u, 1)(u, 2) ∈ M1}, and S must be an

independent set in Ĝ; otherwise, if uv ∈ E(G) for u, v ∈ S,

then we would have (u, 1)(v, 2), (v, 1)(u, 2) ∈ E(G), contra-

dicting to the fact that M1 is a σ-semi-induced matching.

It suffices to show that |M2| ≤ 4γ|V (Ĝ)|. So, we partition

M2 into M2 =
⋃N

j=1Mj
2 where Mj

2 = {(u, 1)(v, 2) ∈
M2, uv ∈ E(Hj)} (since Ĝ is the union of edges of subgraphs

Hj). Each set Mj
2 must be a σj-induced matching for the

ordering σj obtained by projecting σ onto the vertices of

B[Hj ]. Hence, Lemma IV.5 implies |Mj
2| ≤ 4γnj and thus

|M2| ≤
∑N

j=1 |Mj
2| ≤

∑N
j=1 4γnj ≤ 4γqt|V (Ĝ)|.

The last inequality follows because of basic counting argu-

ments. Each vertex belongs to exactly qt subgraphs Hj , so

summing over all j, we get
∑N

j=1 nj = qt|V (Ĝ)|.
Completeness and Soundness: The completeness and sound-

ness proofs are now easy. In the YES-INSTANCE, α(Ĝ) ≥ c·M
implies that simσ(G) ≥ c ·M , and in the NO-INSTANCE, the

fact that α(Ĝ) ≤ s ·M + γqtwM implies that simσ(G) ≤
s ·M+5γqtwM . Now, we choose γ = s/(5qtw), which gives

d = O( 1γ log 1
γ ) = O((wqt/s) log(wqt/s)). Then we have the

final graph G with n = 2wM , Δ = (2dq + 1), and hardness

gap g ≥ c

2s
. Substituting c, s, w, q,M as in Theorem III.1, we

get degree Δ = O(t2k42t(k
2+2k−1)) = 2t(1/ε

2+Θ(1/ε)), size

|V (G)| = 2t(k
2)N1+O(ε) = Δ1+O(ε)N1+O(ε), and hardness

gap g ≥ 2t(k
2−1) ≥ Δ1−O(ε).

Success probability of the disperser construction: Notice that

the failure probability of the disperser construction given in

Lemma IV.4 is large when Niγ is small. In our case, we have

Ni ≥ 2tk
2

N δ and γ ≥ 2−t(k2+O(k)). So, we are guaranteed

that Niγ ≥ N δ2−O(tk) = 2δ logN−O(tk). As long as t ≤
O(δε) logN , we would be guaranteed that Niγ ≥ N δ/2, so the

failure probability in Lemma IV.4 is at most 2−Nδ/2

. Taking

a union bound will complete the analysis.

V. HARDNESS OF k-HYPERGRAPH PRICING PROBLEMS

Throughout this section, we use n and m to denote the number

of items and consumers respectively. We remark the difference

between n (the number of items in the pricing instance) and N
(the size of 3SAT formula). We prove the following theorem.

Theorem V.1. Unless NP= ZPP, for any ε > 0, there is
a constant k0 (depending on ε) such that the k-hypergraph
pricing problem for any constant k > k0 is k1−ε hard to
approximate. Assuming Hypothesis II.1, for any ε > 0, the k-
hypergraph pricing problem is hard to approximate to within
a factor of min(k1−ε, n1/2−ε).

Proof Overview and Organization: For any k-hypergraph

pricing instance (C, I), we denote by OPT(C, I) the optimal

possible revenue that can be collected by any price function.

The key in proving Theorem V.1 is the connection between the

semi-induced matching and the k-hypergraph pricing problem:

Lemma V.2 (From Semi-induced Matching to Pricing). There
is a randomized reduction that, given a bipartite graph G =
(U, V,E) with maximum degree d, outputs an instance (C, I)
of the k-hypergraph pricing problem such that, with high
probability, (6 ln d/ ln ln d)sim(G) ≥ OPT(C, I) ≥ im(G).

The number of consumers is |C| = |U |dO(d) and the number
of items is |I| = |V |. Moreover, each consumer c ∈ C satisfies
|Sc| = d. The running time of this reduction is poly(|C|, |I|).

Combining the above reduction in Lemma V.2 with the hard-

ness of the induced and semi-induced matching problems in

Theorem IV.1 (Section IV) leads to the following intermediate

hardness result, which in turn leads to all the hardness results

stated in Theorem V.1.

Lemma V.3. Let ε > 0 be any constant. There is a universal
constant d0 = d0(ε) such that the following holds. For
any function d(·) such that d0 ≤ d(N) ≤ N1−ε, there
is a randomized algorithm that transforms an N -variable
3SAT formula ϕ to a k-hypergraph pricing instance (C, I)
such that: (1) For each consumer c, |Sc| = d(N). (2) The
algorithm runs in time poly(|C|, |I|). (3) |C| ≤ dO(d)N1+ε

and |I| ≤ N1+εd1+ε. (4) There is a value Z such that (YES-

INSTANCE) if ϕ is satisfiable, then OPT(C, I) ≥ Z, and (NO-

INSTANCE) if ϕ is not satisfiable, then OPT(C, I) ≤ Z/d1−ε.

The proofs of Theorem V.1 and lemma V.3 can be found in

the full version. Here we prove Lemma V.2 by showing a

reduction from the semi-induced matching problem on a d-

degree bounded bipartite graph to the k-hypergraph pricing
problem. This reduction is randomized and is successful with

a constant probability.

1) The Reduction: Let G = (U, V,E) be a bipartite graph

with maximum degree d. We assume wlog that |U | ≤ |V |.
Notice that sim(G) ≥ im(G) ≥ |U |/d. For each vertex u of

G, let NG(u) denote the set of neighbors of u in G. If the

choice of a graph G is clear from the context, then we will

omit the subscript G. Our reduction consists of two phases.

Phase 1: Coloring. We color each vertex u ∈ U of G by

uniformly and independently choosing a random color from

{1, 2, . . . , d}. We denote by Ui ⊆ U , for each i = 1, 2, . . . , d,

the set of left vertices that are assigned a color i. We say

that a right vertex v ∈ V is highly congested if there is some

i ∈ [d] such that |NG(v) ∩ Ui| ≥ 3 ln d/ ln ln d; i.e., v has at

least 3 ln d/ ln ln d neighbors of the same color. Let Vhigh ⊆
V be a subset of all vertices that are highly congested and

V ′ = V \ Vhigh. Thus, V ′ is the set of vertices in V with

highly congested vertices thrown away. Let G′ be a subgraph

of G induced by (U, V ′, E). The following property is what
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we need from this phase in the analysis in Section V-2.

Lemma V.4. With probability at least 1/2, im(G′) ≥ (1 −
2/d)im(G) and sim(G′) ≥ (1 − 2/d)sim(G). In particular,
for d ≥ 4, im(G′) ≥ im(G)/2 and sim(G′) ≥ sim(G)/2 with
probability at least 1/2.

The above lemma can be proved by a simple balls-and-bins

argument. The proof can be found in the full version.

Phase 2: Finishing. An instance of the k-hypergraph pricing

problem is constructed as follows. For each vertex v ∈ V ′,
we create an item I(v). For each vertex u ∈ Ui, we create

d3i consumers; we denote this set of consumers by C(u).
We define the budget of each consumer c ∈ C(u) where

u ∈ Ui to be Bc = d−3i and define Sc = {I(v) : v ∈ NG(u)},
so it is immediate that |Sc| ≤ d. To recap, we have I =
{I(v) : v ∈ V ′}, C =

⋃
u∈U C(u) where |C(u)| = d3i for

u ∈ Ui, Bu =
1

d3i
for each consumer u ∈ Ui, and

Sc = {I(v) : v ∈ NG(u)} for each customer c ∈ C. In the

k-hypergraph formulation, I is a set of vertices, C is a set of

hyperedges and k = d (since |Sc| ≤ d for all c ∈ C).

2) Analysis: Completeness: We will show that the profit we

can collect is at least im(G′) ≥ im(G)/2 (by Lemma V.4).

Let M be any induced matching in the graph G′. For each

item I(v) with uv ∈ M and u ∈ Ui, we set its price to

p(I(v)) = 1/d3i. For all other items, we set their prices to

∞ for UDP and 0 for SMP. It is easy to check that the total

profit is |M| (more detail in the full version).

Soundness: Now, suppose that an optimal price function p
yields a profit of r (for either UDP or SMP). We show that

sim(G) ≥ r log log d/(12 log d). The proof has two steps. In

the first step, we identify a collection of “tight consumers”

which roughly correspond to those consumers who pay suf-

ficiently large fraction of their budgets. Then we construct a

large semi-induced matching from these tight consumers. We

say that a consumer c ∈ C is tight if she spends at least 1/4d
fraction of her budget for her desired item. A vertex u ∈ U is

tight if its set of consumers C(u) contains a tight consumer.

Let C′ be the set of tight consumers.

Claim V.5. The profit made only by tight consumers is ≥ r/2.

The proof of Claim V.5 is given in the full version. Now,

we construct from the set of tight consumers C′, a σ-semi-

induced matching in G for some total order σ. We define σ
so that vertices in U is ordered by their colors (increasingly

for the case of UDP and decreasingly for the case of SMP).

Let σ be a total order of vertices such that vertices in Ui

always precede vertices in Uj if i < j for UDP (i > j for

SMP). (Ui ⊆ U is the set of vertices with color i.) Let U ′ =
{u ∈ U : C(u) ∩ C′ �= ∅}. By Claim V.5, |U ′| ≥ r/2. For

UDP, an edge uv is in M if u ∈ U ′ and a tight consumer in

C(u) buys an item I(v). For SMP, M contains uv such that

u ∈ U ′ and I(v) is the most expensive item for a consumer

in C(u). Note that |M| ≥ |U ′| ≥ r/2 . This collection M
may not be a σ-semi-induced matching yet, so we will extract

from M a set of edges M′ ⊆ M that is a σ-semi-induced

matching with cardinality |M′| ≥ r log log d/6 log d, implying

that sim(G) ≥ r log log d/6 log d.

We construct M′ by incrementally adding edges from M as

long as M′ remains a σ-semi-induced matching (we do not

add any edge that violates a σ-semi-induced matching.) The

order of edges we pick from M depends reversely on σ, and

we will also do this process separately for different colors of

left vertices as follows. We partition M into M1∪M2∪ . . .∪
Md, where Mi = {uv ∈ M : u ∈ Ui}; i.e., Mi contains

edges uv whose end-vertex u is colored i. Then we construct

from each set Mi a set of edges M′
i as follows. We process

each edge uv ∈Mi in the reverse order of σ; i.e., an edge uv
is processed before an edge u′v′ if σ(u) > σ(u′). For each

edge uv ∈Mi, we remove from Mi all edges u′v′ such that

u′ is adjacent to v. Then we add uv to the set M′
i and proceed

to the next edge remaining in Mi. Notice that, each time we

add an edge uv to M′
i, we remove at most 3 log d/ log log d

edges from Mi because its end-vertex is not highly congested

by the construction of Mi. So, |M′
i| ≥ |Mi| log log d/3 log d.

Moreover, it can be seen by the construction that M′
i is a σ-

semi-induced matching. Finally, define M′ =
⋃d

i=1M′
i. Then

we have that |M′| ≥ |M| log log d
3 log d . We now claim that M′ is

a σ-semi-induced matching. We need two cases for the two

models of SMP and UDP. Details appear in the full version.

VI. OPEN PROBLEMS

There are many problems left open. The most fundamental one

in algorithmic pricing (from the perspective of approximation

algorithms community) is perhaps the graph pricing problem
which is the k-hypergraph pricing problem where k = 2.

Currently, only a simple 4-approximation algorithm and a

hardness of 2− ε assuming the Unique Game Conjecture, are

known [35]. It is interesting to see if the techniques in this

paper can be extended to an improved hardness (which will

likely to require even tighter connections). Other interesting

problems that seem to be unachievable using the current

techniques are the Stackelberg network pricing, Stackelberg
spanning tree pricing, and tollbooth pricing problems.

Another interesting question is whether our techniques can

be used to make a progress in the parameterized complexity

domain. In particular, it was conjectured in [38], [19] that

the independent set problem parameterized by the size of

the solution does not admit an FPT approximation ratio

ρ for any function ρ. It might be also interesting to im-

prove our 2n
1−ε/r1+ε

time lower bound for r-approximating

the independent set and induced matching problems, e.g.,

to 2(n·polylog(r))/(r·polylog(n)). Other (perhaps less important)

open problems also remain: (1) Is the ETH necessary in

proving the lower bound of this problem? For example, can

we get a better approximation guarantee for the k-hypergraph

pricing problem if there is a subexponential-time algorithm
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for solving SAT (see, e.g., [22] for similar questions in

the exact algorithm domain)? (2) Is it possible to obtain

an r-approximation algorithm in 2n/r time for the induced

matching problem in general graphs?
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