
The Complexity of Approximating Vertex Expansion

Anand Louis

College of Computing
Georgia Tech
Atlanta, USA

anandl@gatech.edu

Prasad Raghavendra

EECS
UC Berkeley

Berkeley, USA
prasad@cs.berkeley.edu

Santosh Vempala

College of Computing
Georgia Tech
Atlanta, USA

vempala@gatech.edu

Abstract—We study the complexity of approximating the
vertex expansion of graphs G = (V,E), defined as φV def

=
minS⊂V n · |N(S)|/ (|S| |V \ S|). We give a simple polynomial-
time algorithm for finding a subset with vertex expansion
O

(√
φV log d

)
where d is the maximum degree of the graph.

Our main result is an asymptotically matching lower bound:
under the Small Set Expansion (SSE) hypothesis, it is hard
to find a subset with expansion less than C

√
φV log d for

an absolute constant C. In particular, this implies for all
constant ε > 0, it is SSE-hard to distinguish whether the vertex
expansion < ε or at least an absolute constant. The analogous
threshold for edge expansion is

√
φ with no dependence on the

degree (Here φ denotes the optimal edge expansion). Thus our
results suggest that vertex expansion is harder to approximate
than edge expansion. In particular, while Cheeger’s algorithm
can certify constant edge expansion, it is SSE-hard to certify
constant vertex expansion in graphs.

Keywords-Graph Partitioning, Vertex Expansion, Hardness
of Approximation, Small Set Expansion.

I. INTRODUCTION

Vertex expansion is an important parameter associated

with a graph, one that has played a major role in both

algorithms and complexity. Given a graph G = (V,E), the
vertex expansion of a set S ⊆ V of vertices is defined as

φV(S)
def
= |V | · |N(S)|

|S| |V \ S|
Here N(S) denotes the outer boundary of the set S, i.e.
N(S) = {i ∈ V \S|∃u ∈ S such that {u, v} ∈ E}. The ver-

tex expansion of the graph is given by φV
def
= minS⊂V φ

V(S).
The problem of computing φV is a major primitive for many

graph algorithms specifically for those that are based on

the divide and conquer paradigm [LR99]. It is NP-hard to

compute the vertex expansion φV of a graph exactly. In this

work, we study the approximability of vertex expansion φV

of a graph.

A closely related notion to vertex expansion is that of

edge expansion. The edge expansion of a set S is defined

as φ(S)
def
= μ(E(S, S̄))/μ(S) and the edge expansion of

the graph is φ = minS⊂V φ(S). Graph expansion problems

have received much attention over the past decades, with

applications to many algorithmic problems, to the construc-

tion of pseudorandom objects and more recenlty due to their

connection to the unique games conjecture.

The problem of approximating edge or vertex expansion

can be studied at various regimes of parameters of interest.

Perhaps the simplest possible version of the problem is to

distinguish whether a given graph is an expander. Fix an

absolute constant δ0. A graph is a δ0-vertex (edge) expander

if its vertex (edge) expansion is at least δ0. The problem of

recognizing a vertex expander can be stated as follows:

Problem I.1. Given a graph G, distinguish between the

following two cases: (i) (Non-Expander) the vertex expansion

is < ε and (ii) (Expander) the vertex expansion is > δ0 for

some absolute constant δ0. Similarly, one can define the

problem of recognizing an edge expander graph.

Notice that if there is some sufficiently small absolute

constant ε (depending on δ0), for which the above problem

is easy, then we could argue that it is easy to “recognize” a

vertex expander. For the edge case, the Cheeger’s inequality

yields an algorithm to recognize an edge expander. In fact,

it is possible to distinguish a δ0 edge expander graph, from

a graph whose edge expansion is < δ20/2, by just computing

the second eigenvalue of the graph Laplacian.

It is natural to ask if there is an efficient algorithm with an

analogous guarantee for vertex expansion. More precisely, is

there some sufficiently small ε (an arbitrary function of δ0),
so that one can efficiently distinguish between a graph with

vertex expansion > δ0 from one with vertex expansion < ε.
In this work, we show a hardness result suggesting that there

is no efficient algorithm to recognize vertex expanders. More

precisely, our main result is a hardness for the problem of

approximating vertex expansion in graphs of bounded degree

d. The hardness result shows that the approximability of

vertex expansion degrades with the degree, and therefore the

problem of recognizing expanders is hard for sufficiently large

degree. Furthermore, we exhibit an approximation algorithm

for vertex expansion whose guarantee matches the hardness

result up to constant factors.

Related Work.: The first approximation for conductance

was obtained by discrete analogues of the Cheeger inequality

shown by Alon-Milman [AM85] and Alon [Alo86]. Specifi-
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cally, Cheeger’s inequality relates the conductance φ to the

second eigenvalue of the adjacency matrix of the graph – an

efficiently computable quantity. This yields an approximation

algorithm for φ, one that is used heavily in practice for graph

partitioning. However, the approximation for φ obtained via

Cheeger’s inequality is poor in terms of a approximation

ratio, especially when the value of φ is small. An O (log n)
approximation algorithm for φ was obtained by Leighton

and Rao [LR99]. Later work by Linial et al. [LLR95] and

Aumann and Rabani [AR98] established a strong connection

between the SPARSEST CUT problem and the theory of

metric spaces, in turn spurring a large and rich body of

literature. The current best algorithm for the problem is an

O(
√
log n) approximation for due to Arora et al. [ARV04]

using semidefinite programming techniques.

Ambühl, Mastrolilli and Svensson [AMS07] showed that

φV and φ have no PTAS assuming that SAT does not have

sub-exponential time algorithms. The current best approxi-

mation factor for φV is O (√
log n

)
obtained using a convex

relaxation [FHL08]. Beyond this, the situation is much less

clear for the approximability of vertex expansion. Applying

Cheeger’s method leads to a bound of O
(√

dOPT
)
[Alo86]

where d is the maximum degree of the input graph.

Small Set Expansion Hypothesis.: A more refined

measure of the edge expansion of a graph is its expansion

profile. Specifically, for a graph G the expansion profile is

given by the curve φ(δ) = minμ(S)�δ φ(S) ∀δ ∈ [0, 1/2].
The problem of approximating the expansion profile has

received much less attention, and is seemingly far less

tractable. In summary, the current state-of-the-art algorithms

for approximating the expansion profile of a graph are still

far from satisfactory. Specifically, the following hypothesis

is consistent with the known algorithms for approximating

expansion profile.

Hypothesis (Small-Set Expansion Hypothesis, [RS10]). For
every constant η > 0, there exists sufficiently small δ > 0
such that given a graph G it is NP-hard to distinguish the
cases, (YES) there exists a vertex set S with volume μ(S) = δ
and expansion φ(S) � η, and NO all vertex sets S with
volume μ(S) = δ have expansion φ(S) � 1− η.

Apart from being a natural optimization problem, the

SMALL-SET EXPANSION problem is closely tied to the

Unique Games Conjecture. Recent work by Raghavendra-

Steurer [RS10] established reduction from the SMALL-SET

EXPANSION problem to the well known Unique Games prob-

lem, thereby showing that Small-Set Expansion Hypothesis

implies the Unique Games Conjecture. This result suggests

that the problem of approximating expansion of small sets

lies at the combinatorial heart of the Unique Games problem.

The Unique Games Conjecture is not known to imply

hardness results for problems closely tied to graph expansion

such as BALANCED SEPARATOR . The reason being that

the hard instances of these problems are required to have

certain global structure namely expansion. Gadget reductions

from a unique games instance preserve the global properties

of the unique games instance such as lack of expansion.

Therefore, showing hardness for graph expansion problems

often required a stronger version of the EXPANDING UNIQUE

GAMES , where the instance is guaranteed to have good

expansion. To this end, several such variants of the conjecture

for expanding graphs have been defined in literature, some

of which turned out to be false [AKK+08]. The Small-Set

Expansion Hypothesis could possibly serve as a natural uni-

fied assumption that yields all the implications of expanding

unique games and, in addition, also hardness results for other

fundamental problems such as BALANCED SEPARATOR .

In fact, Raghavendra, Steurer and Tulsiani [RST12] show

that the the SSE hypothesis implies that the Cheeger’s

algorithm yields the best approximation for the balanced

separator problem.

Formal Statement of Results.: Our first result is a simple

polynomial-time algorithm to obtain a subset of vertices S

whose vertex expansion is at most O
(√

φV log d
)
. Here d

is the largest vertex degree of G. The algorithm is based

on a Poincairé-type graph parameter called λ∞ defined by

Bobkov, Houdré and Tetali [BHT00], which approximates

φV. While λ∞ also appears to be hard to compute, its natural

SDP relaxation gives a bound that is within O (log d), as
observed by Steurer and Tetali [ST12], which inspires our

first Theorem.

Theorem I.2. There exists a polynomial time algorithm
which given a graph G = (V,E) having vertex degrees
at most d, outputs a set S ⊂ V , such that φV(S) =

O
(√

φVG log d

)
.

It is natural to ask if one can prove better inapproximability

results for vertex expansion than those that follow from the

inapproximability results for edge expansion. Indeed, the

best one could hope for would be a lower bound matching

the upper bound in the above theorem. Our main result is

a reduction from SSE to the problem of distinguishing

between the case when vertex expansion of the graph is at

most ε and the case when the vertex expansion is at least

Ω(
√
ε log d). This immediately implies that it is SSE-hard

to find a subset of vertex expansion less than C
√
φV log d

for some constant C. To the best of our knowledge, our work

is the first evidence that vertex expansion might be harder to

approximate than edge expansion. More formally, we state

our main theorem below.

Theorem I.3. There exists absolute constants C,C0 such
that for every η, ε > 0 the following holds: Given a graph
G = (V,E) with maximum degree d � C0/ε, it is SSE-
hard to distinguish whether (i) There exists a set S ⊂ V of
size |S| � |V | /2 such that φV(S) � ε and (ii) For all sets
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S ⊂ V , φV(S) � min{10−10, C
√
ε log d} − η.

By a suitable choice of parameters in the above theorem,

we obtain the following theorem.

Theorem I.4. There exists an absolute constant δ0 > 0 such
that for every constant ε > 0 the following holds: Given a
graph G = (V,E), it is SSE-hard to distinguish between
the following two cases: (i)There exists a set S ⊂ V of
size |S| = |V | /2 such that φV(S) � ε and (ii) (G is a
vertex expander with constant expansion) For all sets S ⊂ V ,
φV(S) � δ0

In particular, the above result implies that it is SSE-hard
to certify that a graph is a vertex expander with constant

expansion. This is in contrast to the case of edge expansion,

where the Cheeger’s inequality can be used to certify that a

graph has constant edge expansion.

At the risk of being redundant, we note that our main

theorem implies that any algorithm that outputs a set having

vertex expansion less than C
√
φV log d will disprove the

SSE hypothesis; alternatively, to improve on the bound of

O
(√

φV log d
)
, one has to disprove the SSE hypothesis.

From an algorithmic standpoint, we believe that Theorem I.4

exposes a clean algorithmic challenge of recognizing a vertex

expander – a challenging problem that is not only interesting

on its own right, but whose resolution would probably lead

to a significant advance in approximation algorithms.

At a high level, the proof is as follows. We introduce the

notion of BALANCED ANALYTIC VERTEX EXPANSION for

Markov chains. This quantity can be thought of as a CSP
on (d + 1)-tuples of vertices. We show a reduction from

BALANCED ANALYTIC VERTEX EXPANSION of a Markov

chain, say H , to vertex expansion of a graph, say H1 (Section

VI-A). Our reduction is generic and works for any Markov

chain H . Surprisingly, the CSP-like nature of BALANCED

ANALYTIC VERTEX EXPANSION makes it amenable to a

reduction from SMALL-SET EXPANSION (Section VI). We

construct a gadget for this reduction and study its embedding

into the Gaussian graph to analyze its soundness (Section IV

and Section V). The gadget involves a sampling procedure

to generate a bounded-degree graph.

II. PROOF OVERVIEW

BALANCED ANALYTIC VERTEX EXPANSION .: To ex-

hibit a hardness result, we begin by defining a combinatorial

optimization problem related to the problem of approximating

vertex expansion in graphs having largest degree d. This
problem referred to as BALANCED ANALYTIC VERTEX

EXPANSION can be motivated as follows.

Fix a graph G = (V,E) and a subset of vertices S ⊂ V .

For any vertex v ∈ V , v is on the boundary of the set

S if and only if maxu∈N(v) |IS [u]− IS [v]| = 1, where
N(v) denotes the neighbourhood of vertex v. In particular,

the fraction of vertices on the boundary of S is given

by Ev maxu∈N(v) |IS [u]− IS [v]|. The symmetric vertex

expansion of the set S ⊆ V is given by,

n · |N(S) ∪N(V \S)|
|S| |V \S| =

Ev maxu∈N(v) |IS [u]− IS [v]|
Eu,v |IS [u]− IS [v]| .

Note that for a degree d graph, each of the terms in the

numerator is maximization over the d edges incident at

the vertex. The formal definition of BALANCED ANALYTIC

VERTEX EXPANSION is as shown below.

Definition II.1. An instance of BALANCED ANALYTIC

VERTEX EXPANSION , denoted by (V,P), consists of a set

of variables V and a probability distribution P over (d+ 1)-
tuples in V d+1. The probability distribution P satisfies the

condition that all its d + 1 marginal distributions are the

same (denoted by μ). The goal is to solve the following

optimization problem

Φ(V,P) def
= min

F :V→{0,1}|EX,Y ∼μ|F (X)−F (Y )|� 1
100

E(X,Y1,...,Yd)∼P maxi |F (Yi)− F (X)|
EX,Y∼μ |F (X)− F (Y )|

For constant d, this could be thought of as a constraint

satisfaction problem (CSP) of arity d+ 1. Every d-regular
graph G has an associated instance of BALANCED ANALYTIC

VERTEX EXPANSION whose value corresponds to the vertex

expansion of G. Conversly, we exhibit a reduction from

BALANCED ANALYTIC VERTEX EXPANSION to problem of

approximating vertex expansion in a graph of degree poly(d)
(Section VI-A for details).

Dictatorship Testing Gadget.: As with most hardness

results obtained via the label cover or the unique games prob-

lem, central to our reduction is an appropriate dictatorship

testing gadget.

Simply put, a dictatorship testing gadget for BALANCED

ANALYTIC VERTEX EXPANSION is an instance HR of the

problem such that, on one hand there exists the so-called

dictator assignments with value ε, while every assignment

far from every dictator incurs a cost of at least Ω(
√
ε log d).

The construction of the dictatorship testing gadget is as

follows. Let H be a Markov chain on vertices {s, t, t′, s′}
connected to form a path of length three. The transition

probabilities of the Markov chain H are so chosen to

ensure that if μH is the stationary distribution of H then

μH(t) = μH(t′) = ε/2 and μH(s) = μH(s′) = (1 − ε)/2.
In particular, H has a vertex separator {t, t′} whose weight

under the stationary distribution is only ε.

The dictatorship testing gadget is over the product Markov

chain HR for some large constant R. The constraints P of

the dictatorship testing gadget HR are given by the following

sampling procedure,

– Sample x ∈ HR from the stationary distribution of the

chain.
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– Sample d-neighbours y1, . . . , yd ∈ HR of x indepen-

dently from the transition probabilities of the chain HR.

Output the tuple (x, y1, . . . , yd).

For every i ∈ [R], the ith dictator solution to the above

described gadget is given by the following function,

F (x) =

{
1 if xi ∈ {s, t}
0 otherwise

It is easy to see that for each constraint (x, y1, . . . , yd) ∼ P ,
maxj |F (x) − F (yj)| = 0 unless xi = t or xi = t′. Since
x is sampled from the stationary distribution for μH , xi ∈
{t, t′} happens with probability ε. Therefore the expected

cost incurred by the ith dictator assignment is at most ε.
Soundness Analysis of the Gadget.: The soundness

property desired of the dictatorship testing gadget can

be stated in terms of influences. Specifically, given an

assignment F : V (H)R → [0, 1], the influence of the ith

coordinate is given by Infi[F ] = Ex[R]\i Varxi [F (x)], i.e.,
the expected variance of the function after fixing all but

the ith coordinate randomly. Henceforth, we will refer to a

function F : HR → [0, 1] as far from every dictator if the

influence of all of its coordinates are small (say < τ ).
We show that the dictatorship testing gadget HR described

above satisfies the following soundness – for every function

F that is far from every dictator, the cost of F is at

least Ω(
√
ε log d). To this end, we appeal to the invariance

principle to translate the cost incurred to a corresponding

isoperimetric problem on the Gaussian space. More precisely,

given a function F : HR → [0, 1], we express it as a

polynomial in the eigenfunctions over H . We carefully

construct a Gaussian ensemble with the same moments

up to order two, as the eigenfunctions at the query points

(x, y1, . . . , yd) ∈ P . By appealing to the invariance principle

for low degree polynomials, this translates in to the following

isoperimetric question over Gaussian space G.,
Suppose we have a subset S ⊆ G of the n-dimensional

Gaussian space. Consider the following experiment:

– Sample a point z ∈ G the Gaussian space.

– Pick d independent perturbations z′1, z
′
2, . . . , z

′
d of the

point z by ε-noise.
– Output 1 if at least one of the edges (z, z′i) crosses the

cut (S, S̄) of the Gaussian space.

Among all subsets S of the Gaussian space with a given

volume, which set has the least expected output in the

above experiment? The answer to this isoperimetric question

corresponds to the soundness of the dictatorship test. A

halfspace of volume 1
2 has an expected output of

√
ε log d

in the above experiment. We show that among all subsets

of constant volume, halfspaces acheive the least expected

output value.

This isoperimetric theorem proven in Section IV yields the

desired Ω(
√
ε log d) bound for the soundness of the dictator-

ship test constructed via the Markov chain H . Here the noise

rate of ε arises from the fact that all the eigenfunctions of

the Markov chain H have an eigenvalue smaller than 1− ε.
The details of the argument based on invariance principle is

presented in Section V

We show a Ω(
√
ε log d) lower bound for the isoperimetric

problem on the Gaussian space. The proof of this isoperi-

metric inequality is included in Section IV

We would like to point out here that the traditional noisy

cube gadget does not suffice for our application. This is

because in the noisy cube gadget while the dictator solutions

have an edge expansion of ε they have a vertex expansion

of εd, yielding a much worse value than the soundness.

Reduction from SMALL-SET EXPANSION problem.:
Gadget reductions from the UNIQUE GAMES problem cannot

be used towards proving a hardness result for edge or

vertex expansion problems. This is because if the underlying

instance of UNIQUE GAMES has a small vertex separator, then

the graph produced via a gadget reduction would also have

small vertex expansion. Therefore, we appeal to a reduction

from the SMALL-SET EXPANSION problem (Section VI for

details).

Raghavendra et al. [RST12] show optimal inapproxima-

bility results for the Balanced separator problem using a

reduction from the SMALL-SET EXPANSION problem. While

the overall approach of our reduction is similar to theirs, the

details are subtle.

Notation.: We use μG to denote a probability distri-

bution on vertices of the graph G. We drop the subscript

G, when the graph is clear from the context. For a set of

vertices S, we define μ(S) =
∫
x∈S

μ(x). We use μ|S to

denote the distribution μ restricted to the set S ⊂ V (G).
For the sake of simplicity, we sometimes say that vertex

v ∈ V (G) has weight w(v), in which case we define

μ(v) = w(v)/
∑

u∈V w(u). We denote the weight of a set

S ⊆ V by w(S). We denote the degree of a vertex v by

deg(v). For a random variable X , define the variance and

�1-variance as follows,

Var[X] = E
X1,X2

[(X1−X2)
2] Var1[X] = E

X1,X2

[|X1−X2|]

where X1, X2 are two independent samples of X .

III. PRELIMINARIES

Symmetric Vertex Expansion.: For our proofs, the notion

of Symmetric Vertex Expansion is useful.

Definition III.1. Given a graph G = (V,E), we define the

the symmetric vertex expansion of a set S ⊂ V as follows.

ΦV
G(S)

def
= n · |NG(S) ∪NG(V \S)|

|S| |V \S|
Balanced Vertex Expansion.: We define the balanced

vertex expansion of a graph as follows.

Definition III.2. Given a graph G and balance param-

eter b, we define the b-balanced vertex expansion of
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G as φV,balb
def
= minS:|S||V \S|�bn2 φV(S) and ΦV,bal

b
def
=

minS:|S||V \S|�bn2 ΦV(S). We define φV,bal
def
= φV,bal1/100 and

ΦV,bal def= ΦV,bal
1/100.

Analytic Vertex Expansion.: Our reduction from SSE to

vertex expansion goes via an intermediate problem that

we call d-BALANCED ANALYTIC VERTEX EXPANSION .

We define the notion of d-BALANCED ANALYTIC VERTEX

EXPANSION as follows.

Definition III.3. An instance of d-BALANCED ANALYTIC

VERTEX EXPANSION , denoted by (V,P), consists of a set

of variables V and a probability distribution P over (d+ 1)-
tuples in V d+1. The probability distribution P satisfies the

condition that all its d + 1 marginal distributions are the

same (denoted by μ). The d-BALANCED ANALYTIC VERTEX

EXPANSION under a function F : V → {0, 1} is defined as

Φ(V,P)(F ) def
=

E(X,Y1,...,Yd)∼P maxi |F (Yi)− F (X)|
EX,Y∼μ |F (X)− F (Y )| .

The d-BALANCED ANALYTIC VERTEX EXPANSION of

(V,P) is defined as

Φ(V,P) def
= min

F :V→{0,1}|EX,Y ∼μ|F (X)−F (Y )|� 1
100

Φ(V,P)(F ).

When drop the degree d from the notation, when it is clear

from the context.

For an instance (V,P) of BALANCED ANALYTIC VERTEX

EXPANSION and an assignment F : V → {0, 1} define

valP(F ) = E
(X,Y1,...,Yd)∼P

max
i
|F (Yi)− F (X)| .

Gaussian Graph.: Recall that two standard normal

random variables X,Y are said to be α-correlated if there

exists an independent standard normal random variable Z
such that Y = αX +

√
1− α2Z.

Definition III.4. The Gaussian Graph GΛ,Σ is a complete

weighted graph on the vertex set V (GΛ,Σ) = R
n. The weights

are given by the following probability density function:

w({u, v}) = P [X = u and Y = v]

where Y ∼ N (ΛX,Σ), where Λ is a diagonal matrix such

that ‖Λ‖ � 1 and Σ � εI is a diagonal matrix.

Definition III.5. We say that a family of graphs Gd is Θ(d)-
regular, if there exist absolute constants c1, c2 ∈ R

+ such

that for every G ∈ Gd, all vertices i ∈ V (G) have c1d �
deg(i) � c2d.

We now formalize our notion of hardness.

Definition III.6. A constrained minimization problem A
with its optimal value denoted by val(A) is said to be c-vs-
s hard if it is SSE-hard to distinguish between the following

two cases: (i) val(A) � c and (ii) val(A) � s.

Small-Set Expansion Hypothesis.:

Problem III.7 (SMALL-SET EXPANSION (γ, δ)). Given a

regular graph G = (V,E), distinguish between the following

two cases:

YES: There exists a non-expanding set S ⊂ V with

μ(S) = δ and ΦG(S) � γ.
NO: All sets S ⊂ V with μ(S) = δ are highly expanding

having ΦG(S) � 1− γ.
Hypothesis III.8 (Hardness of approximating SMALL-SET

EXPANSION). For all γ > 0, there exists δ > 0 such that the
promise problem SMALL-SET EXPANSION (γ, δ) is NP-hard.

For the proofs, it will be more convenient to use the

following version of the SMALL-SET EXPANSION problem,

in which we high expansion is guaranteed not only for sets of

measure δ, but also within an arbitrary multiplicative factor

of M .

Problem III.9 (SMALL-SET EXPANSION (γ, δ,M)). Given

a regular graph G = (V,E), distinguish between the

following two cases:

YES: There exists a non-expanding set S ⊂ V with

μ(S) = δ and ΦG(S) � γ.
NO: All sets S ⊂ V with μ(S) ∈ (

δ
M ,Mδ

)
have

ΦG(S) � 1− γ.
The following stronger hypothesis was shown to be

equivalent to Small-Set Expansion Hypothesis in [RST12].

Hypothesis III.10 (Hardness of approximating SMALL-SET

EXPANSION). For all γ > 0 and M � 1, there exists δ > 0
such that the promise problem SMALL-SET EXPANSION

(γ, δ,M ) is NP-hard.

IV. ISOPERIMETRY OF THE GAUSSIAN GRAPH

In this section we bound the BALANCED ANALYTIC

VERTEX EXPANSION of the Gaussian graph. For the Gaus-

sian Graph, we define the canonical probability distribution

on V d+1 as follows. The marginal distribution along any

component X or Yi is the standard Gaussian distribution in

R
n, denoted here by μ = N (0, 1)n.

PGΛ,Σ
(X,Y1, . . . , Yd) =

Πd
i=1w(X,Yi)

μ(X)d−1
= μ(X)Πd

i=1 P [Y = Yi] .

Here, random variable Y is sampled from N (ΛX,Σ).

Theorem IV.1. For any closed set S ⊂ ofV (GΛ,Σ) with Λ
a diagonal matrix satisfying ‖Λ‖ � 1, and Σ a diagonal
matrix satisfying Σ � εI , we have

E(X,Y1,...,Yd)∼PGΛ,Σ
maxi |IS [X]− IS [Yi]|

EX,Y∼μ |IS [X]− IS [Y ]| � c
√
ε log d

for some absolute constant c.
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Lemma IV.2. Let u, v ∈ R
n satisfy |u− v| � √

ε log d.
Let Λ be a diagonal matrix satisfying ‖Λ‖ � 1, and let
Σ a diagonal matrix satisfying Σ � εI . Let Pu, Pv be the
distributions N (Λu,Σ) and N (Λv,Σ) respectively. Then,

dTV(Pu, Pv) � 1− 1

d
.

The proof follows from from standard Gaussian tail bounds,

and we defer it to the full version of the paper [LRV13].

Proof of Theorem IV.1.: Let μX denote the Gaussian

distribution N (ΛX,Σ). Then the LHS is:∫
Rn\S

(
1− (1− μX(S))d

)
dμ(X)

+

∫
S

(
1− (1− μX(Rn \ S))d) dμ(X).

To bound this, we will restrict ourselves to points X for

which the μX measure of the complementary set is at least

1/d. Roughly speaking, these will be points near the boundary
of S. Define:

S1 = {x ∈ S : μX(Rn \ S) < 1

2d
}

S2 = {x ∈ R
n \ S : μX(S) <

1

2d
}

and S3 = R
n \ S1 \ S2. Using Lemma IV.2 over points in

S1 ∗ S2 along with the Gaussian Isoperimetry Inequality, we

get the theorem.

The following corollary falls out as an easy consequence

of the theorem.

Corollary IV.3 (Corollary to Theorem IV.1). Let F :
V (GΛ,Σ)→ [0, 1] be any function. Then, for some absolute
constant c,

E(X,Y1,...,Yd)∼PGΛ,Σ
maxi |F (X)− F (Yi)|

EX,Y∼μ |F (X)− F (Y )| � c
√
ε log d .

V. DICTATORSHIP TESTING GADGET

In this section we initiate the construction of the dictator-

ship testing gadget for reduction from SSE.
Overall, the dictatorship testing gadget is obtained by

picking an appropriately chosen constant sized Markov-

chain H , and considering the product Markov chain HR.

Formally, given a Markov chain H , define an instance of

BALANCED ANALYTIC VERTEX EXPANSION with vertices

as VH and the constraints given by the following canonical

probability distribution over V d+1
H .

– Sample X ∼ μH , the stationary distribution of the

Markov chain VH .

– Sample Y1, . . . , Yd independently from the neighbours

of X in VH
For our application, we use a specific Markov chain H on

four vertices. Define a Markov chain H on VH = {s, t, t′, s′}
as follows,p(s|s) = p(s′|s′) = 1− ε

1−2ε , p(t|s) = p(t′|s′) =
ε

1−2ε , p(s|t) = p(s′|t′) = 1
2 and p(t′|t) = p(t|t′) = 1

2 . It is

easy to see that the stationary distribution of the Markov

chain H over VH is given by,

μH(s) = μH(s′) =
1

2
− ε μH(t) = μH(t′) = ε

From this Markov chain, construct a dictatorship testing gad-

get (V R
H ,PR

H) as described above. We begin by showing that

this dictatorship testing gadget has small vertex separators

corresponding to dictator functions.

Proposition V.1 (Completeness). For each i ∈ [R], the
ith-dictator set defined as F (x) = 1 if xi ∈ {s, t} and
0 otherwise satisfies, Var1[F ] = 1

2 and valPHR
(F ) � 2ε.

A. Soundness

We will show a general soundness claim that holds for

dictatorship testing gadgets (V (HR),PHR) constructed out

of arbitrary Markov chains H with a given spectral gap.

Polynomials over HR.: Let e0, e1, . . . , en : V (H)→ R

be an orthonormal basis of eigenvectors of H and let

λ0, . . . , λn be the corresponding eigenvalues. It is easy to

see that the eigenvectors of HR are indexed by σ ∈ [n]R as

eσ(x) =
∏R

i=1 eσi
(xi). Every function f : HR → R can be

written in this orthonormal basis f(x) =
∑

σ∈[n]R f̂σeσ(x).

For a polynomial Q =
∑

σ Q̂σeσ, the polynomial Q>p

denotes the projection on to degrees higher than p, i.e.,
Q>p =

∑
σ,|σ|>p Q̂σeσ. The influences of a polynomial

Q =
∑

σ Q̂σ are defined as, Infi(Q) =
∑

σ:σi �=0 Q̂
2
σ .

For a function Q : V (HR) → R (or equivalently a

polynomial), Var[Q] denotes the variance of the random

variable Q(x) for a random x from stationary distribution

of HR. It is an easy computation to check that this is given

by, Var[Q] =
∑

σ:|σ|�=0 Q̂
2
σ .

We will make use of the following Invariance Principle

due to Isaksson and Mossel [IM12].

Theorem V.2 ([IM12]). Let X = (X1, . . . , Xn) be an inde-
pendent sequence of ensembles, such that P [Xi = x] � α >
0, ∀i, x. Let Q be a d-dimensional multilinear polynomial
such that Var(Qj(X)) � 1, Var(Q>p

j ) � (1 − εη)2p and
Infi(Qj) � τ where p = 1

18 log(1/τ)/ log(1/α). Finally, let
ψ : Rk → R be Lipschitz continuous. Then,∣∣∣E [ψ(Q(X))]− E [ψ(Q(Z))]

∣∣∣ = O (
τ

εη
18 / log 1

α

)
where Z is an independent sequence of Gaussian ensembles
with the same covariance structure as X .

Noise Operator.: We define a noise operator Γ1−η on

functions on the Markov chain H as follows :

Γ1−ηF (X)
def
= (1− η)F (X) + η E

Y∼X
F (Y )

for every function F : H → R. Similarly, one can define the

noise operator Γ1−η on functions over HR.
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Proposition V.3 (Soundness). For all ε, η, α, τ > 0 the
following holds. Let H be a finite Markov-chain with a
spectral gap of at least ε, and the probability of every state
under stationary distribution is � α. Let F : V (HR) →
{0, 1} be a function such that maxi∈[R] Infi(Γ1−ηF ) � τ .
Then we have

E
(X,Y1,...,Yd)∼PHR

[max
i
|F (Yi)− F (X)|] �

Ω(
√
ε log d) E

X,Y∼μHR

|F (X)− F (Y )| − O (η)− τΩ(εη/ log(1/α
))

Proof: Let Q = (Q0, Q1, . . . , Qd) be the multi-linear

polynomial representation of the vector-valued function

(Γ1−ηF (X),Γ1−ηF (Y1), . . . ,Γ1−ηF (Yd)).
Define a function s : R → R as follows s(x) = 0 if

x < 0, s(x) = x if x ∈ [0, 1] and s(x) = 1 if x > 1.
Define a function Ψ : Rd+1 → R as, Ψ(x, y1, . . . , yd) =
maxi |s(yi)− s(x)|. Clearly, Ψ is a Lipshitz function with

a constant of 1.

Apply the invariance principle to the polynomial Q =
(Γ1−ηF,Γ1−ηF, . . . ,Γ1−ηF ) and Lipshitz function Ψ. By

invariance principle Theorem V.2, we get for some appropri-

ate Λ,

E
(X,Y1,...,Yd)∼PHR

max
a
|s (Γ1−ηF (X))− s (Γ1−ηF (Ya))| �

E
(ZX ,ZY1

,...,ZYd
)∼PGΛ,Σ

max
a
|s (Γ1−ηF (ZX))− s (Γ1−ηF (ZYa

)) |
− τΩ(εη/ log(1/α))

We can now use Corollary IV.3 to finish the proof.

VI. HARDNESS REDUCTION FROM SSE

Let G = (V,E) be an instance of SMALL-SET EXPAN-

SION (γ, δ,M). Starting with the instance G = (V,E) of

SMALL-SET EXPANSION(γ, δ,M), our reduction produces

an instance (V ′,P ′) of BALANCED ANALYTIC VERTEX

EXPANSION .

To describe our reduction, let us fix some notation. For a

set A, let A{R} denote the set of all multisets with R elements

from A. Let Gη = (1− η)G+ ηKV where KV denotes the

complete graph on the set of vertices V . For an integer R,
define G⊗R

η to be the product graph G⊗R
η = (Gη)

R.

Define a Markov chain H on VH = {s, t, t′, s′} as

follows,p(s|s) = p(s′|s′) = 1 − ε
1−2ε , p(t|s) = p(t′|s′) =

ε
1−2ε , p(s|t) = p(s′|t′) = 1

2 and p(t′|t) = p(t|t′) = 1
2 . It is

easy to see that the stationary distribution of the Markov

chain H over VH is given by, μH(s) = μH(s′) = 1/2− ε
and μH(t) = μH(t′) = ε.
The reduction consists of two steps. First, we construct an

“unfolded” instance (V,P) of the BALANCED ANALYTIC

VERTEX EXPANSION , then we merge vertices of (V,P) to
create the final output instance (V ′,P ′). The details of the

reduction are presented in Figure 1.

Reduction
Input: A graph G = (V,E) - an instance of

SMALL-SET EXPANSION(γ, δ,M).
Parameters: R = 1

δ , ε
Unfolded instance (V,P)
Set V = (V × VH)R. The probability distribution μ on V
is given by (μV × μH)R. The probability distribution P is

given by the following sampling procedure.

1) Sample a random vertex A ∈ V R.

2) Sample d + 1 random neighbors B,C1, . . . , Cd ∼
G⊗R

η (A) of the vertex A in the tensor-product graph

G⊗R
η .

3) Sample x ∈ V R
H from the product distribution μR.

4) Independently sample d neighbours y(1), . . . , y(d) of
x in the Markov chain HR, i.e., y(i) ∼ μR

H(x).
5) Output ((B, x), (C1, y1), . . . , (Cd, yd))

Folded Instance (V ′,P ′)
Fix V ′ = (V × {s, t}){R}. Define a projection map Π :
V → V ′ as follows:

Π(A, x) = {(ai, xi)|xi ∈ {s, t}}
for each (A, x) = ((a1, x1), (a2, x2), . . . , (aR, xR)) in

(V × {s, t}){R}.
Let μ′ be the probability distribution on V ′ obtained by

projection of probability distribution μ on V . Similarly,

the probability distribution P ′ on (V ′)d+1 by applying the

projection Π to the probability distribution P .

Figure 1. Reduction from SSE to Vertex Expansion

Observe that each of the queries Π(B, x) and

{Π(Ci, yi)}di=1 are distributed according to μ′ on V ′.
Let F ′ : V ′ → {0, 1} denote the indicator function

of a subset for the instance. Let us suppose that

EX,Y∼V [|F ′(X)− F ′(Y )|] � 1
10 . We fix η = ε/(100d).

We restrict γ < ε/(100d).

Theorem VI.1. (Completeness) Suppose there exists a set
S ⊂ V such that vol(S) = δ and Φ(S) � γ then there exists
F ′ : V ′ → {0, 1} such that, EX,Y∼V′ [|F ′(X)− F ′(Y )|] �
1
10 and,

E
X,Y1,...,Yd∼P

[
max

i
|F ′(X)− F ′(Yi)|

]
� 2ε+O (d(η + γ))

Proof: Define F : V → {0, 1} as follows:

F (A, x) =

{
1 if |Π(A, x) ∩ (S × {s, t})| = 1

0 otherwise

Observe that by definition of F , the value of F (A, x) only
depends on Π(A, x). So the function F naturally defines a

map F ′ : V ′ → {0, 1}. Therefore we can write,

P [F (A, x) = 1] =∑
i∈[R]

P [xi ∈ {s, t}]P [{a1, . . . , aR} ∩ S = {ai}|xi ∈ {s, t}]
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� R · 1
2
· 1
R
·
(
1− 1

R

)R−1

� 1

10

and,

P [F (A, x) = 1] = P [|Π(A, x) ∩ (S × {s, t})| = 1]

� E
(A,x)∼V

[|Π(A, x) ∩ (S × {s, t})|] = R · 1
2
· |S||V | �

1

2

The above bounds on P [F (A, x) = 1] along with the fact

that F takes values only in {0, 1}, we get that

E
X,Y∼V′

|F ′(X)− F ′(Y )| = E
(A,x) ,(B,y)∼V

|F (A, x)− F (B, y)| �
1

10

Suppose we sample A ∈ V R and B,C1, . . . , Cd inde-

pendently from G⊗R
η (A). Let us denote A = (a1, . . . , aR),

B = (b1, . . . , bR), Ci = (ci1, . . . , ciR) for all i ∈ [d]. Note
that,

P [∃i ∈ [R] such that |{ai, bi} ∩ S| = 1]

�
∑
i∈[R]

(1− η)P [
(ai, bi) ∈ E[S, S̄]

]
+ η P

[
(ai, bi) ∈ S × S̄

]
� R(vol(S)Φ(S) + 2η vol(S)) � 2(γ + η)

Similarly, for each j ∈ [d],

P [∃i ∈ [R]||{ai, cji} ∩ S| = 1] �
∑
i∈[R]

P
[
(ai, cji) ∈ E[S, S̄]

]
� R vol(S)Φ(S) � 2(γ + η) .

By a union bound, with probability at least 1 − 2(d+
1)(γ + η) we have that none of the edges {(ai, bi)}i∈[R]

and {(ai, cji)}j∈[d],i∈[R] cross the cut (S, S̄).
Conditioned on the above event, we claim that if (B, x)∩

(S × {t, t′}) = ∅ then maxi |F (B, x)−F (Ci, yi)| = 0. First,
if (B, x) ∩ (S × {t, t′}) = ∅ then for each bi ∈ S the

corresponding xi ∈ {s, s′}. In particular, this implies that for

each bi ∈ S, either all of the pairs (bi, xi), {(cji, yji)}j∈[d]

are either in S ×{s, t} or S ×{s′, t′}, thereby ensuring that

maxi |F (B, x)−F (Ci, yi)| = 0. From the above discussion

we conclude,

E
(B,x),(C1,y1),...,(Cd,yd)∼P

[
max

i
|F (B, x)− F (Ci, yi)|

]
� P [|(B, x) ∩ (S × {t, t′}) | � 1] + 2(d+ 1)(γ + η)

� E [|(B, x) ∩ (S × {t, t′}) |] + 2(d+ 1)(γ + η)

= R · vol(S) · ε+ 2(d+ 1)(γ + η) � eε

Let F ′ : V ′ → {0, 1} be a subset of the instance (V ′,P ′).
We define the functions F : V → [0, 1] and fA, gA :

V R
H → [0, 1] for each A ∈ V R as F (A, x)

def
= F ′(Π(A, x)),

fA(x)
def
= F (A, x) and gA(x)

def
= EB∼G⊗R

η (A) F (B, x). We

defer the proof of the following two lemmas to the full

version.

Lemma VI.2. valP′(F ′) � EA∈V R valμR
H
(gA)

Lemma VI.3.

E
A∼V R

E
x∼μR

H

gA(x)
2 � E

(A,x)∼V
F 2(A, x)− valP′(F ′)

The following crucial lemma translates the fact that the

set is balanced on the entire instance to a balance within

the individual long codes. To this end, it uses the spectral

properties of the graph produced in the hardness reduction.

Lemma VI.4. EA∼V R Var1[gA] � 1
2 (Var1[F ])

2−valP′(F ′)

Proof: Since the function gA is bounded in [0, 1] we

E
A∼V R

E
x,y∈μR

H

|gA(x)− gA(y)|

� E
A∼V R

E
x,y∈μR

H

(gA(x)− gA(y))2

� E
A∼V R

E
x∈μR

H

g2A(x)− E
A

E
x,y∈μR

H

gA(x)gA(y) (VI.1)

In the above expression there are two terms. From Lemma

VI.3, we already know that

E
A∼V R

E
x∈μR

H

g2A(x) � E
(A,x)∼V

F 2(A, x)− valP′(F ′)

(VI.2)

Let us expand out the other term in the expression.

E
A

E
x,y∈μR

H

gA(x)gA(y)

= E
A

E
B,C∼G⊗R

η (A)
E

x,y∈μR
H

F ′(Π(B, x))F ′(Π(C, y))

(VI.3)

Now consider the following graph H on V ′ defined by the

following edge sampling procedure.

– Sample A ∈ V R, and x, y ∈ μR
H .

– Sample independently B ∼ G⊗R
η (A) and C ∼ G⊗R

η (A)
– Output the edge Π(B, x) and Π(C, y)

Let λ denote the second eigenvalue of the adjacency matrix

of the graph H.

E
A

E
B,C∼G⊗R

η (A)
E

x,y∈μR
H

F ′(Π(B, x))F ′(Π(C, y)) = 〈F ′,HF ′〉

�
(

E
(A,x)∼V

F ′(Π(A, x))

)2

+ λ

(
E

(A,x)∼V
(F ′(Π(A, x)))

2 − ( E
(A,x)∼V

F ′(Π(A, x)))2
)

= λ E
(A,x)∼V

F (A, x)2 + (1− λ)( E
(A,x)∼V

F (A, x))2

(because F ′(Π(A, x)) = F (A, x))

Using the above inequality with equations VI.1, VI.2, VI.3

we can derive the following,

E
A∼V R

E
x,y∈μR

H

|gA(x)− gA(y)|

� E
A∼V R

E
x∈μR

H

g2A(x)− E
A

E
x,y∈μR

H

gA(x)gA(y)

can write
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� (1− λ)
[

E
(A,x)∼V

F 2(A, x)− ( E
(A,x)∼V

F (A, x))2
]
− valP′(F

′
)

� (1− λ)Var[F ]− valP′(F ′)

� (1− λ)(Var1[F ])2 − valP′(F ′)

To finish the argument, we need to bound the second

eigenvalue λ for the graph H. Here we will present a simple

argument showing that the second eigenvalue λ for the graph

H is strictly less than 1
2 . Let us restate the procedure to

sample edges from H slightly differently.

– Define a mapM : V ×VH → (V ∪ ⊥)×(VH∪{⊥}) as
follows, M(b, x) = (b, x) if x ∈ {s, t} and M(b, x) =
(⊥,⊥) otherwise. Let Π′ : ((V ∪ ⊥)× (VH∪ ⊥))R →
(V × {s, t}){R} denote the following map.

Π′(B′, x′) = {(b′i, x′i)|xi ∈ {s, t}}
– Sample A ∈ V R and x, y ∈ μR

H

– Sample independently B = (b1, . . . , bR) ∼ G⊗R
η (A)

and C = (c1, . . . , cR) ∼ G⊗R
η (A).

– Let M(B, x),M(C, y) ∈
((V ∪ {⊥})× (VH ∪ {⊥}))R be obtained by applying

M to each coordinate of (B, x) and (C, y).
– Output an edge between (Π′(M(B, x)),Π′(M(C, y))).

It is easy to see that the above procedure also samples

the edges of H from the same distribution as earlier. Note

that Π′ is a projection from ((V ∪ ⊥) × (VH∪ ⊥))R to

(V × {s, t}){R}. Therefore, the second eigenvalue of the

graph H is upper bounded by the second eigenvalue of the

graph on ((V ∪ ⊥)× (VH ∪ {⊥}))R defined by M(B, x) ∼
M(C, y). Let H1 denote the graph defined by the edges

M(B, x) ∼ M(C, y). Observe that the coordinates of H1

are independent, i.e.,H1 = HR
2 for a graphH2 corresponding

to each coordinate ofM(B, x) andM(C, y). Therefore, the
second eigenvalue of H1 is at most the second eigenvalue

of H2. The Markov chain H2 on (V ∪ {⊥})× (VH∪ ⊥) is
defined as follows,

– Sample a ∈ V and two neighbors b, c ∼ Gη(a).
– Sample x, y ∈ VH independently from μH .

– Output an edge between M(b, x) M(c, y).

Notice that in the Markov chain H2, for every choice of

M(b, x) in (V ∪{⊥})×(VH∪ ⊥), with probability at least 1
2 ,

the other endpoint M(c, y) = (⊥,⊥). Therefore, the second

eigenvalue of H2 is at most 1
2 , giving a bound of 1

2 on the

second eigen value of H.

The following lemma asserts that if the graph G is a

NO-instance of SMALL-SET EXPANSION (γ, δ,M ) then

for almost all A ∈ V R the functions have no influential

coordinates (see [LRV13] for the proof).

Lemma VI.5. Fix δ = 1/R. Suppose for all sets S ⊂ V with
vol(S) ∈ (δ/M,Mδ) , Φ(S) � 1− γ then for all τ > 0,

P
A∼V R

[∃i | Infi[Γ1−ηgA] � τ ] � 1000

τ3ε2η2
·max(1/M, γ)

Theorem VI.6. (Soundness) For all ε, d there exists choice
of M and γ, η such that the following holds. Suppose for
all sets S ⊂ V with vol(S) ∈ (δ/M,Mδ) , Φ(S) � 1 − η,
then for all F ′ : V ′ → [0, 1] such that Var1[F ′] � 1

10 , we
have valP′(F ′) � Ω(

√
ε log d)

Proof: We will choose τ to small enough so that the

error term in the soundness of dictatorship test (Proposition

V.3) is smaller than ε (τ = ε1/ε
3

would suffice).

First, we know that if G is a NO-instance of SMALL-

SET EXPANSION (γ, δ,M ) then for almost all A ∈ V R,

the function gA has no influential coordinates. Formally, by

Lemma VI.5, we will have

P
A∼V R

[∃i | Infi[Γ1−ηgA] � τ ] � 1000

τ3η2
·max(1/M, γ) .

For an appropriate choice of M,γ, the above inequality

implies that for all but an ε-fraction of vertices A ∈ V R, the

function gA will have no influential coordinates.

Without loss of generality, we may assume that

valP′(F ′) �
√
ε log d, else we would be done. Applying

Lemma VI.4, we get that EA∈V R Var1[gA] � (Var1[F ])
2 −

valP′(F ′) � 1
200 . This implies that for at least a 1

400 fraction

of A ∈ V R, Var1[gA] � 1/400. Hence for at least an

1/400− ε fraction of vertices A ∈ V R we have,

Var1[gA] �
1

400
and max

i
Infi(Γ1−η(gA)) � τ

By appealing to the soundness of the gadget (Proposition V.3),

for every such vertex A ∈ V R, valμR
H
(gA) � Ω(

√
ε log d)−

O(ε) = Ω(
√
ε log d). Finally, by applying Lemma VI.2, we

get the desired conclusion.

A. Putting it together

In order to finish the proof of Theorem I.3, we will need a

fairly standard fairly standard reduction from d-BALANCED

ANALYTIC VERTEX EXPANSION to balanced symmetric

vertex expansion (see [LRV13]).

Theorem VI.7. A c-vs-s hardness for d-BALANCED ANA-

LYTIC VERTEX EXPANSION implies a 4 c-vs-s/16 hardness
for balanced symmetric-vertex expansion on graphs of degree
at most D, where D = max{100d/s, 2 log(1/c)}.

Proof of Theorem I.3: Follows from Theorem VI.1,

Theorem VI.6, Theorem VI.7 and standard reductions from

Balanced vertex expansion to vertex expansion and the

computational equivalence of symmetric vertex expansion

and vertex expansion.

VII. AN OPTIMAL ALGORITHM FOR VERTEX EXPANSION

In this section, we present an algorithm for approximating

symmetric vertex expansion. To approximate vertex expan-

sion, we appeal to a fairly easy reduction from symmetric

vertex expansion to it which implies the following (see

[LRV13]).
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Algorithm VII.3.
– Input : A graph G = (V,E)
– Output : A set S with vertex expansion at most

72
√
SDPval log d (with constant probability).

1) Solve SDP 2 for graph G.
2) Pick a random Gaussian vector g ∼ N(0, 1)n.

3) For each i ∈ [n], define xi
def
= 〈vi, g〉.

4) Sort the xi’s in decreasing order xi1 � xi2 �
. . . xin . Let Sj denote the set of the first j vertices

appearing in the sorted order. Let l be the index

such that l = argmin1�j�n/2Φ
V(Sj) .

5) Output the set corresponding to Sl in G.

Figure 3. Rounding Scheme

Theorem VII.1. Given a graph G, there exists a graph
G′ such that maxi∈V (G) deg(i) = maxi∈V (G′) deg(i) and
φV(G) = Θ(ΦV(G′)). Moreover, such a G′ can be computed
in time polynomial in the size of G.

Our starting point is a the work of Bobkov et al. [BHT00]

who define a spectral relaxation for vertex expansion in an

undirected graph G.

λ∞
def
= min

x

∑
i maxj∼i(xi − xj)2∑
i x

2
i − 1

n (
∑

i xi)
2

The same work shows the following

Theorem VII.2 ([BHT00]). For any unweighted, undirected
graph G, we have λ∞

2 � φV �
√
2λ∞

Consider the following SDP relaxation for λ∞.

SDP 2.

SDPval
def
= min

∑
i∈
αi

subject to:

‖vj − vi‖2 � αi ∀i ∈ V and ∀j ∼ i∑
i

‖vi‖2 − 1

n
‖
∑
i

vi‖2 = 1

We present a simple randomized rounding of this SDP in

Figure 3 and show that with constant probability it outputs a

set with vertex expansion at most O(
√
φV log d). We defer

the details of the proof of Theorem I.2 to the full version of

the paper [LRV13].
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