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Abstract—We prove super-polynomial lower bounds on the

size of linear programming relaxations for approximation

versions of constraint satisfaction problems. We show that for

these problems, polynomial-sized linear programs are exactly

as powerful as programs arising from a constant number of

rounds of the Sherali-Adams hierarchy.

In particular, any polynomial-sized linear program for MAX

CUT has an integrality gap of 1/2 and any such linear program

for MAX 3-SAT has an integrality gap of 7/8.

Keywords-linear programming, extended formulations, lower

bounds, LP hierarchies, constraint satisfaction problems, ap-

proximation complexity

I. INTRODUCTION

Linear programming is one of the most powerful tools

known for finding approximately optimal solutions to NP -

hard problems. We refer to the books [Vaz01], [WS11] which

each contain a wealth of examples. If P �= NP , then for

many such problems, polynomial-sized linear programs (LPs)

that compute arbitrarily good approximations do not exist.

Thus a line of research has sought to prove lower bounds

on the efficacy of small linear programs. The construction

of integrality gaps for specific LPs has long been a topic of

interest in approximation algorithms. Arora, Bollobás, and

Lovász [ABL02] initiated a a more systematic study; they

explored the limitations of LPs arising from lift-and-project

hierarchies like those of Lovász and Schrijver [LS91] and

Sherali and Adams [SA90]. There has now been an extensive

amount of progress made in this area; one can see a sampling

in the section on previous work.

Arguably, the ultimate goal of this study is to prove

unconditional lower bounds for every sufficiently small

LP. Since linear programming is P -complete under various

notions of reduction, this would require proving that NP does

not have polynomial-size circuits (see, e.g., the discussion in

[Yan91]). But one could still hope to complete this program

for LPs that use “natural” encodings of the underlying

combinatorial problem.

We make progress toward this goal for the class of

constraint satisfaction problems (CSPs). For instance, we

prove that every polynomial-sized LP for MAX CUT has an

integrality gap of 1
2 , answering a question from [BFPS12].

As another example, every such LP for MAX 3-SAT has an

integrality gap of 7
8 . In fact, in both cases these integrality

gaps hold for LPs of size n
δ log n

log log n for some constant δ > 0.

Corresponding upper bounds for both problems can be

achieved by simple polynomial-sized LPs. For MAX 3-SAT, a
7
8 -approximation is best-possible assuming P �= NP [Hås01].

For MAX CUT, the famous SDP-based algorithm of Goemans

and Williamson [GW95] achieves a 0.878-approximation.

In this case, our result yields a strict separation between

the power of polynomial-sized LPs and SDPs for a natural

optimization problem.

To accomplish this, we show that for approximating

CSPs, polynomial-sized LPs are exactly as powerful as those

programs arising from O(1) rounds of the Sherali-Adams

hierarchy. We are then able to employ the powerful Sherali-

Adams gaps that appear in prior work.

In Section I-B, we discuss our approach for the specific

example of MAX CUT, including the class of LPs to which

our results apply. Section II is devoted to a review of

CSPs and their linear relaxations. There we explain our

basic approach to proving lower bounds by exhibiting an

appropriate separating hyperplane. We also review the Sherali-

Adams hierarchy for CSPs. In Section III, we present the

technical components of our approach, as well as the proof of

our main theorem. Finally, Section IV contains an illustrative

discussion of how Sherali-Adams gap examples can be

used to construct corresponding gaps for symmetric LPs.

This connection is quantitatively stronger than our result for

general LPs.

A. History and context

Extension complexity. In a seminal paper, Yannakakis

[Yan91] proved that every symmetric LP (i.e., one whose

formulation is invariant under permutations of the variables)

for TSP has exponential size. Only recently was a similar

lower bound given for general LPs. More precisely, Fiorini,

et. al. [FMP+12] show that the extension complexity of the

TSP polytope is exponential. Braun, et. al. [BFPS12] expand

the notion of extension complexity to include approximation

problems and show that approximating MAX CLIQUE within

O(n1/2−ε) requires LPs of size 2Ω(nε). Building on that

work, Braverman and Moitra [BM13] show that approxi-

mating MAX CLIQUE within O(n1−ε) requires LPs of size

2Ω(nε).

These three latter papers all use Yannakakis’ connection

between extension complexity and non-negative rank (see,
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e.g., [FMP+12], for a detailed discussion). They are based on

increasingly more sophisticated analyses of a single family of

slack matrices first defined in [FMP+12] (and extended to the

approximation setting by [BFPS12]). A major contribution

of the present work is that the connection between general

LPs and the Sherali-Adams hierarchy allows one to employ

a much richer family of hard instances.

LP and SDP hierarchies. As mentioned previously, starting

with the works [ABL02], [ABLT06], the efficacy of LP

and SDP hierarchies for approximation problems has been

extensively studied. We refer to the survey of Laurent

[Lau03] for a discussion of the various hierarchies and their

relationships.

We mention a few results that will be quite useful

for us. Fernández de la Vega and Mathieu [FdlVKM07]

showed that for any fixed ε > 0 and k, MAX CUT has an

integrality gap of 1
2 + ε even after k rounds of the Sherali-

Adams hierarchy. In a paper of Charikar, Makarychev, and

Makarychev [CMM09], it is shown that MAX CUT and

VERTEX COVER have integrality gaps of 1
2 + ε and 2− ε,

respectively, for nΩ(ε) rounds of the Sherali-Adams hierarchy.

In work of Schoenebeck [Sch08], tight bounds are given on

the number of rounds needed to solve approximate k-CSPs in

the Lasserre hierarchy (which, in particular, is stronger than

the Sherali-Adams hierarchy). For instance, he shows that

for every ε > 0, MAX 3-SAT has a 7
8 +ε integrality gap even

after Ω(n) rounds. There are also Sherali-Adams integrality

gaps for CSPs with a pairwise independent predicate, due to

Benabbas et. al. [BGMT12].

B. Outline: MAX CUT

We now present the basic details of our approach applied

to the MAX CUT problem. To this end, consider a graph

G = (V,E) with |V | = n. For any S ⊆ V , we use

G(S)
def
=
|E(S, S̄)|
|E|

to denote the fraction of edges of G crossing the cut (S, S̄).
The maximum cut value of G is opt(G) = maxS⊆V G(S).

The standard LP. To construct an LP for computing (or

approximating) opt(G), it is natural to introduce variables

x = (x1, x2, . . . , xn) ∈ {±1}n corresponding to the vertices

of G. One can then write, for instance,

opt(G) = max
x∈{±1}n

1

|E|
∑

{i,j}∈E

1− xixj

2
.

To convert this computation into a linear program, we need

to linearize it.

The usual way is to introduce new LP variables y =

(yi,j) ∈ R(
n
2) meant to represent the quantities (1 −

xixj)/2. Now consider the vector vG ∈ {0, 1}(
n
2) such that

(vG){i,j} = 1 precisely when {i, j} ∈ E. Given that we have

linearized both the graph G and the cut variable x, we can

consider the LP relaxation

L(G) = max
y∈P

〈vG, y〉 ,

where P is any polytope containing all the vectors y such

that yi,j = (1− xixj/2) for some x ∈ {±1}n. The standard

relaxation corresponds to a polytope P defined by the

constraints {0 � yi,j � 1 : i, j ∈ V } and

{yi,j � yi,k + yk,j , yi,j + yi,k + yk,j � 2 :

i, j, k ∈ V } .

Clearly P is characterized by O(n3) inequalities.

All linearizations are equivalent. But it is important to

point out that, for our purposes, any linearization of the

natural formulation of MAX CUT suffices. In fact, all such

linearizations are equivalent after applying an appropriate

linear transformation. We only require that there is a number

m ∈ N such that:

1) For every graph G, we have a vector vG ∈ Rm.

2) For every cut S ⊆ V , we have a vector yS ∈ Rm.

3) For all graphs G and vectors yS , the condition G(S) =
〈vG, yS〉 holds.

Now any polytope P ⊆ Rm, such that yS ∈ P for every S ⊆
V , yields a viable LP relaxation: L(G) = maxy∈P 〈vG, y〉.
The size of this relaxation is simply the number of facets of

P , i.e. the number of linear inequalities needed to specify

P .

Remark I.1. We stress that the polytope P depends only

on the input size. This is akin to lower bounds in non-

uniform models of computation like circuits wherein there

is a single circuit for all inputs of a certain size. The input

graph G is used only to define the objective function being

maximized. In other words, the variables and constraints

of the linear program are fixed for each input size while

the objective function is defined by the input. To the best

of our knowledge, all linear and semi-definite programs

designed for approximating max-CSP problems are subsumed

by relaxations of this nature.

In Section III, we prove that every such relaxation of

polynomial size has an integrality gap of 1
2 for MAX CUT.

Toward this end, we recall a known Sherali-Adams gap

example: In [FdlVKM07], [CMM09], it is shown that for

every ε > 0 and every d ∈ N, there are graphs G with

opt(G) � s, but SAd(G) � c, where s � 1
2+ε, and c � 1−ε,

and SAd denotes the LP-value of the d-round Sherali-Adams

relaxation (see Section II for the definition).

Proving a lower bound. In Theorem II.2, we recall that if

there is an LP relaxation L of size R such that L(G) �

c whenever opt(G) � s, then a simple application of

Farkas’ Lemma shows that there are non-negative functions

q1, . . . , qR : {±1}n → R�0 such that for every graph
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G with opt(G) � s, there are coefficients λ1, . . . , λR � 0
satisfying

c−G = λ1q1 + · · ·+ λRqR . (I.1)

(Note that we have earlier viewed G as a function on cuts

and we now view it as a function on {±1}n by associating

these vectors with cuts.) These functions qi : {±1}n → R�0

encode the slack of each constraint of the LP. Thus if the

ith LP constraint is of the form 〈Ai, z〉 � bi, then qi(x) =
bi − 〈Ai, ySx

〉 where ySx
is the cut vector corresponding to

x ∈ {±1}n.
Our first step is to show that we can effectively truncate

any qi that is not sufficiently spread out (more technically

that, when viewed as a distribution over {±1}n, has entropy

far from n). Since we have only a small (say, polynomial)

number of functions qi, the effect of the truncation on

(I.1) can be safely ignored. Thus we can assume that the

distribution obtained by scaling qi to be a probability measure

has high entropy.
In Section III-A, we argue that any distribution over {±1}n

with large entropy is close to uniform off a small set of

coordinates. In other words, every qi corresponding to such

a distribution can be thought of, roughly, as having a few

significant coordinates such that if we condition on those, the

function is close to uniform on the remaining coordinates.
Then in Section III-B, we employ a random restriction

argument: By planting a small instance H at random inside

the large graph G, we can ensure that for every qi, the set of

significant coordinates when restricted to H is much smaller.

By a simple concentration inequality and union bound, there

is some fixed planting of H such that this reduction happens

for all the qi’s simultaneously.
Now is where our Sherali-Adams gap example enters the

picture: An expression as in (I.1) is impossible for the SAd

gap instance whenever each qi is a d-junta (i.e., depends on

only d of its input variables); see Observation II.4 and the

surrounding discussion. Intuitively, since we have argued that

we only need to consider qi’s which are of the form “junta

plus uniform,” the Sherali-Adams lower bound can be made

to apply to our functions as well. The key technical estimate

involves sufficient control on this level of uniformity.
Of course, matters are made more delicate by the fact

that these arguments need to take place simultaneously and

the various intuitive properties discussed above are actually

analytic in nature (e.g., “close to uniform” corresponds to

a bound on the Fourier coefficients of qi). The ingredients

are all put together in Section III-C, where one can find the

proof of our main theorem for general CSPs.

II. BACKGROUND

We now review the maximization versions of boolean

CSPs, their linear programming relaxations, and related

issues.
Throughout the paper, for a function f : {±1}n → R,

we write E f = 2−n
∑

x∈{±1}n f(x). If g : {±1}n → R,

we denote the inner product 〈f, g〉 = E[fg] on the Hilbert

space L2({−1, 1}n). Recall that any f : {±1}n → R can be

written uniquely in the Fourier basis as f =
∑

α⊆[n] f̂(α)χα,

where χα(x) =
∏

i∈α xi and f̂(α) = 〈f, χα〉. A function f
is called a d-junta for d ∈ [n] if f depends only on a subset

S ⊆ [n] of coordinates with |S| � d. In other words, f can

be written as f =
∑

α⊆S f̂(α)χα.

We say that f is a density if it is non-negative and satisfies

E f = 1. For such an f , we let μf denote the corresponding

probability measure on {±1}n. Observe that for any g :
{±1}n → R, we have Ex∼μf

[g(x)] = 〈f, g〉.
Constraint Satisfaction Problems. CSPs form a broad class

of discrete optimization problems that include, for example,

MAX CUT and MAX 3-SAT. For simplicity of presentation,

we will focus on constraint satisfaction problems with a

boolean alphabet, though similar ideas extend to larger

domains (of constant size).

For a finite collection Π = {P} of k-ary predicates

P : {±1}k → {0, 1}, we let MAX-Π denote the following

optimization problem: An instance � consists of boolean

variables X1, . . . , Xn and a collection of Π-constraints

P1(X) = 1, . . . , Pm(X) = 1 over these variables. A Π-

constraint is a predicate P0 : {±1}n → {0, 1} such that

P0(X) = P (Xi1 , . . . , Xik) for some P ∈ Π and distinct

indices i1, . . . , ik ∈ [n]. The goal is to find an assignment

x ∈ {±1}n that satisfies as many of the constraints as

possible, that is, which maximizes

�(x) def
= 1

m

∑
i

Pi(x) .

We denote the optimal value of an assignment for � as

opt(�) = maxx∈{±1}n �(x).
Examples: MAX CUT corresponds to the case where Π
consists of the binary inequality predicate. For MAX 3-SAT,

Π contains all eight 3-literal disjunctions, e.g., X1∨X̄2∨X̄3.

Linear Programming Relaxations for CSPs. In order to

write an LP relaxation for such a problem, we need to

linearize the objective function. For n ∈ N, let MAX-Πn be

the set of MAX-Π instances on n variables. An LP-relaxation

of size R for MAX-Πn consists of the following.

Linearization:

For every � ∈ MAX-Πn, we associate a vector

�̃ ∈ Rm and for every assignment x ∈ {±1}n, we

associate a point x̃ ∈ Rm, such that �(x) = 〈�̃, x̃〉
for all � ∈ MAX-Πn and all x ∈ {±1}n.

Polytope:

A convex polytope P ⊆ Rm described by R linear

inequalities, such that x̃ ∈ P for all assignments

x ∈ {±1}n. The polytope P is independent of the

instance � of MAX-Πn.
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Given an instance � ∈ MAX-Πn, the LP relaxation L
outputs the value L(�) = maxy∈P 〈�̃, y〉. Since x̃ ∈ P for

all assignments x ∈ {±1}n and 〈�̃, x̃〉 = �(x), we have

L(�) � opt(�) for instances � ∈ MAX-Πn.

Remark II.1. The choice of linearization does not affect the

minimal size of an LP relaxation; by applying an appropriate

linear transformation, one sees that all linearizations are

equivalent. For concreteness, one could view x 
→ �(x)
as a degree-k multilinear polynomial. In the Fourier basis

{χα : α ⊆ [n]}, one would have J̃ =
∑

α Ĵ(α)χα and

x̃ =
∑

α χα(x)χα.

(c, s)-approximation. We say that a linear programming

relaxation L for MAX-Πn achieves a (c, s)-approximation if

L(�) � c for all instances � ∈ MAX-Πn with opt(�) � s.

We also say that L achieves an α-factor approximation if

L(�) � α opt(�) for all � ∈ MAX-Πn.

The following theorem is inspired by Yannakakis’s charac-

terization of exact linear programming relaxations. It appears

in similar form in previous works [Pas12] and [BFPS12,

Thm. 1]. For simplicity, we specialize it here for constraint

satisfaction problems.

Theorem II.2. There exists an LP relaxation of size R that

achieves a (c, s)-approximation for MAX-Πn if and only

if there exist non-negative functions q1, . . . , qR : {±1}n →
R�0 such that for every instance � ∈ MAX-Πn with

opt(�) � s, the function c−� is a nonnegative combination

of q1, . . . , qR, i.e.

c−� ∈
{∑

i
λiqi

∣∣∣ λ1, . . . , λR � 0
}
.

In other words, the kernel (�, x) 
→ c − �(x) has a

nonnegative factorization of rank R.

A communication model. The characterization in Theo-

rem II.2 has an illustrative interpretation as a two-party,

one-way communication complexity problem: Alice’s input

is a MAX-Π instance � with opt(�) � s. Bob’s input is

an assignment x ∈ {±1}n. Their goal is to compute the

value �(x) in expectation. To this end, Alice sends Bob a

randomized message containing at most L bits. Given the

message Bob outputs deterministically a number v such that

v � c. The protocol is correct if for every input pair (�, x),
the expected output satisfies E v = �(x) (the expectation is

over Alice’s randomness).

An L-bit protocol for this communication problem yields

an LP relaxation of size 2L: If Bob outputs a value v(x, i)
based on message i from Alice, then define qi(x) = c −
v(x, i). This yields 2L non-negative functions satisfying the

conditions of Theorem II.2.

On the other hand, if there exist R = 2L functions

{q1, q2, . . . , qR} as in Theorem II.2, then by adding an

additional non-negative function qR+1, we may assume that

∑R+1
i=1 λi = 1, i.e. that we have a convex combination instead

of a non-negative combination. This yields a strategy for

Alice and Bob: Alice sends an index i ∈ [R+1], drawn from

a distribution depending on � (specified by the coefficients

{λi}), and then Bob outputs c− qi(x) � c.

Example: Suppose the optimization problem is MAX

CUT. In this case, Alice receives a graph G = (V,E)
and Bob a cut S ⊆ V . If Alice sends Bob a uniformly

random edge {u, v} ∈ E and Bob outputs the value

|IS(u)−IS(v)|, the result is a communication (in expectation)

protocol using at most log2
(
n
2

)
bits of communication. In

any protocol achieving a less trivial approximation, Bob

would have to always output numbers strictly less than 1. A

similar communication in expectation model is considered

in [FFGT11], where they show a strong connection to non-

negative rank.

LP Lower Bounds from Test Functions. The following

lemma will allows us to prove lower bounds for general LP

relaxations. For ε = 0, the function H in the statement of the

lemma would correspond to a hyperplane separating c−�
and the cone generated by q1, . . . , qR. The presence of ε will

allow us to tolerate some noise in the arguments that follow.

Lemma II.3. In order to show that (c, s)-MAX-Πn requires

LP relaxations of size greater than R, it is sufficient

to prove the following: For every collection of densities

q1, . . . , qR : {±1}n → R�0, there exists ε > 0, a function

H : {±1}n → R and a MAX-Πn instance � such that

1) 〈H, c−�〉 < −ε
2) 〈H, qi〉 � −ε .

Proof: We will argue that H certifies that c−� is not a

nonnegative combination of q1, . . . , qR. Let γ = c−E�. For

the sake of contradiction, suppose that c−� =
∑

i λiqi for

λ1, . . . , λR � 0. Then, γ = c− E� =
∑

i λi E qi =
∑

i λi.

Also,

〈H, c−�〉 = 〈H,
∑
i

λiqi〉 =
∑
i

λi〈H, qi〉

� −ε
∑
i

λi = −εγ ,

which contradicts the condition 〈H, c − �〉 < −ε since

γ � c � 1.

Sherali-Adams LP relaxations for CSPs. A primary com-

ponent of our approach involves leveraging known integrality

gaps for the Sherali-Adams hierarchy. To that end, we now

give a brief overview of Sherali-Adams LP relaxations. For

a more detailed account, we refer the reader to [Lau03],

[CMM09].

A d-round Sherali-Adams LP relaxation for a MAX-Πn

instance will consist of variables {XS : S ⊆ [n], |S| � d}
for all products of up to degree d on the n-variables. These

variables {XS : |S| � d} are to be thought of as the moments

up to degree d of the variables, under a purported distribution.
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An important property of an SA solution {XS : |S| � d}
is that these moments agree with a set of local marginal

distributions. In particular, for every set S ⊆ [n] with |S| � d
there exists a distribution μS over {±1}S such that,

E
x∼μS

χA(x) = XA ∀A ⊆ S .

In an alternate but equivalent terminology, a d-round SA

instance can be thought of as d-local expectation functional

(d-�.e.f.). Specifically, a d-local expectation functional is

a linear functional Ẽ on degree-d multilinear polynomials

such that Ẽ 1 = 1 and ẼP � 0 for every degree-d
multilinear polynomial P that is nonnegative over {±1}n and

depends only on d variables. In terms of the local marginal

distributions, Ẽ is the unique linear functional on degree d
polynomials satisfying

ẼχA = E
x∼μS

χA(x) ∀|S| � d,A ⊆ S ⊆ [n] .

The d-round Sherali-Adams value of a MAX-Πn instance

� is defined as

SAd(�) def
= max

d-�.e.f. Ẽ
Ẽ� .

This optimization problem can be implemented by an nO(d)-

sized linear programming relaxation for MAX-Πn. (Notice

that Ẽ is only an nd-dimensional object.) In particular, if

d-rounds of Sherali-Adams achieve a (c, s)-approximation

for MAX-Πn, then so do general nO(d)-sized LP relaxations.

Given such a d-�.e.f. Ẽ, we can extend it linearly to all

functions on {±1}n (as opposed to just degree-d polyno-

mials). Concretely, we set Ẽ f = 0 for all functions f that

are orthogonal to the subspace of degree-d functions, i.e.,

orthogonal to the span of {χα : |α| � d}. We can represent

Ẽ by a function H : {±1}n → R such that Ẽ f = 〈H, f〉 for

all f : {±1}n → R. Concretely,

H =
∑

α⊆[n] : |α|�d

cαχα for cα = Ẽχα , (II.1)

where {χα} is the Fourier basis.

In Section III, We will use a modification of H as a test

function in the sense of Lemma II.3. The crucial property

of the test function H that makes it useful for our purposes

is the following.

Observation II.4. Suppose that f : {±1}n → R depends

only on a subset of at most d coordinates S ⊆ [n], then

〈H, f〉 = E
x∼μS

[f(x)]

for some probability measure μS on {±1}n.

One should consider this observation in light of Lemma

II.3. If H is the linear functional corresponding to d rounds

of the Sherali-Adams hierarchy and qi is a non-negative

d-junta, then 〈H, qi〉 � 0.

III. SHERALI-ADAMS AND GENERAL LPS

Our main theorem is that general LP relaxations are

no more powerful than Sherali-Adams relaxations (in the

polynomial-size regime).

Theorem III.1 (Main). Fix a positive number d ∈ N.

Suppose that the d-round Sherali-Adams relaxation cannot

achieve a (c, s)-approximation for MAX-Πn for every n.

Then no sequence of LP relaxations of size at most nd/2 can

achieve a (c, s)-approximation for MAX-Πn for every n.

We prove the following more general result in Section

III-C.

Theorem III.2. Consider a function f : N → N. Suppose

that the f(n)-round Sherali-Adams relaxation cannot achieve

a (c, s)-approximation for MAX-Πn. Then for all sufficiently

large n, no LP relaxation of size at most nf(n)2 can achieve

a (c, s)-approximation for MAX-ΠN , where N � n10f(n).

In particular, by choosing f(n) � logn
log logn , known Sherali-

Adams gaps for MAX CUT [CMM09] and MAX 3-SAT

[Sch08] imply the same integrality gaps for LPs of size

nΩ( log n
log log n

).

A. High-Entropy Distributions vs. Juntas

Fix some n ∈ N. We now prove that every distribution on

n bits with very high entropy has its low-degree part “close

to uniform” off a small set of coordinates. For brevity, we

write S \ v to denote S \ {v}.
Let (X1, . . . , Xn) ∈ {±1}n be correlated random bits with

distribution μ. For a subset S ⊆ [n], we use the notation

XS = {Xi : i ∈ S}. We first prove the following lemma.

Afterward, we use it to bound the Fourier coefficients of

μ. Here, and in what follows, H(·) denotes the Shannon

entropy measured in bits.

Lemma III.3. For all 1 � d, t � n and β > 0, the following

holds. If μ has entropy � n− t, there exists a set J ⊆ [n]
of at most td

β coordinates such that for all subsets A �⊆ J
with |A| � d, we have

max
v∈A

H(Xv | XA\v) � 1− β . (III.1)

For 0 < β < 1, consider the hypergraph Gβ on vertex set

[n] that contains a hyperedge e of size at most d whenever,

for all v ∈ e, we have

H(Xv | Xe\v) � 1− β . (III.2)

Lemma III.3 follows directly from the next claim.

Proposition III.4. If μ has entropy n − t, then

|⋃e∈E(Gβ)
e| � td

β .

Proof: Let J =
⋃

e∈E(Gβ)
e denote the set of vertices

participating in an edge of Gβ . Since each hyperedge contains

at most d vertices, we can find a sequence e1, e2, . . . , er of at
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least r � |J |/d hyperedges such that for each i = 1, 2, . . . , r,

the set ei\(ei−1∪· · ·∪e1) contains at least one vertex ui ∈ J .

Observe that the vertices u1, . . . , ur are distinct.

Writing U = {u1, . . . , ur} and W = [n]\U , we can upper

bound the entropy of X1, . . . , Xn using the chain rule:

H(X1, . . . , Xn) (III.3)

= H (XW ) +

r∑
i=1

H(Xui
| XW∪{u1,...,ui−1})

� H (XW ) +

r∑
i=1

H(Xui
| Xei\ui

)

� |W |+ |U | · (1− β)

� n− |J |β/d .
The first inequality uses the fact that ei \ ui ⊆ W ∪
{u1, . . . , ui−1} (because ei \ ui does not contain any of the

vertices ui, . . . , ur). The second inequality follows directly

from the definition of the hyperedges in Gβ .

Since X1, . . . , Xn has entropy at least n−t by assumption,

it follows that |J | � td/β.

We now record a Fourier-theoretic consequence of Lemma

III.3. To this end, recall that for two probability measures

μ and ν over {±1}n, one defines the KL-divergence as the

quantity

D(μ ‖ ν) = E
μ

[
log2

μ(x)

ν(x)

]
.

In this case, Pinsker’s inequality (and its sharp form due

to Kullback, Csiszár and Kemperman, see e.g. [Tsy09,

Lemma 2.5]) states that

D(μ ‖ ν) � 1

ln 4
‖μ− ν‖21. (III.4)

Lemma III.5. Let μ be a distribution as in the statement

of Lemma III.3, and let J ⊆ [n] be the corresponding set of

coordinates. If A ⊆ [n] satisfies |A| � d and A � J , then∣∣∣∣Eμ [χA(x)]

∣∣∣∣ �√(ln 4)β.

Proof: For x ∈ {±1}n and S ⊆ [n], we use xS to

denote x restricted to the bits in S. Since |A| � d and

A � J , Lemma III.3 implies that some v ∈ A satisfies

(III.1). For y ∈ {±1}A\v, denote by μ|y the distribution of

xv conditioned on the event xA\v = y. We bound∣∣∣∣Eμ [χA(x)]

∣∣∣∣ � E
y∼μ

∣∣∣∣Eμ [χA(x) | xA\v = y]

∣∣∣∣ .
Denote by ν the uniform distribution on {±1}. For any

y ∈ {±1}A\v ,∣∣∣∣Eμ [χA(x) | xA\v = y]

∣∣∣∣ = ‖μ|y − ν‖1

�

√
(ln 4)D(μ|y ‖ ν) ,

by (III.4).

Since

D(μ|y ‖ ν) = 1−H(μ|y) ,

we get ∣∣∣∣Eμ [χA(x)]

∣∣∣∣ � E
y∼μ

√
(ln 4)(1−H(μ|y))

�
√

(ln 4)(1− E
y
[H(μ|y)]) ,

where the last inequality is Cauchy–Schwarz. The desired

bound follows because Ey[H(μ|y)] = H(Xv | XA\v) �

1− β.

Finally, we arrive the primary goal of this section.

Lemma III.6 (High-Entropy Distributions vs Juntas). Let

q : {±1}n → R�0 be a density and let μq denote the

corresponding measure on {±1}n. If μq has entropy least

n− t for some t � n, then for every 1 � d � n and γ > 0,

there exists a set J ⊆ [n] with

|J | � 4td

γ2
.

such that for all subsets α � J with |α| � d, we have

|q̂(α)| � γ.

Proof: Set β = γ2

4 . Now apply Lemma III.5 and use

the fact that q̂(α) = Ex∼μq
[χα(x)].

B. Random Restrictions

We first recall the following standard estimates (see, e.g.,

[McD98]). Suppose X1, . . . , Xn are i.i.d {0, 1} random

variables with E[Xi] = p. Then,

P

(
n∑

i=1

Xi �
pn

2

)
� 1− e−pn/8 . (III.5)

Furthermore, if pn
1−p � 1/2, then

P

(
n∑

i=1

Xi � t

)
=

n∑
i=t

(
n

i

)
pi(1− p)n−i

� (pn)t
∞∑
i=0

(pn/(1− p))i � 2(pn)t . (III.6)

Lemma III.7. For any d ∈ N, the following holds. Let Q
be a collection of densities q : {±1}n → R�0 such that the

corresponding measures μq have entropy at least n− t. If

|Q| � nd/2, then for all integers m with 3 � m � n/4,

there exists a set S ⊆ [n] such that

– |S| = m
– For each q ∈ Q, there exists a set of at most d

coordinates J(q) ⊆ S such that under the distribution

μq, all d-wise correlations in S − J(q) are small.

Quantitatively, we have

|q̂(α)| �
(
32mtd√

n

)1/2
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for all α ⊆ S, α �⊆ J(q), |α| � d.

Proof: We will sample the set S ⊆ [n] by including

each element independently with probability 2m/n, then

argue that with non-zero probability, both the conditions on

S hold.

First, by (III.5), we have |S| � m with probability at least

1− e−m/4 > 1/2.

Fix γ =
(

32mtd√
n

)1/2

. By Lemma III.6, for each q ∈ Q

there exists a set J ′(q) of at most 4td
γ2 �

√
n

8m coordinates

such that for all subsets α � J ′(q) with |α| � d, we have

|q̂(α)| � γ.

The set J(q) for a distribution q is given by J(q) = J ′(q)∩
S. Clearly, E[|J ′(q) ∩ S|] = 2m

n |J ′(q)| � 2m
n ·

√
n

8m � 1/4.

Thus by (III.6), we can write

P [|J(q) ∩ S| � d] � 2

(
2m

n
· |J ′(q)|

)d

� 2 ·
(
2m

n
·
√
n

8m

)d

�
2

4dnd/2
.

The existence of the set S follows by taking a union bound

over all the |Q| � nd/2 densities in the family Q. Note that

we have concluded with |S| � m, but we can remove some

elements from S to achieve |S| = m.

C. Proof of Main Theorem — Theorem III.1

In this subsection, we will prove Theorems III.2 and III.1.

Let m � n be parameters m,n ∈ N to be chosen later. Let �0

be a MAX-Πm instance with SAd(�0) � c and opt(�0) � s.

Our goal is to show that for all ε > 0 and all large enough

n ∈ N, any nd/2-sized LP relaxation for MAX-Πn cannot

certify opt(�) < c−ε for all “shifts” � of �0. (Here, “shift”

means that we plant �0 on some subset of the variables

{1, . . . , n}.)
Let Q denote a collection of densities q : {±1}n → R�0

on {±1}n with |Q| � nd/2. We will show that there exists a

shift � of �0 and a test functional H ∈ L2({−1, 1}n) that

satisfies the conditions of Lemma II.3 (lower bounds from

test functions).

Let B ⊆ {±1}n be the subset of points where one of the

densities q is exceptionally large. Formally, we define

B = {x ∈ {±1}n | ∃q ∈ Q. q(x) � nd} .
By Markov’s inequality, the set B has measure at most

E IB � |Q| · n−d � n−d/2.

We decompose each q ∈ Q into three parts

q = q′ + qbad − E qbad

with qbad = q · IB (and therefore q′ = q · (1− IB)+E qbad).

The function q′ : {±1}n → R�0 is a density because

E q′ = E q · (1− IB) + E q · IB = 1 .

Since q(x) < nd for every point x /∈ B, the function q′

satisfies q′ � nd + 1, which implies that the min-entropy

(and thus Shannon entropy) of the distribution corresponding

to q′ is at least n− t where t = d log2 n+ 1.

By Lemma III.7, there exists a set S ⊆ [n] of size m such

that every q ∈ Q, every Fourier coefficient q̂′(α) with degree

|α| � d and α � J(q) satisfies |q̂′(α)| � K, where

K � 8

(
md log2 n√

n

)1/2

.

For a subset T ⊆ [n], let q|T denote the marginal of q on

T , so that q|T (x) = Ey∈{±1}n q(xT , y[n]\T ). (Equivalently,

q|T =
∑

α⊆T q̂(α)χα.) In this notation, the �1-norm of the

degree-� d Fourier coefficients of q′|J(q) − q′|S is bounded

by ∑
α⊆S

α�J(q)

|α|�d

|q̂′(α)| � Kmd. (III.7)

Let η = md ·max(3n−d/2,K), and assume that n is chosen

large enough so that η < 1
2 .

Let � be the MAX-Πn instance obtained by planting the

MAX-Πm instance �0 on the variable set S. Let H be a

d-round Sherali-Adams solution (in the sense of (II.1)) for

� with value c. Further, we will choose a Sherali-Adams

solution H that satisfies Ĥ(α) = 0 for α � S. This is

possible since all the constraints in � are contained within

S. (Since � is a shift of �0, it has the same Sherali-Adams

value, SAd(�) = SAd(�0))
We claim that H ′ = (1− IB) ·H is a test function in the

sense of Lemma II.3. Recall that ‖�‖∞ � 1. Furthermore,

by (II.1), we have ‖H‖∞ � md. Using these,

〈H ′, c− 2η −�〉
= 〈H, c− 2η −�〉 − 〈H · (c− 2η −�), IB〉
� −2η − 〈H · (c− 2η −�), IB〉

(because 〈H, 1〉 = 1

and 〈H,�〉 = SAd(�))
� −2η + (c+ 2η + ‖�‖∞)‖H‖∞ · E IB

� −2η + 3md · n−d/2

< −η .
Finally,

〈H ′, q〉
= 〈H ′, q′ − E qbad〉+ 〈H ′, qbad〉
= 〈H ′, q′ − E qbad〉+ 0

(using supp(qbad) ∩ supp(H ′) = ∅)

= 〈H, q′ − E qbad〉+ 0

(using supp(q′ − E qbad) ∩ supp(H −H
′) = ∅)

= 〈H, q′〉 − E qbad (using 〈H, 1〉 = 1)
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= 〈H, q′|S〉 − E qbad (using Ĥ(α) = 0 for α � S)

= 〈H, q′|J(q)〉 − 〈H, q′|J(q) − q′|S〉 − E qbad

� 〈H, q′|J(q)〉 − η − E qbad (using |Ĥ(α)| � 1 for all α ⊆ S,
deg(H) � d
and our Fourier-�1-norm bound
(III.7) for q′|J(q) − q′|S)

� E qbad − η − E qbad

� −η.
The last step uses that q′|J(q) is a d-junta with q′|J(q) � E qbad
(because q′ � E qbad by construction). Since H is a d-round

Sherali-Adams functional, it satisfies 〈H, q′|J(q)〉 � E qbad
(by the d-�.e.f. property).

We conclude that by Lemma II.3, the cone generated by

Q does not contain the function c− 2η −� .

We see that for any collection Q of at most nd/2 densities,

there exists a MAX-Πn instance � with opt(�) � s (a shift

of �0) such that c − 2η − � is not in the cone generated

by Q. By Theorem II.2, it follows that any nd/2-sized

linear programming relaxation cannot achieve a (c− 2η, s)-
approximation for MAX-Πn. Finally, note that asymptotically,

we have

η = O

(
md
√
md log n

n1/4

)
. (III.8)

Proof of Theorem III.2: Fix an instance size m and put

d = f(m). In the preceding argument, require that n grows

like m10d = m10f(m) so that η = o(1)) (see (III.8)). The

lower bound achieved is nd/2 � m5f(m)2 .

IV. SYMMETRIC LINEAR PROGRAMS

We will now prove the following theorem relating Sherali-

Adams gaps to those for symmetric LPs for MAX CUT.

Theorem IV.1. Suppose that the t-round Sherali-Adams re-

laxation for MAX CUT cannot achieve a (c, s)-approximation

on graphs with n vertices. Then no symmetric LP of size

�
(
N
t

)
can achieve a (c, s)-approximation on N -vertex

graphs, where N = 2n.

We will require the following lemma of Yannakakis.

Lemma IV.2 ([Yan91, Claim 2]). Let H be a group of

permutations whose index in Sn is at most
(
n
k

)
for some

k < n/4. Then there exists a set J of size at most k such

that H contains all even permutations that fix the elements

of J .

The next claim is an elementary consequence of Lemma

IV.2; we omit its proof for space considerations in this

extended abstract.

Lemma IV.3. Suppose a family of functions F = {fi :
{±1}n → R : i = 1, 2, . . . ,M} is closed under permutation

of its inputs, and M <
(
n
k

)
for k < n/4, then each function

fi depends only on a subset Si ⊆ [n] of at most k coordinates

and possibly the value
∑

a∈[n] xa.

Let � be a Sherali-Adams integrality gap instance of MAX

CUT. Suppose {XS}S∈[n],|S|�t is the t-round Sherali-Adams

solution on �.

Construct a new graph �′ = �1 ∪ �2 consisting of two

disjoint copies of the instance �. Let N = 2n denote the

number of vertices of �′. Let us suppose that �1 is on

vertices {1, . . . , n} and �2 is on {n+ 1, . . . , 2n}.
We will now extend the Sherali-Adams LP solution for �

to a Sherali-Adams solution for �′. Roughly speaking, we

will copy the SA-solution as is on to �1 and negate all its

values on �2. In other words, the Sherali-Adams solution on

�′ is so designed that every pair of vertices xi, xn+i always

have opposite values.

Formally, for any subset S ⊆ [2n] define S1 = S ∩
{1, . . . , n} and S2 = {i − n | i ∈ S \ S1}. Then, we can

describe the SA solution {YS}S⊆[2n],|S|�t as follows,

YS = (−1)|S2|XS1⊕S2

Here S1 ⊕ S2 is the symmetric difference between the two

sets.

Definition IV.4. For a set S ⊆ [2n] of the form S = S1 ∪
(S2 + n) where S1, S2 ⊆ [n], define wt(S) = |S1 ⊕ S2|.

More generally, we will define {YS}S⊆[2n] for all subsets

S ⊆ [2n].

YS =

{
(−1)|S2|XS1⊕S2

if wt(S) � t

0 otherwise

Observation IV.5. For any set S, wt(S ⊕ {i}) = wt(S ⊕
{n+ i}).

Proof: It is easy to see that both values are equal to

the hamming weight of the F2 vector IS1
⊕ IS2

⊕ ei where

IS1
, IS2

∈ Fn
2 are indicators of subsets S1, S2 and ei ∈ Fn

2

is the ith standard basis vector.

Define a function H : {±1}N → R as

H(x) =
∑

S⊆[N ]

YSχS(x) , (IV.1)

where {χS} is the Fourier basis over {±1}N .

Lemma IV.6. For every S ⊆ [2n] and all i ∈ [n], YS⊕{i} =
−YS⊕{n+i}.

Proof: Let S = S1 ∪ (S2 + n) for some S1, S2 ⊆ [n].
By Observation IV.5, wt(S ⊕ {i}) = wt(S ⊕ {n + i}). If

wt(S ⊕ {i}) = wt(S ⊕ {n+ i}) > t, then by definition we

will have YS⊕{i} = YS⊕{n+i} = 0.

On the other hand, if wt(S⊕{i}) = wt(S⊕{n+ i}) � t
then,

YS⊕{i} = (−1)|S2|X(S1⊕{i})⊕S2
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and

YS⊕{n+i} = (−1)|S2⊕{i}|XS1⊕({i}⊕S2)

Therefore, also in this case YS⊕{i} = −YS⊕{n+i}.

Lemma IV.7. For any polynomial p(x1, . . . , xN ), we have

〈H, (
∑N

i=1 xi)p〉 = 0.

Proof: By linearity of the inner product, it is sufficient

to prove the above claim when p is a monomial. Recall that,

〈H,

(∑
i

xi

)
p〉 = E

x∈{±1}N

[
H(x)

(∑
i

xi

)
p(x)

]

Since x takes values in {±1}N , it is sufficient to show the

above claim for the elements of the Fourier basis {χS}.
Fix a monomial χS(x). We can write the above inner

product as,〈 ∑
A⊆[N ]

YAχA(x), χS(x)

(∑
i

xi

)〉

= E
x∈{±1}N

⎡
⎣χS(x)

∑
A⊆[N ],i∈[2n]

YAχA⊕{i}(x)

⎤
⎦

= E
x∈{±1}N

⎡
⎣χS(x)

∑
B⊆[N ]

χB(x)

⎛
⎝ ∑

i∈[2n]
YB⊕{i}

⎞
⎠
⎤
⎦

= 0,

because
∑

i∈[2n] YB⊕{i} = 0 since YB⊕{i} = −YB⊕{n+i}.

Lemma IV.8. If f : {±1}N → R�0 is a function that

depends on a subset J ⊆ [N ] of at most t coordinates and

possibly the value
∑N

i=1 xi, then

〈H, f〉 � 0 .

Proof: Write the function f as a polynomial in xJ =
{xi | i ∈ J} and

∑
i xi as follows,

f = p0(xJ) +
N∑
i=1

pi(xJ)

(∑
i

xi

)i

.

Using Lemma IV.6, we have

〈H, f〉 = 〈H, p0〉 .
Since p0 depends on at most t coordinates, by Observation

II.4 we can write,

〈H, p0〉 = E
xJ∼μJ

[p0(xJ)] ,

where μJ is some distribution on xJ .

Define a distribution μ on {±1}N as follows: Sample

xJ from μJ and then sample xJ̄ uniformly randomly from

among all assignments that satisfy
∑N

i=1 xi = 0. This is

feasible since |J | = t < n/2. Note that the distribution μ

is supported entirely on the set {x ∈ {±1}N |∑i xi = 0}.
Therefore, we have

〈H, p0〉 = E
xJ∼μJ

[p0(xJ)] = E
x∼μ

[p0(xJ)]

= E
x∼μ

⎡
⎣p0(xJ) +

N∑
i=1

pi(xJ)

(∑
i

xi

)i
⎤
⎦

(because
∑

i xi = 0 on the

support of μ)

= E
x∼μ

[f(x)] � 0

(because f � 0 pointwise)

We are now in position to prove the main theorem of this

section.

Proof of Theorem IV.1: Suppose that N is even. Let F =
{f1, . . . , fM} denote the family of functions from {±1}N to

R�0 associated with some symmetric LP relaxation of MAX

CUT, i.e. those coming from an application of Theorem II.2.

By the symmetry assumption, the family F is closed under

permutations of its inputs. Hence, by Lemma IV.3 each of

its functions fi depend on a set Ji of at most t coordinates

and possibly the value
∑n

i=1 xi.

Consider a graph � on n = N/2 nodes with SAt(�) > c,
and let �′ be the graph obtained by taking two copies of �
as discussed before. Then �′ has the property that SAt(�′) =
SAt(�) and opt(�′) = opt(�). Let H be the corresponding

functional defined in (IV.1).

Let us consider �′ as a function on {±1}N assigning cuts

to their MAX CUT value in �′. Suppose we can express

express,

c−�′ =
M∑
i=1

λifi ,

wherein λi � 0. Taking inner product with the functional H
on both sides yields

〈H, c−�′〉 = c− SAt(�′) < 0

while,

〈H, fi〉 � 0 ∀i by Lemma IV.8 ,

a contradiction.

V. CONCLUSION

We have shown that for constraint satisfaction problems,

there is an intimate relationship between general polynomial-

sized linear programs and those arising from O(1) rounds

of the Sherali-Adams hierarchy. There are a few natural

questions that readily suggest themselves.

Firstly, our quantitative bounds are far from optimal. For

instance, it is known that the integrality gap of 1/2 + ε for

MAX CUT persists for ncε rounds, where cε is some constant

depending on ε [CMM09], while we are only able to prove
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an integrality gap for LPs of size nΩ( log n
log log n

). This is due to

the factor of md appearing in our Fourier estimate (III.7).

Question V.1. Is it the case that for approximating (boolean)

max-CSP problems on n variables, linear programs of

size R(n) are only as powerful as those arising from

poly( logR(n)
logn ) rounds of the Sherali-Adams hierarchy?

Secondly, given the connection for linear programs, it is

natural to suspect that a similar phenomenon holds for SDPs.

Question V.2. For max-CSP problems, is there a connection

between the efficacy of general SDPs and those from the

Lasserre SDP hierarchy?

Finally, our techniques have made very strong use of

the product structure on the space of feasible assignments

for CSPs. One might hope to extend these connections to

other types of problems like finding maximum-weight perfect

matchings in general graphs [Yan91] or approximating vertex

cover.
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