
PCPs via low-degree long code and
hardness for constrained hypergraph coloring

Irit Dinur

Dept. of Applied Math and Computer Science
The Weizmann Institute of Science

Rehovot, Israel
Email: irit.dinur@weizmann.ac.il

Venkatesan Guruswami

Computer Science Department
Carnegie Mellon University

Pittsburgh, USA
Email: guruswami@cmu.edu

Abstract—We develop new techniques to incorporate the
recently proposed “short code” (a low-degree version of the
long code) into the construction and analysis of PCPs in the
classical “Label Cover + Fourier Analysis” framework. As a
result, we obtain more size-efficient PCPs that yield improved
hardness results for approximating CSPs and certain coloring-
type problems.

In particular, we show a hardness for a variant of hyper-
graph coloring (with hyperedges of size 6), with a gap between
2 and exp(2Ω(

√
log logN)) number of colors where N is the

number of vertices. This is the first hardness result to go
beyond the O(logN) barrier for a coloring-type problem. Our
hardness bound is a doubly exponential improvement over
the previously known O(log logN)-coloring hardness for 2-
colorable hypergraphs, and an exponential improvement over
the (logN)Ω(1)-coloring hardness for O(1)-colorable hyper-
graphs. Stated in terms of “covering complexity,” we show that
for 6-ary Boolean CSPs, it is hard to decide if a given instance
is perfectly satisfiable or if it requires more than 2Ω(

√
log logN)

assignments for covering all of the constraints.
While our methods do not yield a result for conventional

hypergraph coloring due to some technical reasons, we also
prove hardness of (logN)Ω(1)-coloring 2-colorable 6-uniform
hypergraphs (this result relies just on the long code).

A key algebraic result driving our analysis concerns a very
low-soundness error testing method for Reed-Muller codes. We
prove that if a function β : Fm

2 → F2 is 2Ω(d) far in absolute
distance from polynomials of degree m−d, then the probability
that deg(βg) � m−3d/4 for a random degree d/4 polynomial
g is doubly exponentially small in d.

Keywords-PCP, Hardness of approximation, hyper graph
coloring, short code

I. INTRODUCTION

Hardness of approximating constraint satisfaction prob-

lems is an area that has seen a great deal of progress in

recent years. Following the pioneering works [3], [9], the

standard framework for proving inapproximability has been

via a combination of Label Cover (or special cases such as

Unique Games [13]) and the long code. For proving constant

gap inapproximability, the relative inefficiency of the long

Both authors’ research is supported in part by a BSF grant. Irit Dinur’s
research is also supported by an ERC grant numer 239985.

code is negligible. However, it becomes a serious bottleneck

for non-constant parameter settings, most obviously, for

proving hardness of approximate coloring. For this set of

problems, there is an exponential or doubly exponential gap

between the best known approximation algorithms (which

require nΩ(1) colors for n-vertex (hyper)graphs) and the best

known hardness results (which at best only rule out efficient

o(log n)-coloring)

A very intriguing object called the “short code” was

introduced and studied in [2]. This is a puncturing of the

long code to locations indexed by low-degree polynomials,

and to better reflect this, in this work we refer to the short

code as the low-degree long code. This code was introduced

in [2] as a “derandomization” of the long code, where it

was used it to establish exponentially stronger integrality

gaps for Unique Games, construct small set expanders whose

Laplacians have many small eigenvalues, and obtain a more

efficient version of the KKMO alphabet reduction [14] for

Unique Games.

In this work we develop new techniques to use the low-

degree long code in reductions from Label Cover and obtain

the following (quasi-)NP-hardness results. Our main results

are

• A hardness for a variant of approximate hypergraph

coloring, with a gap between 2 and exp(2Ω(
√
log logN))

number of colors (where N is the number of vertices).

This is the first inapproximability result to go beyond

the logarithmic barrier for a coloring-type problem.

• A hardness for gap(1, 1516 + ε)-4SAT for ε =

exp(−2Ω(
√
log logN)). This improves upon Håstad’s re-

sult [9] where ε = 1/(logN)c for some constant c > 0.

• A hardness for approximate hypergraph coloring, with

a gap between 2 and (logN)Ω(1) colors.

Adapting a long-code test into the low-degree long code

setting turns out to be non-trivial, and there seems to be no

general recipe (as of yet) for doing so. For instance, while it

is straightforward to import Håstad’s classic gap(1−ε, 1/2+
δ)-3LIN result to the low-degree long code setting, the above

results require a more carefully tailor-made construction.

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.44

340

For certain PCPs in Håstad’s work, such as 3SAT and 4-set

splitting, we do not yet know how to adapt them to work

with the low-degree long code. We comment that invariance-

principle based analysis [15] is very powerful for analyzing

dictatorship tests, and was used by [2] for analyzing their

constructions. Nevertheless, for obtaining strong parameters

we find that working directly with the Fourier expressions

gives us a better handle on the kind of noise analysis that

is needed.

For proving these results, we develop a “folding” mecha-

nism for the low-degree long code that works with available

label cover constraints. One of the important components of

any long-code test is the noise, which becomes especially

subtle when aiming for perfect completeness. The degree

restriction in the low-degree long code makes it harder

to control the correlations between various functions via

appropriately chosen noise. Finally, to analyze some of the

noise expressions in our tests, and especially to be able to

get stronger parameters, we prove some new results on local

testing Reed Muller codes, which we discuss next.

A. Local testing of Reed Muller codes over F2

One of the key insights in [2] was a connection between

the analysis of the low-degree long code and Reed-Muller

testing. Let us denote by P (m, r) the functions F
m
2 → F2

that have degree � r. For functions β, g : F
m
2 → F2,

denote χβ(g) = (−1)
∑

x∈F
m
2

β(x)g(x)
. Specifically, given a

β that is far from P (m,m − d − 1) polynomials, they

noted that one can bound the expectation |Eμ[χβ(μ)]| for a

random low-weight μ by appealing to a powerful result of [4]

about testing Reed-Muller codes. This is formally stated in

Proposition 14. Using such a noise μ enables attenuating the

contribution of large weight Fourier coefficients; however, it

causes the test to have imperfect completeness. To obtain

our low-degree long code based constructions with perfect

completeness, we prove a new result concerning testing

Reed-Muller codes, stated below.

Theorem 1. Let d be a multiple of 4. Let β : Fm
2 → F2 be

2d/2-far from P (m,m− d− 1). Then for uniformly random
polynomials g ∈ P (m, d/4) and h ∈ P (m, 3d/4), we have

Eg

[∣∣Eh[χβ(gh)]
∣∣] � 2−4·2d/4 .

The key quantitative aspect of the above result is the

doubly exponential decay in d. To obtain such a bound,

we observe that the set of “bad” choices of g, for which

βg has degree m − 3d/4 − 1 (i.e., one lower than what

one expects), is a subspace of P (m, d/4). We then lower

bound the co-dimension of this subspace by 2Ω(d). We do

this via a recursive approach to pass to two similar problems

in dimension (m− 1), by making use of the main technical

ingredient in [4] which argues the abundance of hyperplanes

A such that β|A is 2d/2−2-far from polynomials of degree

m− d− 1 on one less variable.

We note that a “robust” version of the above theorem,

which argues that βg will also likely be far from P (m,m−
3d/4−1), would be nice to have (as an interesting algebraic

statement in itself). One can deduce such a claim from the

above-mentioned result of [4] which proves such a robust

version for g ∈ P (m, 1), but this will only give an upper

bound of 2−O(d).

B. Inapproximability Results

To describe our results let us first briefly recall the notion

of covering CSPs from [6]. A q-ary ϕ-CSP is given by a

q-uniform hypergraph where each hyperedge is associated

with a constraint ϕ. The covering number of a CSP is the

minimal number of assignments to the vertices so that each

hyperedge is covered by at least one assignment, see also

Definition 1. If one views a hypergraph coloring instance as

a not-all-equal CSP, then the covering number is exactly log

of the coloring number. This was the motivation of [8] and

later [6] for studying the notion of covering.

In light of the lack of progress on hardness of approximate

coloring for both graphs and hypergraphs, [6] suggested

studying the hardness of gap covering problem, in the hope

of approaching a potentially optimal gap-covering hardness

result of 1 vs. Ω(logN), which corresponds to a hardness

gap of O(1) vs. a polynomial number of colors. Given the

current state of the art, they mentioned that even obtaining

a gap of O(1) vs. ω(log logN) would be interesting.

Theorem 2. Assume that NP does not admit n2O(
√

log log n)

time algorithms (note that this runtime is no(logn)). Given
a 6-ary CSP of size N , no polynomial-time algorithm can
decide if it is perfectly satisfiable, or if its covering number
is at least 2Ω(

√
log logN).

Prior to this work the best known gap-covering hardness

was O(1) vs. O(log logN) (implicit in [11]) and 1 vs.

O(log log logN) (implicit in [8]). Both these results in [8],

[11] in fact applied to coloring (4-uniform) hypergraphs. It

remains to be seen if a result similar to Theorem 2 can be

obtained for hypergraph coloring. This would be a major

quantitative jump, breaking the barrier of O(logN) colors.

We remark that the result above is obtained for a 6-

ary constraint that is the disjunction of three inequality

constraints. Since inequality makes sense over any alphabet

size, one can think of this problem directly as a coloring-type

problem, instead of a covering problem. This is always pos-

sible when the constraints are so-called “equality constrained

languages” [5], and we give an alternative formulation of this

theorem as a coloring problem in Theorem 22.

Along the way to proving Theorem 2, we establish the

following inapproximability result for 4SAT with perfect

completeness. We present this result first to illustrate our

techniques in the basic setting of 4SAT, before applying

them to a covering 6-CSP to deduce Theorem 2.

341

Theorem 3. Assume that NP does not admit nO(logn) time
algorithms. Given an instance of 4SAT of size N , there is
no polynomial time algorithm to distinguish between the
following two cases:

• The instance is satisfiable.
• Every assignment satisfies at most a fraction 15

16 +

2−2Ω(
√

log log N)

of the clauses.

We remark a similar result but without the perfect com-

pleteness would have been significantly easier to prove. A

direct adaptation of the perfect completeness tests seems less

forthcoming due to the limitation on the noise imposed by

working with the short code. It is worth mentioning that

even for long code based constructions, perfect completeness

tends to be significantly more difficult to ensure, often

requiring additional technical elements, such as smoothness

of Label Cover projections [12], and/or picking functions

whose bias itself is sampled from carefully chosen distribu-

tions as in [9, Sections 6,7], [10].

Fortunately, for 4SAT one can establish hardness avoiding

the more complicated technical elements [9, Thm. 6.2] (this

would yield an inapproximability factor 15
16 +

1
(logN)c for

some small absolute constant c > 0). Even so, adapting this

to the low-degree long code setting involves some careful

design choices, as multiplying two functions, which seems

like an essential component when perfect completeness is

desired, increases the degree. This necessitates restricting

certain functions in the test to be of smaller degree. In

order to ensure that this doesn’t bias the query pattern to

a small portion of the low-degree long code, we query the

smaller degree functions in a separate low-degree long code

of smaller degree. This “multipartite” structural restriction

is what precludes us from extending our result for covering

6-CSP (Theorem 2 to a result about hypergraph coloring.

(Clearly, if the variables of every constraint straddles two

or more parts, then the associated hypergraph is trivially 2-

colorable.)

Finally, we also include a result on the hardness of

hypergraph coloring. This result does not rely on the low-

degree long code and is just based on techniques in Håstad’s

1997 paper [9]. However, as the result statement is not

explicit in the literature, we include it here and defer the

proof to the full version. (Also, this test paved the way for

the version with the low-degree long code stated in Theorem

2.)

Theorem 4. Assume that NP does not admit nO(log logn)

time algorithms. There is an absolute constant c > 0 such
that the following holds. Given a 6-uniform hypergraph
on N vertices, there is no polynomial time algorithm to
distinguish between the following two cases:

• The hypergraph can be colored with 2 colors so that
every hyperedge is bichromatic.

• The hypergraph does not have an independent set with
N/(logN)c vertices, and in particular any coloring of
the vertices with (logN)c colors will have a monochro-
matic hyperedge.

We note that (logN)Ω(1) colors is currently the strongest

quantitative bound on hardness for hypergraph coloring.

Khot obtained a similar result using the “split code” for

coloring 7-colorable 4-uniform hypergraphs [11]. The above

statement is incomparable as it applies to 2-colorable hy-

pergraphs, albeit of larger uniformity. For 3-uniform hy-

pergraphs, hardness of O(3
√
log logN)-coloring 2-colorable

hypergraphs is shown in [7], and a super-constant hardness

for 3-colorable case is shown in [12].

C. Organization

We begin in Section II with background information on

label cover and CSPs, the low-degree long code and its

connection to Reed-Muller testing, and describe our folding

mechanism for the low-degree long code. Our new algebraic

result on testing Reed-Muller codes (Theorem 1) is proved

in Section III. In Section IV, we prove Theorem 3 on the

hardness of approximating satisfiable instances of 4SAT. We

prove the result for covering 6-CSP (Theorem 2) in Section

V.

II. PRELIMINARIES

A. Label Cover and its hardness

A label cover instance is given by a bipartite graph

G = (U, V,E), two alphabets ΣU and ΣV and a projection

constraint πuv : ΣU → ΣV per edge uv ∈ E. The goal is

to assign labels to the vertices in a way that maximizes the

number of satisfied constraints.

We next state a theorem about the NP-hardness of label

cover, where the label cover has a concrete structure that is

convenient for use with the low-degree long code.

Theorem 5 (Hardness of Label Cover). Let 	 ∈ N be
a parameter. There is a polynomial-time reduction from a
3SAT instance of size n to a label cover instance of size
nO(�) that is specified by

• A constraint graph G = (U, V,E), ΣU = F
3�
2 and

ΣV = F
�
2.

• Every u ∈ U carries 	 functions f (u)1 , . . . , f
(u)
� : F3

2 →
F2.

• Every edge uv ∈ E carries a projection mapping
defined by a subset πuv ⊂ [3], |πuv| = 	, that
contains exactly one element in each triple of indices
(3i+1, 3i+2, 3i+3), for i = 0, . . . , 	−1. The constraint
on an edge is said to be satisfied by a ∈ (F3

2)
� and

b ∈ F
�
2 if

f
(u)
1 (a1) = . . . = f

(u)
� (a�) = 0 and πuv(a) = b .

342

The label cover instance has the following completeness and
soundness conditions:

• If the 3SAT instance is satisfiable, then there is an
assignment for the label cover instance satisfying every
constraint.

• If the 3SAT instance is unsatisfiable, then every as-
signment for the label cover instance satisfies at most
2−Ω(�) fraction of the constraints.

This theorem is obtained from standard techniques: start

with an NP-hard instance of gap-3SAT, and then perform

	-parallel repetition [1]. The functions f
(u)
1 , . . . , f

(u)
� asso-

ciated with an 	-tuple u of clauses check that the clauses

are satisfied.

B. CSPs, Covering CSPs, and coloring problems

Let X = {x1, ..., xn} be a set of n boolean variables

and ϕ : {0, 1}q → {0, 1} be a predicate. A ϕ-constraint
over X is an equation of the form ϕ (xi1 , . . . , xit) = 1,

where i1, . . . , it ∈ [n]. A ϕ-CSP instance C is a set of ϕ-

constraints over X .

It is standard to denote by 4SAT the CSP where each

constraint is defined by a disjunction of four variables or

their negations, and by 3LIN the CSP where each constraint

is defined by a linear equation over three variables modulo

2.

Let A1, . . . , Ak ∈ {0, 1}n be a set of assignments for X .

We say that A1, . . . , Ak cover the instance C if for every

constraint in C, there exists i ∈ [k] such that Ai satisfies

the constraint. The covering number of C, denoted ν(C),
is smallest number k of assignments for X such that each

constraint is satisfied by at least one of the assignments.

We denote by cover-ϕ the problem of finding the covering

number of a given CSP. The gap problem is defined as

follows

Definition 1 (gap-cover-ϕ). Let c < s ∈ N, and let ϕ be a
predicate. Given a ϕ-CSP instance C, decide between

• Yes case: ν (C) ≤ c. I.e., there exists a set of at most c
assignments that covers C.

• No case: ν (C) ≥ s. I.e., no set of at most s assign-
ments covers C.

C. The low-degree long code

Notation. We denote the field with two elements by F2.

For a positive integer m, we denote by Fm the F2-vector

space of functions F
m
2 → F2. We can equip Fm with

the Hamming metric by defining for g, h ∈ Fm, their

distance Δ(g, h) to be the number of x ∈ F
m
2 such that

g(x) �= h(x). For a subset A ⊆ F
m
2 , we denote by g|A be

the function g restricted to A. The distance between g|A
and h|A, Δ(g|A, h|A), is the number of x ∈ A such that

g(x) �= h(x).

For g ∈ Fm and H ⊆ Fm, we define Δ(g,H) =
minh∈HΔ(g, h). We say g is Δ-far from a subset H ⊆ Fm

is Δ(g,H) > Δ; otherwise we say g is Δ-close to H.

Every function f ∈ Fm can be uniquely expressed as a

multilinear polynomial over F2 of degree at most m. We

will be interested in those functions which have much lower

degree.

Definition 2 (Reed-Muller code). We denote by P (m, d)
the space of all functions f : Fm

2 → F2 that have degree
at most d. The evaluations of the polynomials in P (m, d)
at all points in F

m
2 gives the binary m-variate Reed-Muller

code of degree d, usually denoted as RM(m, d).

Note that P (m, d) is a subspace of Fm. It is well-known

and easy to see that the dual subspace of P (m, d), denoted

P (m, d)⊥, is the subspace P (m,m−d−1) of Fm consisting

of polynomials of degree less than m− d.

We will now define the low-degree long code first intro-

duced in [2], where it is called the “short code.”

Definition 3. Let m � d be positive integers, and let
a ∈ F

m
2 . For integers m, d, the (m-variate degree-d) low-

degree long code of a, denoted SCm,d(a), is a function from
P (m, d) to F2 defined by

SCm,d(a)(g) = (−1)g(a) for g ∈ P (m, d) .
When m, d are clear from context, we will refer to the low-
degree long code as SC(a).

For β : F
m
2 → F2, the weight of β, denoted wt(β),

is the number of x ∈ F
m
2 such that β(x) = 1. In other

words, wt(β) = Δ(β,0) is the distance of β from the zero

polynomial.

Definition 4 (Character set). For positive integers m � d,
we define by Λ(m, d) the set of functions β : Fm

2 → F2

which are the minimum weight functions (ties broken arbi-
trarily) in the cosets of P (m,m− d− 1) in Fm.1

By definition, for each β ∈ Λ(m, d), the closest polyno-

mial (in Hamming distance) of degree at most m−d−1 to β
is the zero polynomial. The functions in Λ(m, d) correspond

to the “Voronoi cell” of the zero polynomial for the set of

points P (m,m− d− 1), under the metric Δ(·, ·).
For functions β, g : Fm

2 → F2, we define the “character

mapping” χβ(g) byχβ(g) = (−1)
∑

x∈F
m
2

β(x)g(x)
.

The following are easy consequences of P (m, d)⊥ being

equal to P (m,m− d− 1).

Fact 6. For β : F
m
2 → F2, we have Eg[χβ(g)] ={

1 if β ∈ P (m,m− d− 1)
0 otherwise

1Since P (m, d)⊥ = P (m,m − d − 1), one has |Λ(m, d)| =

|Fm|/|P (m,m− d− 1)| = |P (m, d)| = 2
∑d

j=0

(
m
j

)
.

343

where the expectation is taken over a random g ∈ P (m, d).
Fact 7. For β1, β2 ∈ Λ(m, d), we have Eg[χβ1

(g)χβ2
(g)] ={

1 if β1 = β2
0 otherwise

where the expectation is taken over a random g ∈ P (m, d).
By well-known facts from the character theory of finite

abelian groups, we have:

Fact 8. Every function A : P (m, d) → R admits the
“Fourier” expansion

A(g) =
∑

β∈Λ(m,d) Â(β)χβ(g),
where the Fourier coefficients are given by the inversion
formula Â(β)) = Eg

[
A(g)χβ(g)

]
, with the expectation

taken over a uniformly random g ∈ P (m, d).
Finally, we consider two functions over different-

dimension domains, A : P (m, d) → {−1, 1} and B :
P (, d) → {−1, 1} where m > 	. Suppose we have a

projection π : F
m
2 → F

�
2 defined by π(x1, . . . , xm) =

(xi1 , . . . , xi�) for some indices 1 � i1 < · · · < i� � m.

The projection π allows us to lift a polynomial f ∈ P (, d)
to the larger domain without changing its degree, defining

f ◦ π ∈ P (m, d) by f ◦ π(x) = f(π(x)). Now, for

β : F
�
2 → F2, χβ(f ◦ π) = (−1)

∑
x∈F

m
2

(f◦π)(x)·β(x)
=

(−1)
∑

y∈F
�
2
f(y)·∑x∈π−1(y) β(x) = (−1)

∑
y∈F

�
2
f(y)·π2(β)(y)

=
χπ2(β)(f), where we define π2(β) : F

�
2 → F2 by

π2(β)(y) =
∑

x∈π−1(y) β(x) mod 2.

Fact 9. Let β ∈ Λ(m, d) and let α ∈ Λ(, d). Then
Ef∈P (�,d)[χβ(f ◦ π)χα(f)] equals 1 if α = π2(β) and zero
otherwise.

D. Folding properties of low-degree long code

Folding over constraints.: Let p1, . . . , pk ∈ P (m, 3) be

given. Let

I = 〈p1, . . . , pk〉 =
{

k∑
i=1

piqi

∣∣∣∣∣ qi ∈ P (m, d− 3)

}
,

clearly a linear space. We define P (m, d)/I to be the

collection of cosets of I in P (m, d), and we denote by p+I
the coset of p ∈ P (m, d).
Definition 5 (Folding). A function A : P (m, d) → R is
folded over I = 〈p1, . . . , pk〉 if

∀p, p′ ∈ P (m, d), p− p′ ∈ I ⇒ A(p) = A(p′).

A is folded over {−1, 1} if A(g) = −A(1 + g) for all g ∈
P (m, d).

Fact 10. Let a ∈ F
m
2 . If A = SC(a) and pi(a) = 0 for all

i ∈ [k], then A is folded over 〈p1, . . . , pk〉 and over {−1, 1}.
We next show that a function folded over I cannot have

weight on small Fourier coefficients that are non-zero on I .

Claim 11. Let β : F
m
2 → F2 have wt(β) < 2d−3, and

suppose there is an element x ∈ F
m
2 with β(x) = 1 for

which there is some pi such that pi(x) �= 0. Then if A is
folded over I then Â(β) = Eg[χβ(g)A(g)] = 0

Proof: Let X = {x ∈ F
m
2 | β(x) = 1 and ∃i, pi(x) �= 0}.

Choose some a ∈ X and let i be such that pi(a) = 1.

Let p = qpi ∈ I where q is a polynomial that vanishes

on all points of X except a. q has degree at most d − 3
as long as |X| � wt(β) < 2d−3. Pair each function

g ∈ P (m, d) with g + p. By folding, A(g) = A(g + p), but

χβ(g + p) = χβ(g)χβ(p) = −χβ(g), so Â(β) = 0.

Folding over “true”.: Let us denote by P ′(m, d) the

set obtained by choosing exactly one function out of each

pair g, 1 + g ∈ P (m, d). Similarly, denote by P ′(m, d)/I
the set obtained by choosing exactly one coset out of each

pair g + I, 1 + g + I ∈ P (m, d)/I .

Given a function A′ : P ′(m, d) → {−1, 1} it can be

naturally extended to A : P (m, d) → {−1, 1} by setting

A(1 + g) = −A′(g). A function A : P (m, d) → {−1, 1}
is said to be folded over {−1, 1} if A(g) = −A(1 + g) for

all g. If A is folded over {−1, 1} then for any β with even

wt(β), Â(β) = 0. In particular, Â(0) = 0.

Fact 12. Given a function Ã : P ′(m, d)/I → R, there is
a unique function A : P (m, d) → R that is folded over
{−1, 1} and folded over I and for all g ∈ P (m, d), Ã(g +
I) = A(g).

E. Reduction from Label Cover using the low-degree long
code

All of our inapproximability results will follow the same

general framework [3], [9] combining label cover with the

long code adapted to the low-degree variant in the following

way. Start from a label cover instance G as in Theorem 5.

For each v ∈ V place a block of variables corresponding to

P (, d). For each u ∈ U , let I(u) = 〈f (u)1 , . . . , f
(u)
� 〉 where

f
(u)
1 , . . . , f

(u)
� are the degree-3 functions that are associated

with u. For each u place a block of variables corresponding

to P (3	, d)/I(u).

Note that an assignment to these variables is equivalent

to a collection of functions for all u and v,

A(v) : P (, d)→ {−1, 1} and B(u) : P (3	, d)→ {−1, 1}
such that for each u ∈ U , B(u) is folded over I(u). Some-

times we will also need the tables to be folded over {−1, 1},
in which case the block of variables (from which we extend

A(v) to all of P (, d)) will be restricted to P ′(, d), and

similarly B(u) will be extended from P ′(3	, d)/I(u).
Our reductions, as usual, are described by a PCP verifier

that randomly queries the functions A(v) and B(u). If ϕ is

the acceptance predicate of the PCP verifier, then together

with the query pattern this describes a ϕ-CSP. To analyze

344

the reduction, one writes Fourier expressions that describe

the probability of acceptance. The following lemma is an

adaptation to the low-degree long code of Håstad’s technique

for converting certain Fourier expressions into a label cover

strategy. One subtle point below is that we need wt(β) to be

bounded to ensure that every element in the support of β is a

valid assignment to u, i.e., one that satisfies f
(u)
1 , . . . , f

(u)
� .

Lemma 13. If K � 2d−3 and

E
uv

[∑
β:wt(β)<K
π2(β) �=0

Â(v)(π2(β))
2B̂(u)(β)2

]
� δ, (1)

then there is an assignment for the label cover satisfying at
least δ/K of the constraints.

Proof: Define a randomized assignment as follows. For

each u ∈ U choose a random β ∈ Λ(3	, d) with probability

proportional to B̂(u)(β)2 and then assign u with a random

element b ∈ β−1(1). Similarly, for each v ∈ V , choose a

random α ∈ Λ(, d) with probability proportional to Â(α)2

and then assign u with a random element a ∈ α−1(1). Since∑
β B̂(β)

2 � 1, the probability of picking a certain β is at

least B̂(β)2, and similarly for α.

The left hand side of (1) lower bounds the probability that

u was assigned through β, and v was assigned through α =
π2(β). If that happened, then for each choice of a ∈ α−1(1)
there is at least one matching b ∈ β−1(1), which is chosen

with probability at least 1/K. It remains to observe the key

fact that b is a valid assignment for u because of Claim 11

and the fact that wt(β) < K � 2d−3.

F. Local testing of Reed-Muller codes

From Fact 7 we have, for β ∈ Λ(m, d), Eg[χβ(g)] ={
1 if β = 0
0 if β ∈ Λ(m, d) \ {0}

when the expectation is taken over a random g ∈ P (m, d).
Thus, orthogonality (over F2) with a random degree d
polynomial g ∈ P (m, d) serves as a perfect test for whether

β ∈ Λ(m, d) is the zero polynomial or not (or equivalently,

if β ∈ Fm belongs to P (m,m − d − 1) or not). The next

result, which follows from [4], shows that when β ∈ Λ(m, d)
has large weight (or equivalently, if β ∈ Fm is far from

P (m,m− d− 1)), the above expectation is bounded away

from 1 even when g is chosen pseudorandomly, correspond-

ing to the minimum weight codewords of RM(m, d) (i.e.,

products of d linearly independent affine forms). Specifi-

cally, let L(m, d) ⊆ P (m, d) be the subset of degree d
polynomials which are the product of exactly d linearly

independent affine forms. Then we have the following claim

which we will use in our warm-up 3LIN PCP (but not for

any other PCP construction).

Proposition 14. There exists an absolute constant ρ0 < 1
such that for all β ∈ Λ(m, d),

E
μ∈L(m,d)

[
χβ(μ)

]
� ρ = max

{
1− wt(β)

2d
, ρ0

}
. (2)

Moreover, if we choose μ1, . . . , μt independently at random
from L(m, d) then

E
μ1,...,μt∈L(m,d)

[
χβ(μ1 + · · ·+ μt)

]
� ρt , (3)

Proof: Consider the test for membership of β in

P (m,m − d − 1) that proceeds by picking a random

μ ∈ L(m, d) and checking that
∑

x∈Fm
2
β(x)μ(x) = 0.

Then Eμ∈L(m,d)[χβ(μ)] = 1 − 2Rej(β) where Rej(β)
is probability that the test rejects β. Theorem 1 in [4],

applied for m variables and degree m − d − 1, implies

that Rej(β) � min{wt(β)
2d+1 , ε1} for some absolute constant

ε1 > 0. The bound (2) follows by setting ρ0 = 1− 2ε1. The

bound (3) follows by noting that E[χβ(μ1 + · · · + μt)] =

E[χβ(μ1)] · · ·E[χβ(μt)].

III. A NEW LOW-ERROR TESTER FOR REED-MULLER

CODES

In this section, our goal is to prove the following result,

which will be used in the analysis of our low-degree long

code based PCPs to show that the “high frequency” terms

in the Fourier expansion make a negligible contribution.

Theorem 15. Let d be a multiple of 4. Let β ∈ Fm be
2d/2-far from P (m,m− d− 1), and let g ∈ P (m, d/4) and
h ∈ P (m, 3d/4) be uniformly random polynomials from
their respective domains. Then

E
g

[∣∣E
h
[χβ(gh)]

∣∣]] � 2−4·2d/4 . (4)

Fix a β ∈ Fm. Appealing to Fact 6 we know

Eh∈P (m,3d/4)[χβ(gh)] = Eh∈P (m,3d/4)[χβ·g(h)] ={
1 if βg ∈ P (m,m− 3d/4− 1)
0 otherwise

. Therefore, the ex-

pectation in (4) equals

E
g

[∣∣E
h
[χβ(gh)]

∣∣] = Prg∈P (m,d/4)[βg ∈ P (m,m−3d/4−1)] .
(5)

The following simple observation shows that estimating the

above probability is really a linear-algebraic problem of

bounding the dimension of a certain subspace. This is the

subspace of polynomials g for which the degree of βg is

strictly smaller than the product of the degrees.

Observation 16. Fix any β : Fm
2 → F2. For an integer

k � d, the set

B
(m)
d,k (β)

def
= {g ∈ P (m, k) | βg ∈ P (m,m− d− 1 + k)}

(6)

is a subspace of P (m, k).

345

Combining the above with Equation (5), we see that the

expectation in (4) is given by

E
g

[∣∣E
h
[χβ(gh)]

∣∣] = 2
dim(B

(m)

d,d/4
(β))−dim(P (m,d/4))

.

Theorem 15 now follows from the following result.

Theorem 17. For all positive integers m, d, k satisfying
m > d and 4|d, the following holds. If β : Fm

2 → F2 has
distance more than 2d/2 from P (m,m − d − 1), then the
subspace B(m)

d,d/4(β) defined in (6) has co-dimension (as a
subspace of P (m, d/4)) at least 2d/4−2.

The rest of the section will be devoted to proving Theorem

17. For positive integers d, k, let us define the function Φd,k :
N → N as follows. If d < k, then Φd,k is identically 0.

Otherwise, for d � k,

Φd,k(D) = min
{
dim(P (m, k))−dim(B(m)

d,k (β))
}
, (7)

where the minimum is taken over all m > d and β ∈ Fm

such that Δ(β, P (m,m− d− 1)) � D and where B
(m)
d,k (β)

is as defined in (6).

We note that Theorem 17 will follow if we prove that

Φd,d/4(2
d/2) � 2d/4−2 . (8)

We begin with the following claim which gives us the base

case showing a lower bound when the distance D = 1.

Claim 18. For d � k, Φd,k(1) � 1.

Proof: The claim can be restated as follows: If β /∈
P (m,m − d − 1), then B

(m)
d,k (β) is a proper subspace of

P (m, k), or in other words there exists ν ∈ P (m, k) such

that βν /∈ P (m,m−d−1+k). We now prove this fact. As

the dual space of P (m,m−d−1) in Fm is P (m, d), when

β /∈ P (m,m−d−1), there must exist ξ ∈ P (m, d) such that∑
x∈Fm

2
β(x)ξ(x) = 1, or equivalently βξ /∈ P (m,m − 1).

We may assume that ξ is a monomial ξ = xi1xi2 · · ·xil
with l � d as such monomials form a basis of P (m, d).
If l � k, then ξ itself serves as the witness ν such that

βν /∈ P (m,m − d − 1 + k). Otherwise, we can take ν =
xi1xi2 · · ·xik and βν can’t have degree at most m−d−1+k
as that would imply βξ has degree at most m− d− 1+ l �
m− 1, a contradiction.

The following lemma will be used in the recursive step

when proving Theorem 17. It is based on a similar statement

proved in [4].

Lemma 19. Let m > d be integers, and let 40 < D < 2d.
If β : Fm

2 → F2, which we think of as a polynomial in vari-
ables x1, x2, . . . , xm, is D-far from P (m,m− d− 1), then
there exists a nonzero linear form L = L(x1, . . . , xm) ∈
P (m, 1) such that β|L=0 and β|L=1 are both D/4-far from
polynomials of degree m− d− 1.

Proof: (of Theorem 17) Our goal is to establish the

lower bound (8) on Φd,d/4(D) for D = 2d/2. By Claim 18,

we may assume d � 12. Let β ∈ Fm be a polynomial in

x1, x2, . . . , xm that is D-far from P (m,m−d−1). We need

to prove dim(B
(m)
d,d/4(β)) � P (m, d/4)− 2d/4−2.

By Lemma 19, we may assume, after applying a linear

transformation on the coordinates, that βxm=0 and βxm=1

are both D/4-far from P (m − 1,m − d − 1). Let us write

the polynomial β in the form β = xma(x1, . . . , xm−1) +
b(x1, . . . , xm−1). In other words, βxm=0 = b and βxm=1 =
a+b where a, b are polynomials in x1, . . . , xm−1. We know

Δ(b, P (m − 1,m − d − 1)) � D/4 and Δ(a + b, P (m −
1,m− d− 1)) � D/4.

Define r = m − d − 1. We need to understand when

ν ∈ P (m, k) is such that βν ∈ P (m, r + k). Let us write

the polynomial ν ∈ P (m, k) as ν = xmp + q where p ∈
P (m − 1, k − 1) and q ∈ P (m − 1, k) are polynomials in

x1, . . . , xm−1 of degree at most k − 1 and k respectively.

We have the following claim.

Claim 20. If ν ∈ B(m)
d,k (β), then q ∈ B(m−1)

d−1,k (b), i.e., qb ∈
P (m− 1, r+ k), and p(a+ b) ∈ qa+P (m− 1, r+ k− 1).

Proof: (of Claim) Indeed, βν = qb+xm((a+b)p+qa).
The terms in qb, which is a polynomial in x1, . . . , xm−1,

cannot be canceled by any terms in xm((a+b)p+qb). So if

βν has degree at most r+k, qb must also have degree at most

r+ k. Also, if βν has degree at most r+ k, the polynomial

p(a+ b) + qa must have degree at most r+ k− 1, which is

the same thing as p(a+ b) ∈ qa+ P (m− 1, r + k − 1).

By the above claim, the choice of ν in the subspace

B
(m)
d,k (β) amounts to picking an arbitrary q in the subspace

B
(m−1)
d−1,k (b) of P (m− 1, k), and then p from a coset of the

subspace B
(m−1)
d−1,k−1(a + b) = {ν̃ ∈ P (m − 1, k − 1) |

(a + b)ν̃ ∈ P (m − 1, r + k − 1)} of P (m − 1, k − 1).
Therefore,

dim(B
(m)
d,k (β)) � dim(B

(m−1)
d−1,k (b))+dim(B

(m−1)
d−1,k−1(a+b)) .

(9)

Combining (7), (9), and the equality dim(P (m, k)) =
dim(P (m−1, k))+dim(P (m−1, k−1)), we can conclude

the following for all d � k and D < 2d:

Φd,k(D) � Φd−1,k(D/4) + Φd−1,k−1(D/4) . (10)

When D = 2d/2 = 4d/4 and k = d/4, recursively applying

the above for a depth of d/4−2 (to reduce D geometrically

from 4d/4 to 16), and using Claim 18, we can lower bound

Φd,d/4(2
d/2) � 2d/4−2, giving us (8).

IV. PCP CHECKING 4SAT USING THE LOW-DEGREE

LONG CODE

In this section, our goal is to give a low-degree long

code based PCP that has perfect completeness. The smallest

346

number of queries for which we are able to do so is 4
queries. The predicate tested by the PCP will be 4SAT

(actually we can test a slightly stronger arity 4 predicate

x ∨ y ∨ (z �= w)). As a result we will prove Theorem 3 on

the inapproximability of 4SAT stated in the introduction. Our

construction is inspired by Håstad’s tight inapproximability

result for satisfiable instances of 4SAT [9, Theorem 6.2].

The analysis here is more subtle due to the restriction of

using the low-degree long code. Our main motivation here is

to illustrate these techniques in the simple setting of 4SAT,

before applying them to show hardness for covering CSP

later on.

As explained in Section II-E, we will describe the PCP

verifier as a randomized test that checks if a Label Cover

instance is satisfiable, or highly unsatisfiable, in the sense

of Theorem 5. The verifier will have access to tables A(v)

and B(u) of purported low-degree long codes of the labels

of the nodes u ∈ U and v ∈ V of the Label Cover instance.

However, there will be some key differences here. First,

the table for the “smaller” side will be a low-degree long

code for smaller degree (3d/4 as opposed to d). Second,

there will be two tables for the nodes on the “larger” side,

with one being a low-degree long code of smaller degree.

This structure seems technically necessary as we need to

restrict the degree of some of the functions to be smaller

than d, and in this case the analysis necessitates making them

from a separate low-degree long code so that they will be

well-distributed amongst the coordinates of that low-degree

long code. Let us proceed with the formal description of the

PCP construction.

Let G = (U, V,E) be a Label Cover instance with

parameter 	 as promised in Theorem 5. The integer d will

be a degree parameter that we will choose later.

For each v ∈ V we add a block of variables corresponding

to P ′(, d) (recall that P ′(, d) contains for each g ∈ P (, d)
exactly one of g and 1 + g). For each u ∈ U , we add two
blocks of variables, one corresponding to P ′(3	, d/4) and

another corresponding to P ′(3	, d)/I(u) (where I(u) denotes

the same ideal corresponding to node u as in Section ??).

Let us denote m = 3	. An assignment for the variables

is described by a collection of functions A(v) : P ′(, d) →
{−1, 1} for each v ∈ V , and functions C(u) : P ′(m, d/4)→
{−1, 1}, B(u) : P ′(m, d)/I(u) → {−1, 1}. We can extend

the functions in the natural way to assume we have access to

functions A(v) : P (, d) → {−1, 1}, C(u) : P (m, d/4) →
{−1, 1} that are folded over {−1, 1}, and a function B(u) :
P (m, d)→ {−1, 1} that is folded over {−1, 1} and I(u).

We now describe our PCP, which we call 4SAT-PCP

1) Choose a random edge (u, v) in the label cover

instance, and let πuv : Fm
2 → F

�
2 be the associated

projection.

For notational simplicity, we denote π = πuv , A =

A(v), B = B(u) and C = C(u).

2) Sample functions f ∈ P (, 3d/4), g ∈ P (m, d/4),
g̃ ∈ P (m, d) and h ∈ P (m, 3d/4), where each

function is chosen independently at random from its

respective domain.

3) Denote g′ = g̃+ gh+(1+ g)(1+ f ◦π) and note that

g′ ∈ P (m, d).
Accept iff at least one of A(f), C(g), B(g̃), and B(g′)
equals −1.

A. Completeness

We first establish the perfect completeness of the test

which will also explain the logic behind the test.

Lemma 21. If G is satisfiable, then there are tables A(v),
B(u), and C(u) for which the test 4SAT-PCP accepts with
probability 1. In particular, there are tables so that the four
bits read by the verifier are never all equal to 1.

Proof: Given a perfectly satisfying assignment for G,

let us assign each A(v) to be SC�,3d/4(a), the degree-3d/4
low-degree long code of a, where a ∈ F

�
2 is the label for v.

Similarly, define B(u) = SCm,d(b) and C(u) = SCm,d/4(b)
where b is the label for u. For the choice of edge (u, v), the

condition checked by the test amounts to f(a) = 1 ∨ g(b) =
1 ∨ g̃(b) = 1 ∨ g′(b) = 1. To prove that this holds, let

us assume f(a) = g(b) = 0 and then argue that in this

case g̃(b) �= g′(b) (which in particular means one either

g̃(b) or g′(b) equals 1). Indeed g̃(b) + g′(b) = g(b)h(b) +
(1 + g(b))(1 + f(a)) = 1 when f(a) = g(b) = 0. Note

that we have shown the more stringent condition A(f) =
−1 or C(g) = −1 or B(g̃) �= B(g′) always holds in the

completeness case.

We omit the soundness analysis due to space consid-

erations. The parameters are chosen as follows. Picking

	 = 2�
√
log logn�/4 and d = �√log log n�, the size of the

instance produced will be at most polynomial in N �
n3�2(3�)

d � n2
O(
√

log log n)

, and the reduction will run in

NO(1) time. As a function of N , we have 	 � 2Ω(
√
log logN).

V. 6-QUERY COVERING PCP USING LOW-DEGREE LONG

CODE

In this section, we prove Theorem 2, showing it is hard to

decide if a given instance of a ϕ-CSP has covering number

1 or at least k = 2O(
√
log logn), where the predicate ϕ is

defined by ϕ(a, b, c, d, e, f) = (a �= b) ∨ (c �= d) ∨ (e �= f).

Before moving to the proof, let us mention that since

this predicate involves monotone Boolean operations over

inequality constraints on the variables, it makes sense to

assign variables with any number of colors (rather than

Boolean values only). Given a ϕ-CSP instance over variables

X , such that the variables occur without negations, we

say it is c-colorable if there is a coloring of the variables

ψ : X → {1, 2, . . . , c} such that every constraint is satisfied.

347

It is easy to generalize the connection in [8] to this case,

showing that the logarithm of this version of the chromatic

number is equal to its covering number. Thus, an equivalent

statement of Theorem 2 is the following.

Theorem 22. Assume that NP does not admit n2
O(
√

log log n)

time algorithms (note that this runtime is no(logn)). Given a
ϕ-CSP instance with N vertices, there is no polynomial time
algorithm to distinguish between the following two cases:

• The instance can be colored with c = 2 colors.
• The instance cannot be colored even with 22

Ω(
√

log log N)

colors.

For 4SAT, there are trivially two assignments such that

each constraint is satisfied by one of them, so its covering

number is always at most 2. So 4SAT-PCP from the

previous section cannot give the desired coloring hardness.

However, we will show that a small change to the test gives

us the desired PCP with a total of 6 queries. Specifically,

we will replace the condition A(f) = −1 with the check

A(f1) �= A(f1 + f), and the condition C(g) = −1 with the

check C(g1) �= C(g1 + g).

As in Section IV we begin with a label cover instance

G = (U, V,E), and place low-degree long code tables for

the vertices of G. Namely, for each v ∈ V , a table A(v) :
P (, 3d/4) → {−1, 1}, and for each u ∈ U , two tables

C(u) : P (m, d/4) → {−1, 1} and B(u) : P (m, d)/I(u) →
{−1, 1} (where m = 3). We will not assume that any of

these tables are folded over {−1, 1}, and this implies that

the generated CSP instance will have no negations. Once

again, we will extend B(u) to all of P (m, d) by defining

B(h) = B(h + I(u)), and assume that B(u) : P (m, d) →
{−1, 1} is folded over I(u).

We now describe our PCP, which we call 6-NE-PCP

1) Choose a random edge (u, v) in the label cover

instance, and let πuv : Fm
2 → F

�
2 be the associated

projection.

For notational simplicity, we denote π = πuv , A =
A(v), B = B(u) and C = C(u).

2) Sample functions f, f1 ∈ P (, 3d/4), g, g1 ∈
P (m, d/4), g̃ ∈ P (m, d) and h ∈ P (m, 3d/4), where

each function is chosen independently at random from

its respective domain. Denote g′ = g̃+gh+(1+g)(1+
f ◦ π) and note that g′ ∈ P (m, d).

3) Accept iff

(A(f1) �= A(f1+f)) ∨ (C(g1) �= C(g1+g)) ∨ (B(g̃) �= B(g′)) .
(11)

Perfect Completeness. By an argument identical to Lemma

21, we can show that when there is a labeling satisfying

every edge of G, there are tables that 6-NE-PCP accepts

with probability 1.

Soundness analysis. As in Section IV, it can be proved that

when the Label Cover instance G is highly unsatisfiable,

no choice of tables will make the 6-NE-PCP test accept

with probability more than 7/8 (again random tables will

be accepted with this probability, so this bound is tight).

Given our interest in covering soundness we will show that

even a large number of proofs cannot cover every test made

by the verifier. The formal statement follows.

Theorem 23. If every assignment of labels to the Label
Cover instance G satisfies at most a fraction 2−Ω(�) of the
edges, and d = 4�log 	�, then there exists k = Ω() such
that for every set of k tables there is some check (11) that
is violated by all of them.

Proof: Suppose there are k proofs such that every

check (11) accepts at least one of them. Let ρ = 1/2k. Then,

viewing these k proofs as a 2k-coloring, we can choose a

subset consisting of a fraction ρ of the locations of each

of the A(v)-tables, and similarly for the B(u) and C(u)-

tables, such that no check (11) has all 6 queries amongst

the chosen locations. (To see this simply take the most

popular color class in each of the tables.) To express this

analytically, let F (v) : P (, 3d/4)→ {0, 1} be the indicator

function of this subset restricted to A(v), and similarly

define indicator functions G(u) : P (m, d/4) → {0, 1} and

H(u) : P (m, d) → {0, 1} corresponding to the tables C(u)

and B(u) respectively. Further, H(u) can be assumed to be

folded over I(u). By construction, we have for every u, v

E
f
[F (v)(f)] = E

g
[G(u)(g)] = E

h
[H(u)(h)] = ρ . (12)

and δ
def
= Eu,v

[
E

[
F (v)(f1)F

(v)(f1 + f)G(u)(g1)G
(u)(g1 +

g)H(u)(g̃)H(u)(g̃ + gh + g f ◦ πuv)
]]

= 0 , where the

inner expectation is over the choice of all the functions

f, f1, g, g1, g̃, h. Our goal is to prove that the above equa-

tions imply ρ � 2−Ω(�). We will analyze the inner expecta-

tion in the definition of δ for a fixed (u, v), call it Γ(u,v). We

will use the shorthand F = F (v), G = G(u), H = H(u) and

π = πuv . Let us define the “self-corrected” versions F̃ and

G̃ of the tables F and G as F̃ (f) = Ef1 [F (f1)F (f1 + f)]
and G̃(g) = Eg1 [G(g1)G(g1+g)] respectively. Note that the

tables F̃ and G̃ take values in the interval [0, 1].

Using Fourier expansion, the expectation Γ(u,v) can be

written as the sum∑
β

Ĥ(β)2 E
g

[
G̃(g) E

h

[
χβ(gh)

]
E
f

[
F̃ (f)χβ(gf ◦ π)

]]
︸ ︷︷ ︸

Υg

(13)

over β ∈ Λ(m, d). Note that the β = γ = 0
term equals Ĥ(0)2 Eg[G̃(g)] Ef [F̃ (f)] =(
Eh[H(h)]

)2 (
Eg[G(g)]

)2 (
Ef [F (f)]

)2

= ρ6 using

(12).

Our goal is to prove that the rest of the terms (for β �= 0)

348

in (13) have a very small contribution. First, the terms

in (13) with wt(β) � 2d/2 contribute at most 2−2d/4 in

absolute value. For terms with wt(β) < 2d/2, note that

Eh[χβ(gh)] = Eh[χβg(h)] = 0 unless βg = 0. This follows

from Fact 6 because wt(βg) < 2d/2 and so βg cannot

be a nonzero polynomial of degree P (m,m − 3d/4 − 1).
Expanding F̃ (f) =

∑
α F̂ (α)

2χα(f), we can simplify the

expected value Υg in (13) as

Υg = E
g

[
G̃(g) 1[βg = 0] E

f

[∑
α

F̂ (α)2χα(f)χβg(f ◦ π)
]]

= E
g

[
G̃(g) 1[βg = 0] (−1)wt(π2(β))F̂ (π2(β))

2
]

�
{
0 when wt(β) is even

−F̂ (π2(β))2 when wt(β) is odd
(14)

where in the last step we use the fact that wt(β) and

wt(π2(β)) have the same parity.

Combining the above we can lower bound δ as

δ � ρ6 − 2−2d/4 −
∑

β:wt(β)<2d/2

wt(β) odd

F̂ (π2(β))
2Ĥ(β)2 .

Appealing to Lemma 13, the sum in the above expression

is at most 2d−Ω(�) when the Label Cover instance G is at

most 2−Ω(�)-satisfiable. Recalling δ = 0 and ρ = 1/2k, we

conclude k � Ω() when d = Θ(log).

Picking parameters as in Section IV we get a proof

of Theorem 2 (alternatively stated as Theorem 22 at the

beginning of this section).

VI. CONCLUDING REMARKS

Our work raises several open questions, some of which we

mention below: Can one remove the multipartite structural

bottleneck of our low-degree long code based PCP construc-

tions and prove improved hardness results for hypergraph

coloring?

Can one prove a gap-covering result of 1 vs.

exp(Ω(
√
log logN)) (or at least O(1) vs. ω(log logN)) with

fewer than 6 queries? In particular, can one give a low-

degree long code based version of Håstad’s 4-set splitting

PCP [9, Sec. 7]?

Can one derandomize the long code further and move

closer to NΩ(1) (or at least 2(logN)Ω(1)

) hardness for hyper-

graph coloring or related problems?

REFERENCES

[1] S. Arora and C. Lund. Approximation Algorithms for NP-
hard Problems, chapter Hardness of Approximations. PWS
Publishing, 1996.

[2] B. Barak, P. Gopalan, J. Håstad, R. Meka, P. Raghavendra,
and D. Steurer. Making the long code shorter. In Proceedings
of the 53rd Annual IEEE Symposium on Foundations of
Computer Science, pages 370–379, 2012.

[3] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and
nonapproximability: Towards tight results. SIAM J. Comput.,
27(3):804–915, 1998.

[4] A. Bhattacharyya, S. Kopparty, G. Schoenebeck, M. Sudan,
and D. Zuckerman. Optimal testing of reed-muller codes.
In Proceedings of the 51th Annual IEEE Symposium on
Foundations of Computer Science, pages 488–497, 2010.

[5] M. Bodirsky and J. Kára. The complexity of equality
constraint languages. Theory Comput. Syst., 43(2):136–158,
2008.

[6] I. Dinur and G. Kol. Covering CSPs. Electronic Collo-
quium on Computational Complexity (ECCC), 19:88, 2012.
Extended abstract to appear in CCC 2013.

[7] I. Dinur, O. Regev, and C. D. Smyth. The hardness of 3-
uniform hypergraph coloring. Combinatorica, 25(5):519–535,
2005.

[8] V. Guruswami, J. Håstad, and M. Sudan. Hardness of approx-
imate hypergraph coloring. SIAM J. Comput., 31(6):1663–
1686, 2002.

[9] J. Håstad. Some optimal inapproximability results. Journal
of the ACM, 48(4):798–859, 2001.

[10] J. Håstad. On the NP-hardness of Max-Not-2. In 15th
International Workshop on Approximation, Randomization,
and Combinatorial Optimization (APPROX), pages 170–181,
2012.

[11] S. Khot. Hardness results for approximate hypergraph col-
oring. In Proceedings on 34th Annual ACM Symposium on
Theory of Computing, pages 351–359, 2002.

[12] S. Khot. Hardness results for coloring 3 -colorable 3 -
uniform hypergraphs. In Proceedings of 43rd Symposium on
Foundations of Computer Science, pages 23–32, 2002.

[13] S. Khot. On the power of unique 2-prover 1-round games. In
Proceedings of the 34th Annual ACM Symposium on Theory
of Computing, pages 767–775, 2002.

[14] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal
inapproximability results for MAX-CUT and other 2-variable
CSPs? SIAM J. Comput., 37(1):319–357, 2007.

[15] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise
stability of functions with low influences: invariance and
optimality. Ann. Math., 171(1):295–341, 2010.

349

