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Abstract—An error-correcting code C is called (q, ε)-strong
locally testable code (LTC) if there exists a tester that makes
at most q queries to the input word. This tester accepts all
codewords with probability 1 and rejects all non-codewords x
with probability at least ε · δ(x,C), where δ(x,C) denotes the
relative Hamming distance between the word x and the code
C. The parameter q is called the query complexity and the
parameter ε is called soundness.

In this paper we resolve an open question raised by
Goldreich and Sudan (J.ACM 2006) and construct binary
linear strong LTCs with query complexity 3, constant relative
distance, constant soundness and inverse polylogarithmic rate.

Our result is based on the previous paper of the author
(Viderman, ECCC TR12-168), which presented binary linear
strong LTCs with query complexity 3, constant relative dis-
tance, and inverse polylogarithmic soundness and rate. We
show that the “gap amplification” procedure of Dinur (J.ACM
2007) can be used to amplify the soundness of these strong
LTCs from inverse polylogarithmic up to a constant, while
preserving the other parameters of these codes.

Furthermore, we show that under a conceivable conjecture,
there exist asymptotically good strong LTCs with poly-log
query complexity.

Keywords-error-correcting codes; locally testable codes;
PCPs;

I. INTRODUCTION

Probabilistically Checkable Proof (PCP) systems [1], [2],

[3] (a.k.a. Holographic Proofs [4]) are proof systems that

allow efficient probabilistic verification of a claim by reading

few symbols of the proof. The celebrated PCP theorem [1],

[2] is one of the main breakthrough results in complexity

theory. This theorem asserts that for every language in NP
there exists a polynomial-time PCP verifier that queries the

proof in a constant number of locations. The verifier is

guaranteed to always accept valid proofs of true statements,

and to accept any claimed proof of false assertions with

low probability. The theorem has found many applications

in theoretical computer science, especially in establishing

lower bounds for approximation algorithms [5], [6], [3], [7].

Informally, most of the PCP constructions were achieved

using error-correcting codes, possessing nice properties. Let

us first give some auxiliary definitions regarding error-

correcting codes.

A code over a finite alphabet Σ is a subspace C ⊆ Σn. A

linear code over a finite field F is a linear subspace C ⊆ F
n.

In this case, n is the blocklength of the code C, denoted by

blocklength(C). The dimension of a linear code C, denoted

by dim(C), is its dimension as a vector space and is equal

to log|F| |C|. The dimension of a non-linear code C over the

alphabet Σ is defined to be dim(C) = log|Σ| |C|. The rate of a

code C, denoted by rate(C), is defined to be
dim(C)

blocklength(C) =
dim(C)

n .

We define the distance between two words x, y ∈ F
n to

be Δ(x, y) = |{i | xi �= yi}| and the relative distance to be

δ(x, y) = Δ(x,y)
n . The distance of C is defined by Δ(C) =

min
x �=y∈C

Δ(x, y) and its relative distance is defined by δ(C) =
Δ(C)
n . We note that if C is linear then Δ(C) = min

c∈C\{0}
{|c|}.

One is typically interested in codes whose distance is linear

to the blocklength of C, i.e., Ω(n).
For x ∈ F

n and C ⊆ F
n, let δ(x, C) = min

y∈C
{δ(x, y)}

denote the relative distance of x from the code C. If

δ(x, C) ≥ ρ, we say that x is ρ-far from C and otherwise x
is ρ-close to C.

A. Locally Testable Codes

Most of the PCP constructions (e.g., [8], [9], [10], [11])

are tightly related to a special kind of error-correcting

codes possessing some testability properties. These codes

are called locally testable.

In other words, locally testable codes (LTCs) are error

correcting codes that have a tester, which is a randomized

algorithm with oracle access to the received word x. The

tester reads a sublinear amount of information from x and

based on this “local view” decides if x ∈ C or not. It should

accept codewords with probability one, and reject words that

are far (in Hamming distance) from the code with noticeable

probability. Such codes are of interest in computer science

due to their numerous connections to probabilistically check-

able proofs (PCPs) and property testing (see the surveys

[12], [13] for more information). LTCs were implicit already

in [4] (cf. [13, Sec. 2.4]) and they were explicitly studied

by Goldreich and Sudan [11].

By now several different constructions of LTCs are known

including codes based on low-degree polynomials over finite

fields and affine-invariant codes [14], [1], [15], [16], [17],

[18], [19], [20], [21], [22], [23], constructions based on

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.43

330



PCPs of proximity/assignment testers [8], [24], [10]1, sparse

random linear codes [25], [26], [27] and tensor products of

codes [28], [29], [30], [31], [32].

Basically, there are two kinds of LTCs: weak and strong.

A code C is said to be (q, ε, ρ)-weak LTC if there exists a

randomized algorithm T , called tester, that makes at most q
queries to the input word w. If w ∈ C then T accepts w with

probability 1, but if w is ρ-far from C the tester T rejects

w with probability at least ε. Let us notice that the tester is

not required to reject when 0 < δ(w, C) < ρ. This is the

reason why such codes are called weak LTCs.

In contrast to weak LTCs, the testers for strong LTCs

are required to reject all non-codewords with corresponding

probability. More formally, a code C is called (q, ε)-strong

LTC if there exists a tester T that makes at most q queries to

the input word w. If w ∈ C then T accepts w with probability

1, but if w /∈ C then T rejects w with probability at least

ε · δ(w, C). The parameter q is called the query complexity

and the parameter ε is called soundness.

Informally, we say that a code C is a weak LTC if it

has a linear distance and there exist constants q, ε > 0 and

ρ ≤ δ(C)/3 such that C is a (q, ε, ρ)-weak LTC. 2 Similarly,

we say that a code C is a strong LTC if it has a linear

distance and there exist constants q, ε > 0 such that C is a

(q, ε)-strong LTC.

The best known strong LTCs are due to Goldreich and

Sudan [11], who presented probabilistic construction of

strong LTCs. These LTCs achieve constant query complex-

ity, constant soundness and rate
1

exp(Õ(
√
log n))

, where n

denotes the blocklength.

Later, other constructions of LTCs [9], [10], [31] suc-

ceeded to obtain the rate
1

polylog(n)
together with constant

query complexity and soundness, however these codes were

weak LTCs. It can be verified that every strong LTC is also

a weak LTC, but some weak LTCs are not strong LTCs

[33]. So, strong LTCs are strictly stronger objects than weak

LTCs. In the journal version of [11], the authors pointed out

that all known LTCs that achieve inverse polylogarithmic

rate are weak LTCs, and asked about the existence of strong

LTCs with polylogarithmic rate [11, Section 6]. As was

pointed out by Goldreich [34], strong LTCs correspond to

proximity oblivious testers [35] whereas weak LTCs are even

weaker than ordinary testers, i.e., the testers for weak LTCs

are supposed to work only for a fixed value of the proximity

parameter.

1As was pointed out in [11], not all PCP constructions are known to
yield LTCs, but some of them (e.g., PCPs of proximity/assignment testers)
can be adapted to yield LTCs.

2The parameter ρ is required to be less than δ(C)/2 to avoid trivial
solutions like claiming that every perfect code C is a (0, 1, δ(C)/2)-weak
LTC. Recall that a code C ⊆ F

n is called perfect if there are no words in
F
n that are (δ(C)/2)-far from C. So, in this case one could say that no

queries are needed and all (δ(C)/2)-far words are rejected with probability
1 vacuously.

The previous paper of the author [33] showed a probabilis-

tic construction of binary linear 3-query strong LTCs with

inverse polylogarithmic rate, inverse polylogarithmic sound-

ness and constant relative distance. In this paper (Section

I-C), we show how to amplify the soundness parameter of

these codes from inverse polylogarithmic to constant, while

preserving the other parameters of these codes, therefore

resolving an open question raised by Goldreich and Sudan

[11]. To increase the soundness parameter we apply the gap

amplification technique of Dinur [10].

An interesting point is that the gap amplification was

known to improve the soundness parameter of weak LTCs

[10], [31], however it was not known to preserve the strong

testability requirement, where all non-codewords are rejected

with corresponding probability and not only words that are

sufficiently far from the code. In more details, the gap

amplification procedure outputs a code accompanied with

a probabilistically checkable proof that could be translated

to a weak LTC.

In [33] we conjectured that it should be possible to modify

this procedure to preserve this stronger property. Surpris-

ingly, it turns out that no modification is needed (besides

adapting the gap amplification to preserve the linearity of

the underlying codes, as was done in [31, Section 6.4]). In

Section I-C we present formally our main result (Theorem

I.4) and explain the ideas that lead to its proof.

1) Asymptotically good LTCs: The main open question

in the area of LTCs is whether there exists a family of

asymptotically good LTCs with constant query complexity

and soundness, i.e., LTCs over a constant size alphabet

that have constant query complexity, constant soundness

parameter, constant rate and constant relative distance [11].

A possible approach to refute the existence of such codes

was suggested in [36]. In fact, [36] conjectures that such

codes do not exist and proves this conjecture under quite

“strong” assumptions. It is worth to mention that during

last years a non-trivial effort was made in studying the

limitations of LTCs, and in particular: LTCs testable with 2

queries [37], [38], [39], [40] (which is a severe restriction),

random low density parity check (LDPC) codes [41], cyclic

codes [42], symmetric codes [43], [44], [45], [46], LTCs

with small redundancy among its tests [47] and dense LTCs

[48], [36]. Nevertheless, it seems that we are very far from

resolving this problem.

Let us suppose that asymptotically good LTCs with con-

stant query complexity and constant soundness do not exist.

In this case, the most intriguing question would be “What are

the best LTCs we could obtain?”. To address this question we

should decide how to compare different LTCs. Informally,

in this subject and in the area of error-correcting codes in

general, we always require a constant relative distance since

otherwise even a tiny fraction of errors could modify one

codeword into another. Hence we want a constant relative

distance and do not allow to relax this requirement. Given
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that we consider only LTCs with constant relative distance,

we have 3 parameters that describe the “goodness” of LTCs:

the query complexity, the soundness parameter and the rate.

Constant Soundness.: It is not hard to show that

LTCs with sub-constant soundness parameter ε and query

complexity q could be converted to LTCs with soundness
1
2 and query complexity q · ⌈ 1

ε

⌉
. Hence, for the sake of

this discussion we can require constant soundness parameter

and compare different LTCs only according to their query

complexity and the rate.

Constant Query Complexity.: Recall that in Theorem

I.4 we show that when query complexity is required to be

constant, the rate can be inverse polylogarithmic. Informally,

under assumption that asymptotically good LTCs with con-

stant query complexity and soundness do not exist, this is the

best achievable rate when query complexity, relative distance

and soundness parameter are required to be constant.

Constant Rate.: Indeed, one of the most natural ques-

tions is what is the minimal query complexity if the rate

and the soundness parameter of an LTC are required to be

constant as well as the relative distance. In other words,

what is the minimal query complexity required for the

asymptotically good code to be testable. 3 For the current

state of the art, we know that for every constant ε > 0
there exist asymptotically good strong LTCs with query

complexity nε and constant soundness parameter, where n
is the blocklength of the code [49], [30], [32].

In Section I-C1 we show that under a conceivable conjec-

ture there exist asymptotically good strong LTCs with query

complexity polylog(n) and constant soundness parameter.

Informally, this is the minimal query complexity we can

hope for, under conjecture that asymptotically good LTCs

with constant query complexity and soundness do not exist

[36].

B. Preliminaries

Let [n] be the set {1, . . . , n}. For w ∈ F
n, let supp(w) =

{i ∈ [n] | wi �= 0} and |w| = | supp(w)|. For

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ F
n let

〈u, v〉 denote the bilinear function from F
n × F

n to F

defined by 〈u, v〉 =
n∑

i=1

uivi. The dual code is defined

by C⊥ = {u ∈ F
n | ∀c ∈ C : 〈u, c〉 = 0}. Similarly, we

define C⊥≤t =
{
u ∈ C⊥ | |u| ≤ t

}
. For w ∈ F

n and S =
{j1, j2, . . . , jm} ⊆ [n] we let w|S = (wj1 , wj2 , . . . , wjm),
where j1 < j2 < . . . < jm, be the restriction of w to the

subset S. Similarly, we let C|S = {c|S | c ∈ C} denote the

projection of the code C onto S. We define C|−S = C|[n]\S ,

i.e., projection of the code C to all coordinates besides S. For

A ⊆ N and b ∈ N we let A+ b = b+A = {a+ b | a ∈ A}.

3We think that this question is pretty much known in the area, but we
do not aware if it was explicitly asked in the literature.

For the distribution D over the subsets of [n] we let D(I)
to denote the probability that a subset I ⊆ [n] is selected by

D and supp(D) = {I ⊆ [n] | D(I) > 0}. For i ∈ [n] we let

ND(i) = {I ∈ supp(D) | i ∈ I}.

Now we define testers and LTCs (see [11], [33] for the

justification of this definition).

Definition I.1 (LTCs and Testers). A q-query tester for a

code C ⊆ F
n is a distribution D over subsets I ⊆ [n] such

that |I| ≤ q. A q-query tester D is a (q, ε, ρ)-weak tester if

for all w ∈ F
n, δ(w, C) ≥ ρ we have Pr

I∼D
[w|I /∈ C|I ] ≥ ε.

A q-query tester D is a (q, ε)-strong tester if for all w ∈ F
n

we have Pr
I∼D

[w|I /∈ C|I ] ≥ ε · δ(w, C).
A code C ⊆ F

n is a (q, ε, ρ)-weak LTC if it has a (q, ε, ρ)-
weak tester. A code C ⊆ F

n is a (q, ε)-strong LTC if it has

a (q, ε)-strong tester.

Remark I.2. Although the tester in Definition I.1 does not

output accept or reject, the way a standard tester does,

it can be converted to output accept, reject as follows.

Whenever the task is to test whether w ∈ C and a subset

I ⊆ [n] is selected by the tester, the tester can output accept
if w|I ∈ C|I and otherwise output reject. In this manner, the

tester always accepts the codewords of C.

C. Main Results

In this paper we resolve the following question raised by

Goldreich and Sudan [11].

Question I.3 ([11]). Are there exist constants q ∈ N
+,

d, ε, γ > 0 and a constant size alphabet Σ such that for
infinitely many n ∈ N

+ we have a code C ⊆ Σn, where

• C is a (q, ε)-strong LTC,
• δ(C) ≥ γ and rate(C) ≥ 1

logd(n)
.

Although the requested range of parameters was achieved

for the weak LTCs [9], [10], [31], strong LTCs with these

parameters were not obtained and this question remained to

be a basic open question in the area of LTCs.

Our main theorem (Theorem I.4) answers affirmatively on

Question I.3.

Theorem I.4 (Main Theorem). There exist constants
d, ε, γ > 0 such that for infinitely many n ∈ N

+ we have a
linear code C ⊆ F

n
2 , where

• C is a (3, ε)-strong LTC,
• δ(C) ≥ γ and rate(C) ≥ 1

logd n
.

We notice that 3 queries are necessary to test non-trivial

linear codes [37].4

The proof of Theorem I.4 is postponed to the full version.

4By “non-trivial” codes we mean codes with a constant relative distance
and non-constant dimension.
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The key ideas behind the proof of Theorem I.4.: The

proof of Theorem I.4 contains three stages.

Relaxed LTCs. First, we present in Section II a new

notion of relaxed LTCs. Intuitively, relaxed LTCs have two

kind of coordinates: those with good testability and those

which worse (but non-trivial) testability (see Definition II.2).

Then, we present the first observation of this work (Obser-

vation II.4) and its corollary (Corollary II.5) in Section II

saying that such relaxed LTCs can be easily converted to

strong LTCs. Hence, all we need to resolve Question I.3

is to construct relaxed LTCs with a corresponding range of

parameters.

Relaxed LTCs to start with. We want to construct

sufficiently nice relaxed LTCs. To achieve the required

relaxed LTCs, our starting point is the main result of [33].5

However, we cannot use directly the codes and the testers

as that were suggested in [33], i.e., they should be slightly

modified before the use. So, in Section III we recall the

main result of [33] and make some immediate corollaries

to conclude the relaxed LTCs (with inverse polylogarithmic

soundness) we will use as a starting point in the proof of

Theorem I.4.

Gap Amplification can be applied to relaxed LTCs. We

recall the well known “gap amplification” technique of Dinur

[10] in Section IV. We show that the gap amplification and

in particular, its version corresponding to linear codes [31]

(see also [50]) can be applied to the linear relaxed LTCs

to obtain linear relaxed LTCs with higher first soundness

parameter (see Definition II.2). The crucial observation here

is that while the first soundness parameter is amplified

by the gap amplification procedure, the second soundness

parameter of these relaxed LTCs will not be reduced too

much. This observation gives us a possibility to apply the

gap amplification many times and to obtain linear relaxed

LTCs, where the first soundness parameter is constant and

the second soundness parameter is inverse polylogarithmic.

Finally, these relaxed LTCs can be converted to the strong

LTCs with a constant soundness and inverse polylogarithmic

rate using Corollary II.5.

1) Asymptotically Good LTCs with poly-log queries: We

start this section by introducing a specific kind of junta with

respect to a linear code. Intuitively, an (n′, h)-junta with

respect to a linear code C ⊆ F
n
2 is a junta of size n′ such

that every code symbol outside this junta is determined by

at most h code symbols of the junta.

Definition I.5 (Junta). Let C ⊆ F
n
2 be a linear code and

T ⊆ [n] be a subset. We say that T is an (n′, h)-junta with

respect to C if n′ = |T | and for every j ∈ [n] \ T there

exists uj ∈ C⊥ such that j ∈ supp(u), supp(uj) \ {j} ⊆ T
and |supp(uj) \ {j}| ≤ h.

We notice that every linear code C has a

5The codes presented in [33] were very similar to the codes of [31].

(dim(C), dim(C))-junta. To see this assume without

loss of generality that the generating matrix of C has a

systematic form6 and let T = [dim(C)].

Recall that Theorem I.4 shows the existence of strong

LTCs with constant query complexity, soundness, relative

distance and inverse polylogarithmic rate. The following

conjecture argues that strong LTCs with poly-log query

complexity and inverse poly-log rate can be accompanied

with a (O(dim(C)), polylog(n))-junta.

Conjecture I.6 (strong LTC with a junta). There exists a
linear code C ⊆ F

n
2 (for arbitrary large n ∈ N

+) such
that C is a (polylog(n), 1

2 )-strong LTC, δ(C) = Ω(1),
rate(C) ≥ 1

polylog(n) and a (Θ(dim(C)), polylog(n))-junta
T with respect to C.

Remark I.7. The construction of strong LTCs presented

in [33, Corollary 3.2] seems close to resolve Conjecture

I.6, but doesn’t resolve it. Informally, this construction

was obtained by execution Θ(log log(n)) iterations (see

Remark III.2) and gave a (polylog(n), 1
2 )-strong LTC C

with δ(C) = Ω(1) and rate(C) ≥ 1
polylog(n) . Each iteration

3 procedures were applied: the star product, the distance

amplification and the random projection. A natural candidate

for a (Θ(dim(C)), polylog(n))-junta would be the core

A(C) of the code C ⊆ F
n
2 constructed in [33], which had

a size |A(C)| = Θ(dim(C)), i.e., blocklength(C|A(C)) =
Θ(dim(C)). The problem is that only 2 procedures: the star

product and the distance amplification preserved the required

property, i.e., there exists a fixed constant r ∈ N
+ such that

if a core A(C) of the input code C is a (Θ(dim(C)), h)-
junta then the core A(C ′) of the code C ′ obtained by these

procedures is a (Θ(dim(C)), r ·h)-junta. Unfortunately, the

random projection procedure does not preserve this property.

However, if there exists a way to make this procedure

preserving the “junta” property as another two procedures,

then after the execution of Θ(log log(n)) iterations we would

get not only a (polylog(n), 1
2 )-strong LTC C, but also a

(Θ(dim(C)), polylog(n))-junta A(C).

Under Conjecture I.6 it is not hard to prove the existence

of asymptotically good strong LTCs with polylogarithmic

query complexity.

Theorem I.8 (Asymptotically good LTCs with poly-log

queries). Under Conjecture I.6, there exists a linear
(polylog(n′), 1

2 )-strong LTC C ′ ⊆ F
n′
2 (for arbitrary large

n′) such that δ(C ′) = Ω(1) and rate(C ′) = Ω(1).

We stress that the corresponding statement of Theorem

I.8 is open even for weak LTCs. The proof of Theorem I.8

is postponed to the full version.

6Such generating matrix yields codewords whose first dim(C) symbols
are message symbols.

333



II. RELAXED LTCS

Before we present Observation II.4, we recall some con-

cept used in [33].

Definition II.1 (A core of the code). Let C ⊆ Σn be a code.

A core of the code C, denoted by A(C), is a nonempty

subset of [n] such that if A(C) �= [n] then any assignment

to the entries of A(C) uniquely determines the entries of

[n] \ A(C) and vice versa. I.e., if A(C) �= [n] then for

any c ∈ C there is no c′ ∈ C such that c|A(C) = c′|A(C)

and c|[n]\A(C) �= c′|[n]\A(C), or c|[n]\A(C) = c′|[n]\A(C) and

c|A(C) �= c′|A(C).

Clearly, there might be many options for A(C), and in

this case we fix only one such option. If A(C) = [n] then

for any w,w′ ∈ Σn we let δ(w|[n]\A(C), w
′|[n]\A(C)) =

δ(w|[n]\A(C), C|[n]\A(C)) = 0.

Our first novelty is the following concept of a relaxed

LTC (rLTC).

Definition II.2 (Relaxed LTC). A q-query tester D
is a (q, ε1, ε2)-rLTC tester for a linear code C ⊆
F
n with a core A(C), if for every w ∈ F

n

there exists c ∈ C such that Pr
I∼D

[w|I /∈ C|I ] ≥
max

{
ε1 · δ(w|A(C), c|A(C)), ε2 · δ(w|−A(C), c|−A(C))

}
. A

code C ⊆ F
n with a core A(C) is a (q, ε1, ε2)-rLTC if

it has a (q, ε1, ε2)-rLTC tester.

The parameter q is called the query complexity, ε1 is

called the first soundness parameter and ε2 is called the

second soundness parameter.

Intuitively, think that ε1 is a constant, but ε2 is sub-

constant.

Remark II.3. We note that if C ⊆ F
n is a (q, ε)-strong

LTC and D is its tester, then setting A(C) = [n] it holds

that C is a (q, ε, 1)-rLTC with regards to the same tester D
because for every w ∈ F

n we have

Pr
I∼D

[w|I /∈ C|I ] ≥ ε·δ(w,C) = max
{
ε · δ(w|[n], C|[n]), 1 · 0

}
=

= max
{
ε · δ(w|A(C), C|A(C)), 1 · δ(w|−A(C), C|−A(C))

}
.

Our first observation in this work is that a relaxed LTC

with sub-constant second soundness parameter can be easily

converted to a strong LTC with a constant soundness.

Observation II.4 (A conversion of rLTCs to strong LTCs).
Let q ≥ 2 and C ⊆ F

n be a linear (q, ε1, ε2)-rLTC with a
core A(C). Then there exists a linear (q, ε1/6)-strong LTC
C ′ ⊆ F

n′
, where n ≤ n′ ≤ 12

ε2
· n, dim(C ′) = dim(C),

rate(C ′) ≥ ε2
12 · rate(C) and δ(C ′) ≥ 0.9 · δ(C|A(C)).

Moreover, the construction of C ′ from C is explicit and done
in time O(n′).

The proof of Observation II.4 is omitted due to the space

limitations.

Although Observation II.4 might seem naive, it implies

the following corollary that will play a crucial role in the

proof of Theorem I.4.

Corollary II.5. Assume that for constants q ≥ 2, ε > 0 and
infinitely many n ∈ N

+ we have a linear code C ⊆ F
n
2

with a core A(C) such that C is a (q, ε, 1
polylog(n) )-rLTC,

δ(C|A(C)) = Ω(1) and rate(C) = 1
polylog(n) . Then, there

exists C ′ ⊆ F
n′
2 such that n ≤ n′ ≤ n · polylog(n), C ′

is a (q, ε/6)-strong LTC, δ(C ′) = Ω(1) and rate(C ′) =
1

polylog(n′) (i.e., Question I.3 is solved).

III. THE MAIN RESULT OF [33] AND ITS COROLLARIES

In this section we recall the main result of [33]. Then we

make some corollaries that will be used later.

Theorem III.1 ([33]). For some constant d ∈ N
+ and

infinitely many n ∈ N
+ there exists a linear code C ⊆ F

n
2

and its tester D such that
• C is a (3, 1

logd n
)-strong LTC with respect to D,

• δ(C) = Ω(1),
• rate(C) = 1

logd n
,

• | supp(D)| ≤ n logd n and for every u ∈ supp(D) it
holds that D(u) ≤ logd n

n , and
• for every i ∈ [n] we have |ND(i)| ≤ logd n.

Remark III.2. Although in [33] two last bullets were not

proved, but one could verify that these bullets hold. The

construction in [33] begins from a constant blocklength

code C1 and contained 3 procedures: the star product, the

random projection and the distance amplification. These 3

procedures were applied iteratively Θ(log log n) times. Each

iteration i is executed on the code Ci that had a blocklength

ni and a tester Di. The output of each iteration i is the code

Ci+1.

Initially, the base code C1 ⊆ F
n1
2 and its tester D1

satisfied the last two bullets with respect to its blocklength

n1 = O(1). I.e., | supp(D1)| ≤ n1 · O(1) and for every

u ∈ supp(D1) it holds that D1(u) ≤ O(1)
n1

. Moreover, for

every i ∈ [n1] we have |ND1
(i)| ≤ O(1).

Each iteration, the star product, the random projection

and the distance amplification procedures were applied. The

random projection does not affect the properties listed in

these bullets, but only rearranges the coordinates of the

given code in some way. The star product and the distance

amplification procedure do affect the properties listed in

these bullets, but only by fixed multiplicative constants.

More formally, there exists a fixed constant h > 0 such

that the following occur. Suppose that in the iteration i for

some hi > 0 we have the code Ci ⊆ F
ni and its tester

Di such that supp(Di) ≤ hi · ni, for every u ∈ supp(Di)
it holds that Di(u) ≤ hi

ni
, and for every j ∈ [ni] it holds

that |NDi
(j)| ≤ hi. Then, after the star product (or distance

amplification) is applied, resulting in the code Ci+1 ⊆ F
ni+1
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and its tester Di+1, we have supp(Di+1) ≤ h ·hi ·ni+1, for

every u ∈ supp(Di+1) it holds that Di+1(u) ≤ h·hi

ni+1
, and

for every j ∈ [ni+1] it holds that |NDi+1
(j)| ≤ h · hi.

Therefore, after Θ(log log n) iterations we obtain the

code C ⊆ F
n and its tester D such that | supp(D)| ≤

n · polylog(n), for every u ∈ supp(D) it holds that

D(u) ≤ polylog(n)
n , and for every j ∈ [n] it holds that

|ND(j)| ≤ polylog(n).

We pay attention that one can turn the strong LTCs of

Theorem III.1 to the strong LTCs with a uniform distribu-

tion over the tests, and the soundness parameter, roughly

speaking, will be preserved.

Corollary III.3. For some constant d ∈ N
+ and infinitely

many n ∈ N
+ there exist a linear code C ′ ⊆ F

n
2 and its

tester D′ which is a uniform distribution over supp(D′) such
that
• C ′ is a (3, 1

logd n
)-strong LTC with respect to D′,

• δ(C ′) = Ω(1),
• rate(C ′) ≥ 1

logd n
,

• | supp(D′)| ≤ n logd n, and
• for every i ∈ [n] we have |ND′(i)| ≤ logd n.

Now, in Corollary III.4 we show that the 3-query strong

LTCs over F2 from Corollary III.3 can be easily converted

to the 2-query rLTCs over F
3
2 with a similar range of

parameters.7 This conversion is standard (for the case of

LTCs, PCPs and assignment testers) and was explained, e.g.,

in [10], [31].

Corollary III.4. For some constant d ∈ N
+ and infinitely

many n′′ ∈ N
+ there exist a code C ′′ ⊆ (F3

2)
(n′′) and its

tester D′′ which is a uniform distribution over supp(D′′)
such that
• C ′′ is linear over F2,
• C ′′ is a (2, 1

3 logd n′′ ,
1

6 log2d n′′ )-rLTC with respect to its
core A(C ′′) and D′′,

• δ(C ′′|A(C′′)) = Ω(1),
• rate(C ′′) ≥ 1

2 log2d n′′ ,
• | supp(D′′)| ≤ 3 · n′′, and
• for every i ∈ [n′′] we have |ND′′(i)| ≤ logd n′′.

IV. GAP AMPLIFICATION PROCEDURE FOR LTCS

In this section we describe the main result of Dinur [10]

and its affect on the locally testable codes. We notice that

two interesting alternatives were proposed. Radhakrishnan

[51] suggested another option for the amplification lemma

[10], where he used lazy random walks in the constraints

graph. In particular, this suggestion improves some of the

constants inside the Dinur’s results. Goldreich and Meir [52]

pointed out on a small gap in the proof of the amplification

of assignment testers in [10]. Namely, while Dinur [10]

7During this paper we associate F
3
2 with F23 .

argued that every an execution of the gap amplification costs

a linear blowup for the underlying graph size, Goldreich and

Meir [52] showed that sometimes this blowup can be larger

and showed how one can easily correct this to have always

only a linear blowup.

Nevertheless, in our paper we don’t need the mentioned

suggestions/corrections and we address the original work

of Dinur [10]. The only modification we need is that the

linearity of the underlying code can be preserved if the

alphabet reduction stage in the gap amplification will be

done by the concatenation with the Hadamard code [31,

Section 6.4.3], and not by a general assignment testers

composition as in [10]. Now we recall the gap amplification

procedure [10] and describe how it is applied on the linear

codes, and in particular to the 2-query linear relaxed LTCs.

A 2-query LTC can be associated with a constraints
graph.: In this section let F = F

3
2. Assume C ⊆ F

n has a

2-query tester D. Let G = (V,E) be an undirected graph,

where V = [n] and {i, j} ∈ E if and only if D({i, j}) >
0. The degree of a symbol i of the code C is associated

to the degree of the node i in the graph G, and equal to

|{j ∈ [n] | D({i, j}) > 0}|.
The gap amplification for a relaxed LTC.: Let us recall

how the gap amplification would be applied on a relaxed

LTC. This will be almost identical to the execution of the gap

amplification on the assignment testers [10], where a single

modification is that the alphabet reduction is done by the

concatenation with the Hadamard code as was explained in

[31, Section 6.4.3]. Assume that the input is the relaxed LTC

C ⊆ F
n and its 2-query tester D such that D is uniform over

supp(D). Assume that A(C) ⊆ [n] is the core of the code C
and without loss of generality assume that A(C) = [|A(C)|],
i.e., the core of the code is the first |A(C)| coordinates. It

is important to note that during the execution of the gap

amplification the symbols of the core will be preserved in

every stage of this procedure.

Let G be the graph corresponding to the code C and its

2-query tester D. The gap amplification procedure contains

the following three stages.

First stage - Preprocessing (described in [10, Section
4]) Assume that a coordinate i in C has degree di with

respect to the tester D. Let d = maxi∈[n] di. The code C ⊆
F
n and its tester D are transformed to the new code C ′ ⊆

F
n′

and its tester D′ such that n ≤ n′ ≤ d·n and C ′|[n] = C,

i.e., all old code entries are preserved and some new code

entries are added. It also holds that D′ is uniform over a

new collection of 2-query constraints, i.e., D′ is uniform

over supp(D′). The new entries are added by duplicating

some original entries. The number of 2-query tests in D′ is

| supp(D′)| = O(d · | supp(D)|). The degree of every index

i in the code C ′ with respect to the tester D′ is a fixed

constant (independent of any parameters). If the code C ′ is

associated with a graph G′, then G′ is a constant degree

expander graph (see [10, Section 4]).
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We set the core of the code C ′ to be A(C ′) = A(C)
and note that C|A(C) = C ′|A(C′), i.e., the core symbols

are preserved. Similarly to the proof presented by Dinur

[10], one could verify that if for every w ∈ F
n it holds

that PrI∼D[w|I /∈ C|I ] ≥ ε1 · δ(w|A(C), C|A(C)), then

for every w ∈ F
n′

it holds that PrI∼D′ [w|I /∈ C ′|I ] ≥
(ε1/d) · δ(w|A(C′), C

′|A(C′)). In particular, this means that

if C is a (2, ε1, ·)-rLTC with respect to its tester D and its

core A(C), then C ′ is a (2, ε1/d, ·)-rLTC with respect to its

tester D′ and its core A(C ′). I.e., the decrease in the first

soundness parameter is bounded by a maximal degree of a

code coordinate.

Notice that if all degrees of the code coordinates are

upper-bounded by a fixed constant, then the soundness will

be decreased be only by a constant.

Second Stage - Amplification (described in [10, Sec-
tions 1 and 6]) The input of this stage is the code C ′ ⊆ F

n′

and its 2-query tester D′ which is uniform over its support.

We recall that A(C ′) ⊆ [n] is a core of the code C ′ such

that A(C ′) = [|A(C ′)|]. We also know that the degree of

every index of C ′ (after the first stage) with respect to D′ is

equal to a fixed constant d ∈ N
+. In this stage we associate

the code C ′ and the tester D′ with a graph G′. Then the

graph G′ is transformed to the graph (G′)t for sufficiently

large constant t ∈ N
+, where (G′)t has the same vertexes as

G′ and the edge set (E′)t contains k parallel edges between

i1 and i2 if and only if the number of t-step walks from

i1 to i2 is exactly k. The graph (G′)t defines the code C ′′

and its tester D′′ which is uniform over all edges of the

graph (G′)t, but the first |A(C ′)| symbols are exactly the

first |A(C ′)| symbols of C ′, i.e., the core coordinates are

preserved. We set A(C ′′) = A(C ′). The underlying field of

the code C ′′ is F
d�t/2�

, but the symbols indexed by A(C ′′)
belong to F. Note that C ′′ is linear over F. In particular, the

blocklength of C ′′ is n′ and | supp(D′′)| ≤ | supp(D′)| · dt.
In [10] it is shown that the first soundness parameter is

increased in t′ = Ω(
√

(t)), where the constant inside Ω(·)
is independent of t, and hence t is picked to be sufficiently

large constant such that, e.g., t′ ≥ 10. As we mentioned,

Radhakrishnan [51] improved the dependency on t, but we

don’t use his result in this paper.

That means if for every w ∈ F
n′

it holds that

PrI∼D′ [w|I /∈ C ′|I ] ≥ ε1 · δ(w|A(C′), C|A(C′)), then for

every w ∈ F
n′′

it holds that PrI∼D′′ [w|I /∈ C ′′|I ] ≥
(ε1 ·t′)·δ(w|A(C′′), C

′|A(C′′)). Namely, if C ′ was a (2, ε1, ·)-
rLTC with respect to A(C ′) and D′ then C ′′ is a (2, t′ ·ε1, ·)-
rLTC with respect to A(C ′′) and D′′, where ε1 is less than

some fixed constant γ > 0.

Third Stage - Alphabet Reduction (described in [10,
Sections 1 and 5]) and [31, Section 6.4.3] In this stage, we

will use the suggestion of Meir [31, Section 6.4.3], where

the alphabet reduction is done by the concatenation with the

binary Hadamard code. In this stage, every code symbol,

which is an element of Fdt

for some d, t ∈ N
+, is encoded

by the Hadamard code over the field F2. The output of

this stage is a code C ′′′ ⊆ F
n′′′

and its 2-query tester D′′′
which is uniform over its support. The core of the code is

preserved again, and we set A(C ′′′) = A(C ′′) and note that

C ′′|A(C′′) = C ′′′|A(C′′′).

As was explained in [31, Section 6.4.3], this reduction

decreases rejection probability by a fixed constant g > 0
(independent of the parameters of the code), i.e., if for

every w ∈ F
n′′

it holds that PrI∼D′′ [w|I /∈ C ′′|I ] ≥ ε1 ·
δ(w|A(C′′), C|A(C′′)), then for every w ∈ F

n′′′
it holds that

PrI∼D′′′ [w|I /∈ C ′′′|I ] ≥ (ε1/g) · δ(w|A(C′′′), C
′|A(C′′′)).

Namely, if C ′′ was a (2, ε1, ·)-rLTC with respect to A(C ′′)
and D′′ then C ′′′ is a (2, ε1/g, ·)-rLTC with respect to

A(C ′′′) and D′′′.
An interesting point is that there are two options:

1) to obtain the binary linear code C ′′′, where D′′′ is

a 3-query tester. As was said, this is done simply by

the concatenation with the binary Hadamard code (see

[31, Section 6.4.3]).

2) to obtain the code C ′′′ over the field F, where D′′′
is a 2-query tester. This can be done by applying the

first bullet and then turn the 3-query rLTC over F2

to the 2-query rLTC over F = F
3
2 using the standard

technique (as in Corollary III.4).

This gap amplification procedure will be applied a number

of times. Each iteration, besides the last one, we use the

second bullet, i.e., we obtain a 2-query rLTC over F (which

is linear over F2). This code can be passed to the new

iteration of gap amplification. However, in the last iteration

we choose the first bullet and obtain a binary linear 3-query

rLTC.

Overall, the output of the gap amplification procedure is

the code C ′′′ and its tester D′′′.
V. OPEN QUESTIONS AND DISCUSSIONS

This work leaves two open questions. The first one is

obtaining asymptotically good strong LTCs with poly-log

query complexity and constant soundness. In Theorem I.8

we argued their existence under Conjecture I.6. One can try

to prove this conjecture. Our feel is that it might be possible

to implement the random projection operation [31], [33] to

preserve the “junta” property (see Remark I.7). E.g., it might

be possible to argue that there exists some invariant feature

that is preserved each iteration in the construction of [33]

and use this feature to re-implement the random projection

operation. Resolving this task would yield an unconditional

proof for Theorem I.8.

The second open question, mentioned in [11], [31], is

the explicit construction of strong LTCs with inverse poly-

logarithmic rate, constant relative distance, constant query

complexity and constant soundness. Recall that our con-

struction of strong LTCs in Theorem I.4 is based on the

construction of [33] (which is almost identical to [31]),
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where the construction of [33] was probabilistic. One of

possible approach to provide an explicit construction of such

strong LTCs is by applying the arguments of [33] and the

arguments used in this paper to the construction of Ben-

Sasson and Sudan [9]. While the work [9] yields weak

LTCs, the underlying construction has some similarities to

the constructions of [31], [33] discussed [31, Sectioin 7.2].

On the other hand, the ideas presented in [33] seem fairly

general and it might that these ideas can be applied to [9] to

conclude the explicit construction of strong LTCs with the

required range of parameters.
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[7] J. Håstad, “Some optimal inapproximability results,” Journal
of the ACM, vol. 48, no. 4, pp. 798–859, 2001. [Online].
Available: http://doi.acm.org/10.1145/502090.502098

[8] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and
S. P. Vadhan, “Robust PCPs of Proximity, Shorter PCPs,
and Applications to Coding,” SIAM Journal on Computing,
vol. 36, no. 4, pp. 889–974, 2006.

[9] E. Ben-Sasson and M. Sudan, “Short PCPs with polylog
query complexity,” SIAM J. Comput, vol. 38, no. 2, pp.
551–607, 2008. [Online]. Available: http://dx.doi.org/10.
1137/050646445

[10] I. Dinur, “The PCP theorem by gap amplification,” Journal
of the ACM, vol. 54, no. 3, pp. 12:1–12:44, Jun. 2007.

[11] O. Goldreich and M. Sudan, “Locally testable codes and PCPs
of almost-linear length,” Journal of the ACM, vol. 53, no. 4,
pp. 558–655, Jul. 2006.

[12] L. Trevisan, “Some Applications of Coding Theory
in Computational Complexity,” Sep. 23 2004. [Online].
Available: http://arxiv.org/abs/cs/0409044

[13] O. Goldreich, “Short Locally Testable Codes and
Proofs (Survey),” Electronic Colloquium on Computational
Complexity (ECCC), no. 014, 2005. [Online]. Available: http:
//eccc.hpi-web.de/eccc-reports/2005/TR05-014/index.html

[14] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and
D. Ron, “Testing Reed-Muller codes,” IEEE Transactions
on Information Theory, vol. 51, no. 11, pp. 4032–4039,
2005. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/TIT.2005.856958

[15] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting
with applications to numerical problems,” Journal of Com-
puter and System Sciences, vol. 47, no. 3, pp. 549–595, Dec.
1993.

[16] E. Ben-Sasson, N. Ron-Zewi, and M. Sudan, “Sparse
affine-invariant linear codes are locally testable,” in FOCS.
IEEE Computer Society, 2012, pp. 561–570. [Online].
Available: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber=6374356

[17] E. Ben-Sasson, E. Grigorescu, G. Maatouk, A. Shpilka,
and M. Sudan, “On sums of locally testable affine
invariant properties,” in Proceedings of Approximation,
Randomization, and Combinatorial Optimization (APPROX-
RANDOM), ser. Lecture Notes in Computer Science, vol.
6845. Springer, 2011, pp. 400–411. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22935-0

[18] A. Bhattacharyya, S. Kopparty, G. Schoenebeck, M. Sudan,
and D. Zuckerman, “Optimal testing of reed-muller codes,”
in FOCS. IEEE Computer Society, 2010, pp. 488–
497. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/FOCS.2010.54

[19] E. Grigorescu, T. Kaufman, and M. Sudan, “Succinct
representation of codes with applications to testing,” SIAM
J. Discrete Math, vol. 26, no. 4, pp. 1618–1634, 2012.
[Online]. Available: http://dx.doi.org/10.1137/100818364

[20] T. Kaufman and D. Ron, “Testing polynomials over
general fields,” SIAM J. Comput, vol. 36, no. 3, pp. 779–
802, 2006. [Online]. Available: http://dx.doi.org/10.1137/
S0097539704445615

337



[21] T. Kaufman and M. Sudan, “Algebraic property testing:
the role of invariance,” in Proceedings of the 40th
Annual ACM Symposium on Theory of Computing (STOC),
Victoria, British Columbia, Canada, May 17-20, 2008.
ACM, 2008, pp. 403–412. [Online]. Available: http:
//doi.acm.org/10.1145/1374376.1374434

[22] T. Kaufman and S. Lovett, “New Extension of the Weil
Bound for Character Sums with Applications to Coding,” in
IEEE 52nd Annual Symposium on Foundations of Computer
Science, (FOCS). IEEE, 2011, pp. 788–796. [Online].
Available: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber=6108120

[23] N. Ron-Zewi and M. Sudan, “A new upper bound on
the query complexity for testing generalized reed-muller
codes,” in Proceedings of Approximation, Randomization,
and Combinatorial Optimization (APPROX-RANDOM), ser.
Lecture Notes in Computer Science, vol. 7408. Springer,
2012, pp. 639–650. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-32512-0

[24] I. Dinur and O. Reingold, “Assignment Testers: Towards a
Combinatorial Proof of the PCP Theorem,” SIAM Journal
on Computing, vol. 36, no. 4, pp. 975–1024, 2006. [Online].
Available: http://dx.doi.org/10.1137/S0097539705446962

[25] E. Ben-Sasson and M. Viderman, “Low rate is insufficient
for local testability,” in Proceedings of Approximation,
Randomization, and Combinatorial Optimization (APPROX-
RANDOM), ser. Lecture Notes in Computer Science, vol.
6302. Springer, 2010, pp. 420–433. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15369-3

[26] T. Kaufman and M. Sudan, “Sparse Random Linear Codes
are Locally Decodable and Testable,” in FOCS. IEEE
Computer Society, 2007, pp. 590–600. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/FOCS.2007.65

[27] S. Kopparty and S. Saraf, “Local list-decoding and testing
of random linear codes from high error,” in Proceedings
of the 42nd ACM Symposium on Theory of Computing
(STOC). ACM, 2010, pp. 417–426. [Online]. Available:
http://doi.acm.org/10.1145/1806689.1806748

[28] I. Dinur, M. Sudan, and A. Wigderson, “Robust
Local Testability of Tensor Products of LDPC Codes,”
in Proceedings of Approximation, Randomization, and
Combinatorial Optimization (APPROX-RANDOM), ser.
Lecture Notes in Computer Science, vol. 4110.
Springer, 2006, pp. 304–315. [Online]. Available:
http://dx.doi.org/10.1007/11830924 29

[29] E. Ben-Sasson and M. Viderman, “Tensor Products of
Weakly Smooth Codes are Robust,” Theory of Computing,
vol. 5, no. 1, pp. 239–255, 2009. [Online]. Available:
http://dx.doi.org/10.4086/toc.2009.v005a012

[30] ——, “Composition of Semi-LTCs by Two-Wise Tensor
Products,” in Proceedings of Approximation, Randomization,
and Combinatorial Optimization (APPROX-RANDOM), ser.
Lecture Notes in Computer Science, vol. 5687. Springer,
2009, pp. 378–391. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-03685-9

[31] O. Meir, “Combinatorial Construction of Locally Testable
Codes,” SIAM J. Comput, vol. 39, no. 2, pp. 491–544, 2009.
[Online]. Available: http://dx.doi.org/10.1137/080729967

[32] M. Viderman, “A combination of testability and decodability
by tensor products,” in Proceedings of Approximation,
Randomization, and Combinatorial Optimization (APPROX-
RANDOM), ser. Lecture Notes in Computer Science, vol.
7408. Springer, 2012, pp. 651–662. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32512-0

[33] ——, “Strong LTCs with inverse polylogarithmic rate and
soundness,” To appear in CCC 2013. Electronic Colloquium
on Computational Complexity (ECCC), vol. 19, p. 168, 2012.
[Online]. Available: http://eccc.hpi-web.de/report/2012/168

[34] O. Goldreich, “Home page.” [Online]. Avail-
able: http://www.wisdom.weizmann.ac.il/∼oded/;http://dl.
acm.org/author page.cfm?id=81336489395

[35] O. Goldreich and D. Ron, “On proximity-oblivious testing,”
SIAM J. Comput, vol. 40, no. 2, pp. 534–566, 2011. [Online].
Available: http://dx.doi.org/10.1137/100789646

[36] E. Ben-Sasson and M. Viderman, “Towards lower bounds on
locally testable codes via density arguments,” Computational
Complexity, vol. 21, no. 2, pp. 267–309, 2012. [Online].
Available: http://dx.doi.org/10.1007/s00037-012-0042-8

[37] E. Ben-Sasson, O. Goldreich, and M. Sudan, “Bounds
on 2-Query Codeword Testing,” in Proceedings of
Approximation, Randomization, and Combinatorial
Optimization (APPROX-RANDOM), ser. Lecture Notes
in Computer Science, vol. 2764. Springer, 2003, pp.
216–227. [Online]. Available: http://springerlink.metapress.
com/openurl.asp?genre=article&amp;issn=0302-9743&amp;
volume=2764&amp;spage=216

[38] V. Guruswami, “On 2-Query Codeword Testing with
Near-Perfect Completeness,” in Proceedings of the 17th
International Symposium on Algorithms and Computation
(ISAAC), ser. Lecture Notes in Computer Science, vol.
4288. Springer, 2006, pp. 267–276. [Online]. Available:
http://dx.doi.org/10.1007/11940128 28

[39] G. Kol and R. Raz, “Locally testable codes analogues to the
unique games conjecture do not exist,” Electronic Colloquium
on Computational Complexity (ECCC), vol. 16, p. 128, 2009.

[40] ——, “Bounds on 2-query locally testable codes with affine
tests,” Electronic Colloquium on Computational Complexity
(ECCC), vol. 16, p. 138, 2009.

[41] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, “Some
3CNF Properties Are Hard to Test,” SIAM Journal on Com-
puting, vol. 35, no. 1, pp. 1–21, 2005. [Online]. Available:
http://epubs.siam.org/SICOMP/volume-35/art 44544.html

[42] L. Babai, A. Shpilka, and D. Stefankovic, “Locally testable
cyclic codes,” in Proceedings: 44th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2003, 11–14
October 2003, Cambridge, Massachusetts. IEEE Computer
Society Press, 2003, pp. 116–125.

338



[43] E. Ben-Sasson, G. Maatouk, A. Shpilka, and M. Sudan,
“Symmetric LDPC Codes are not Necessarily Locally
Testable,” in IEEE Conference on Computational Complexity.
IEEE Computer Society, 2011, pp. 55–65. [Online].
Available: http://dx.doi.org/10.1109/CCC.2011.14

[44] E. Ben-Sasson and M. Sudan, “Limits on the
Rate of Locally Testable Affine-Invariant Codes,”
in Proceedings of Approximation, Randomization, and
Combinatorial Optimization (APPROX-RANDOM), ser.
Lecture Notes in Computer Science, vol. 6845.
Springer, 2011, pp. 412–423. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22935-0

[45] E. Grigorescu, T. Kaufman, and M. Sudan, “2-
Transitivity Is Insufficient for Local Testability,” in
IEEE Conference on Computational Complexity. IEEE
Computer Society, 2008, pp. 259–267. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/CCC.2008.31

[46] T. Kaufman and A. Wigderson, “Symmetric LDPC codes
and local testing,” in Innovations in Computer Science -
ICS, Tsinghua University, Beijing, China, January 5-7, 2010.
Proceedings, A. C.-C. Yao, Ed. Tsinghua University Press,
2010, pp. 406–421. [Online]. Available: http://conference.
itcs.tsinghua.edu.cn/ICS2010/content/papers/32.html

[47] E. Ben-Sasson, V. Guruswami, T. Kaufman, M. Sudan, and
M. Viderman, “Locally Testable Codes Require Redundant
Testers,” SIAM J. Comput, vol. 39, no. 7, pp. 3230–
3247, 2010. [Online]. Available: http://dx.doi.org/10.1137/
090779875

[48] I. Dinur and T. Kaufman, “Dense locally testable
codes cannot have constant rate and distance,”
in Proceedings of Approximation, Randomization,
and Combinatorial Optimization (APPROX-RANDOM),
vol. 6845, 2011, pp. 507–518. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22935-0

[49] E. Ben-Sasson and M. Sudan, “Robust locally testable
codes and products of codes,” Random Struct. Algorithms,
vol. 28, no. 4, pp. 387–402, 2006. [Online]. Available:
http://dx.doi.org/10.1002/rsa.20120

[50] E. Ben-Sasson, P. Harsha, O. Lachish, and A. Matsliah,
“Sound 3-Query PCPPs Are Long,” TOCT, vol. 1,
no. 2, 2009. [Online]. Available: http://doi.acm.org/10.1145/
1595391.1595394

[51] J. Radhakrishnan, “Gap amplification in PCPs using lazy
random walks,” in Automata, Languages and Programming,
33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part I, ser. Lecture Notes in
Computer Science, vol. 4051. Springer, 2006, pp. 96–107.
[Online]. Available: http://dx.doi.org/10.1007/11786986 10

[52] O. Goldreich and O. Meir, “A Small Gap in the
Gap Amplification of Assignment Testers,” Electronic
Colloquium on Computational Complexity (ECCC) - TR05-
046. Comment 3, 2007. [Online]. Available: http://eccc.
hpi-web.de/eccc-reports/2005/TR05-046/index.html

[53] M. Bellare and M. Sudan, “Improved non-approximability
results,” in Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing (STOC), 23-25 May
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