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Abstract—The PCP theorem (Arora et. al., J. ACM 45(1,3))
says that every NP-proof can be encoded to another proof,
namely, a probabilistically checkable proof (PCP), which
can be tested by a verifier that queries only a small
part of the PCP. A natural question is how large is the
blow-up incurred by this encoding, i.e., how long is the
PCP compared to the original NP-proof. The state-of-
the-art work of Ben-Sasson and Sudan (SICOMP 38(2))
and Dinur (J. ACM 54(3)) shows that one can encode
proofs of length n by PCPs of quasi-linear length that can
be verified using a constant number of queries. In this
work, we show that if the query complexity is relaxed
to polynomial, then one can construct PCPs of linear
length for circuit − SAT , and PCPs of length O(tlog t)
for any language in NTIME(t). Our PCPs have perfect
completeness and constant soundness. This is the first
constant-rate PCP construction that achieves constant
soundness with nontrivial query complexity.
Our proof replaces the low-degree polynomials in alge-
braic PCP constructions with tensors of transitive alge-
braic geometry (AG) codes. We show that the automor-
phisms of an AG code can be used to simulate the role of
affine transformations which are crucial in earlier high-
rate algebraic PCP constructions. Using this observation
we conclude that any asymptotically good family of tran-
sitive AG codes over a constant-sized alphabet leads to
a family of constant-rate PCPs with polynomially small
query complexity. Such codes are constructed for the first
time for every message length.
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I. INTRODUCTION

The PCP theorem [AS98], [ALM+98] is one of the

major achievements of complexity theory. A PCP is

a proof system that allows checking the validity of

a claim by querying only a small part of the proof.

The PCP theorem says that every NP -claim has a

PCP of polynomial length that can be verified using

a constant number of queries. The theorem has found

many applications, most notably in establishing lower

bounds for approximation algorithms for constraint sat-

isfaction problems (cf. the surveys [Aro02], [GO05] and

references therein).

It is natural to ask how long should the PCPs be

compared to the corresponding NP -proofs. To make the

discussion a bit more formal, let L be a language in NP ,

and recall that there is a polynomial-time algorithm V
that verifies the membership of a string x in L when

given an additional NP -witness. Let t : N→ N be such

that t(n) is an upper bound on the running time of V
on inputs of length n. The original PCP theorem says

that there exists a PCP verifier that verifies claims of

the form x ∈ L by making O(1) queries to proofs of

length poly (t(n)) where n = |x|. Following works have

improved this state of affairs [PS94], [HS00], [GS06],

[BSVW03], [BGH+06] culminating in [BS08], [Din07]

which construct PCP verifiers that make O(1) queries to

proofs of length t(n) · poly log t(n). It is an interesting

open question whether this can be further improved.

While the aforementioned works have focused mostly

on PCPs that use a constant number of queries, it is

also interesting and natural to consider PCPs that make

a larger number of queries. In fact, even constructing

a PCP that uses any sub-linear number of queries is

interesting and non-trivial. In particular, such PCPs

have applications to succinct verification of computer

programs, as first suggested in [BFLS91] and improved
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upon in [BGH+05], [Mie09], [BCGT13a], [BCGT13b].

Thus, it is natural to ask whether we can get PCPs with

better length if we allow ourselves to use more queries,

say, O(nε) queries. Indeed, recent constructions of

locally decodable codes [KSY11], and locally testable

codes [Vid12], show that by allowing O(nε) queries, it

is possible to achieve very high rates, arbitrarily close

to 1.

In this work, we show that for the special case of

circuit − SAT , there exists a (non-uniform) PCP ver-

ifier that verifies the satisfiability of a circuit of size n
by making nε queries to a proof of length Oε(n) for

all ε > 0. Using the efficient reduction of NP to

circuit − SAT of [PF79], this implies the existence

of a PCP verifier that makes O(tε) queries to a proof

of length Oε(t log t) for every language L ∈ NTIME(t).

Remark 1.1: As noted above, our PCPs are non-

uniform. The reason is that our construction relies on

a family of algebraic-geometry codes which we do not

know how to construct in polynomial time.

A. Our techniques

In order to explain the new ideas that we employ to

get linear PCPs, let us first recall how the state-of-the-

art PCP of [BS08], [Din07] was constructed, and what

caused the poly-logarithmic blow-up in the length there.

Very roughly, that construction applies the following

steps to an instance ϕ of circuit− SAT of size n: (1)

(Graph problem) Reducing ϕ to a constraint satisfaction

problem (CSP) over a “well-structured” graph G of

size m1. In this context, a graph is said to be “well-

structured” if we can identify its vertices with the

vectors of some vector space, such that the neighbors

of a vertex v can be obtained by applying a collection

of affine transformations to v (where the affine trans-

formations are the same for all vertices). This reduction

uses routing [Lei92], which loses a logarithmic factor

in the length of the PCPs, i.e., m1 ≥ n log n.

(2) (Arithmetization) Reducing the foregoing constraint

satisfaction problem to an algebraic CSP (ACSP). As

part of this reduction, binary strings of length m1 are

represented by evaluations of polynomials of degree

m1 over a field F which is of size greater than m1.

In particular, if we measure the length of the latter

encoding in bits rather than in elements of the field,

their length will become m2 ≥ m1 logm1.

(3) (Zero testing) An ACSP instance obtained via arith-

metization is specified by a low-degree polynomial Q.

The instance is defined to be satisfiable if and only if

there exists a low-degree polynomial P such that when

Q is “composed” with P then the resulting polynomial,

denoted R, is one that vanishes on a large predefined set

of points H ⊂ F. Roughly speaking, P is supposed to

be the polynomial interpolating a boolean assignment

that satisfies the graph CSP G, hence deg(P ) ≈ m1,

and Q “checks” the algebraic analog of each and every

constraint of the graph CSP.

To verify that Q is satisfiable, one needs to solve the

“zero testing” problem which asks whether R indeed

vanishes on every point in H . In [BS08] this reduction

is done by an algebraic characterization of polynomials

vanishing on H . Other works in the PCP literature

(e.g., [AS98], [ALM+98]) have solved the “zero testing”

problem using the sum-check protocol of [LFKN92].

(4) (Low-degree testing) The zero-testing procedures

mentioned above only work under the promise that P
and R are close to low-degree polynomials1. Thus, in

order to verify that the ACSP instance is satisfiable,

we need to be able to verify that a function is close

to a low-degree polynomial. This is done in [BS08] by

constructing a PCP of proximity [BGH+06], [DR06] for

testing that a polynomial is of low degree. This step uses

Õ(
√
n) queries and loses only a constant factor in the

length of the PCP.

(5) (Composition) Reducing the query complexity to

a constant by using more composition with PCPs of

proximity and gap-amplification. This step loses a poly-

logarithmic factor in the length of the PCP: Denoting the

final PCP length by m we have m = m2 ·poly logm2 =
n · poly log n.

Thus, in order to construct a PCP of linear length for

circuit− SAT , we need to find ways to deal with the

losses in the Steps 1, 2, and 5 above, while supporting

the functionality of steps 3 and 4

For Step 1, we observe that since we are going to con-

struct a PCP with a large query complexity, we can af-

ford to use “well-structured” graphs G′ of significantly

larger degree (specifically, nε), in which case the routing

loses only a constant factor, i.e. m′1 = Oε(n). In con-

trast, the work of [BS08] uses graphs of constant degree,

for which the routing must lose a logarithmic factor.

However, in order to support the following steps, we

must generalize the definition of “well-structured graph”

to settings of AG-codes. Basically, our generalization

replaces the affine transformations with automorphisms

of the corresponding AG-code.

For Step 2, we reduce the size of the finite field used in

the algebraic CSP to a constant. This is done by replac-

ing the Reed-Solomon (RS) code with a transitive AG

code that has an alphabet of constant size, which results

in codewords of bit-length m′2 = O(m′1) = O(n). This

replacement is non-trivial, however, and also causes

1Actually, those procedures also rely on the promise that some
additional auxiliary functions are close to low-degree polynomials.
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complications in Steps 3 and 4 which are discussed in

the next subsection.

For Step 3, we present two ways for solving the zero

testing for AG codes: the first solution follows the ideas

of [BS08] by generalizing the “Combinatorial Nullstel-

lensatz” of [Alo99] to tensor products of AG-codes

yielding a new “AG Combinatorial Nullstellensatz”.

The second method is based on the sum-check protocol

of [LFKN92], and in particular, uses the generalization

of the sum-check protocol to general error-correcting

codes of [Mei10]. The PCP constructed this way has the

advantage that it requires a less sophisticated algebraic

machinery, and in particular, it does not require the AG

combinatorial Nullstellensatz. However, this PCP is less

randomness efficient.

In order to emulate Step 4, we need to solve the

analog of low-degree testing for AG codes with query

complexity nε. To this end, we use tensor products of

the AG codes rather than the AG codes themselves. We

then use the fact that tensor codes are locally testable2

as an analog of low-degree testing.

We do not have an analogue of Step 5 in our PCP

construction. We currently do not know a way of

composing our PCP to reduce the query complexity

below nε while keeping the rate constant.

B. AG arithmetization

We briefly discuss a number of issues that arise from

the use of AG codes in PCP constructions, as this is the

first time such codes are used in the context of PCPs.

Informal description of AG codes: Codewords of

an AG code C are best thought of as (rational)

functions evaluated over a specially chosen set of

points, i.e., C = {f : D → Fq | f ∈ L}. The set

of points D ⊂ F
m
q is the set of solutions to a

system E = (e1, . . . , ek), ei ∈ Fq(x1, . . . , xm) of k
carefully chosen rational equations over Fq . D ={
x = (x1, . . . , xm) ∈ F

m
q | e1(x) = . . . = ek(x) = 0

}
The set L of “legitimate” functions is a linear space that

is best thought of the space of “low-degree” rational

functions in x1, . . . , xm. AG codes are interesting

because by fixing the base-field Fq and letting m grow,

one can obtain a family of codes over constant alphabet

Fq with arbitrarily large dimension and block-length.

Indeed, the celebrated results of [TVZ82], [GS96]

show that using this framework one can obtain explicit

constructions of asymptotically good codes that beat

the Gilbert-Varshamov bound.

2The study of local testability of tensor codes was initiated by
[BS06] and further studied in [Val05], [CR05], [DSW06], [BV09],
[BSV09], [GM12], [Mei12b], [Vid12]. We use the state-of-the-art
testability results of [Vid12] (cf. Theorem 3.9)

Why AG codes?: A key property of RS and Reed-

Muller (RM) that is used in the arithmetization steps

of previous works (and in particular, in [BS08]) is their

“multiplication property”: Let f, g be two codewords

of the RS code of degree d, i.e., f, g : F → F are

evaluations of polynomials of degree at most d. Then

their coordinate-wise multiplication is the function f · g
defined by (f · g)(x) def

= f(x) · g(x), x ∈ F. Clearly,

deg(f ·g) ≤ 2d, so we conclude that f ·g is a codeword

of a code with relative distance 2d/|F|. Taking |F| to

be sufficiently large means f · g belongs to a large-

distance code. As shown by [Mei10], [Mei12a], this

“distance of multiplication code” property is sufficient

for a PCP-style arithmetization. AG codes are a natural

generalization of “low-degree” codes (under the proper

definition of “degree”) and, in particular, have the

“distance of multiplication code” property needed for

PCPs.

The main advantage AG codes have over RS/RM is their

constant-size alphabet. All known PCP constructions

based on RS/RM (and AG) codes suffer a log |F|-factor

loss in their rate because, roughly speaking, they are

used to encode boolean assignments to a circuit−SAT
instance. Constant-rate RS/RM codes of blocklength n
require fields of size nΩ(1) which implies a rate-loss of

Ω(log n). Using constant-rate AG codes over a constant-

size alphabet allows us to avoid this loss.

Why transitive?: Another property of RS codes that

is used in previous arithmetizations is the fact that

composing a degree-d polynomial with an affine func-

tion results in a degree-d polynomial. This property is

combined with the notion of “well-structured graphs”

to yield an algebraic constraint satisfaction problem in

Step 2 that is of low-degree. We point out that the

reason all this works out is because affine functions are

automorphisms of the RS code. When generalizing the

notion of “well-structured graphs” to our AG-setting it

is sufficient to work with AG-codes that have a transitive

automorphism group.

The affine-invariance of linear codes has been intensely

investigated in recent years in the context of locally

testable codes, starting with the work of [KS08] (see

[Sud10] for a recent survey). The role the automor-

phisms of AG codes play in constructing locally cor-

rectable and decodable codes has been recently consid-

ered in [BSGK+13].

The properties required for our PCP construction.: The

multiplication property and the transitivity property dis-

cussed above are sufficient for the our PCP construction

that is based on the sum-check protocol. Theoretically,

this construction could be implemented using any family

of error-correcting that has this property. However,
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practically, we do not know other examples of such

codes.

Our first PCP construction, on the other hand, relies

crucially on our codes being AG codes, and in particular

on the AG Combinatorial Nullstellensatz theorem to

be discussed next. However, this construction is more

randomness-efficient, and is also somewhat simpler as-

suming the AG Combinatorial Nullstellensatz.

C. The road ahead

In the next section we formally state our main results.

Section III states some preliminaries about tensor codes

and their testability, an asymptotically good family of

transitive AG codes and a special case of the AG

combinatorial Nullstellensatz sufficient for the analysis

of our PCP construction. Section IV gives the mian

details of one of the proofs of the Main Theorem 2.3.

The complete proofs, accurate statements of AG related

theorems and the construction of the transitive AG codes

used can all be found in the full paper.

II. FORMAL STATEMENT OF MAIN RESULTS

Throughout this paper, when we discuss circuits, we

always refer to boolean circuits with AND, OR, and

NOT gates whose fan-in and fan-out are upper bounded

by 2. The size of the circuit ϕ, denoted |ϕ|, is defined

to be the number of wires of ϕ. We say that a circuit ϕ
is satisfiable if there is an input x ∈ {0, 1}∗ for ϕ such

that ϕ(x) = 1.

Definition 2.1: circuit − SAT
def
=

{ϕ : ϕ is a satisfiable circuit} .
Definition 2.2 (Non-uniform PCP verifier): Let L ⊆
{0, 1}∗ be a language, and let q, �, v : N→ N, ρ : N→
(0, 1). A (non-uniform) PCP verifier V = {Vn}∞n=1 for

L with query complexity q, proof length �, rejection
probability ρ and verifier complexity v is an infinite

family of randomized circuits that satisfy the following

requirements:

1) Input: The verifier Vn takes as input a string w of

length n.

2) Output: The verifier Vn outputs a tuple I of

coordinates in {1, . . . , �(n)} where |I| ≤ q(n),
and a circuit ψ : {0, 1}I → {0, 1} of size at

most poly(n). For π ∈ {0, 1}�(n) we denote by

π|I the restriction of π to I .

3) Verifier complexity: The size of the circuit Vn is

at most v(n).

4) Completeness: For every w ∈ L, there exists a

string π ∈ {0, 1}�(n) such that P [ψ (π|I) = 1] = 1,

where the probability is over ψ and I generated by

the verifier V on input w.

5) Soundness: For every string w /∈ L and

every string π ∈ {0, 1}�(n), it holds that

P [ψ (π|I) = 0] ≥ ρ(n), where the probability is

over ψ and I generated by the verifier V on input

w.

We can now state our main result.

Theorem 2.3 (Main theorem): For every ε > 0 there

exists a constant cε = 2O(1/ε) such that the following

holds for every n ∈ N. There exists a PCP verifier

for circuit − SATn with query complexity cε · nε,
proof length cε ·n, rejection probability 1/2 and verifier

complexity (cε · n)O(1).

The proof of Theorem 2.3 goes by the following

schematic sequence of reductions, explained next.

circuit− SAT (i)−→ Hypercube-CSP
(ii)−→

aggregate-AGCSP

{
(iiia)−→ Nullstellensatz
(iiib)−→ Sum-check

(1)

(i) The first reduction maps an instance ϕ of circuit−
SAT to a graph constraint satisfaction problem over

a sub-graph of the hypercube. (ii) The next reduction

maps the hypercube constraint satisfaction problem into

an Algebraic Geometry Constraint Satisfaction Problem

(AGCSP). At this point we have two alternate paths to

complete the proof of Theorem 2.3. (iiia) The first uses

our AG combinatorial Nullstellensatz (Theorem 3.14)

and relies on particular properties of tensored AG-

codes. (iiib) The second is based on the sum-check

protocol, and relies only on the multiplication property

and transitivity of our AG codes, but is less randomness

efficient. We elaborate further on all these stages in

section IV.

III. TENSORS OF AG CODES AND AN AG

COMBINATORIAL NULLSTELLENSATZ

This section reviews the basic properties of tensor prod-

uct codes as well as their local testability and describes

the AG codes that we use and our AG Combinatorial

Nullstellensatz which pertains to tensors of AG codes.

We assume familiarity with standard coding theory

terms and notations.

A. Tensor Codes

In this section, we define the tensor product operation

on codes and present some of its properties. See [MS88]

and [Sud01, Lect. 6 (2.4)] for the basics of this subject.

Definition 3.1: Let R : FkR → F
�R , C : FkC → F

�C

be codes. The tensor product code R⊗ C is a code of

message length kR · kC and block length �R · �C that

encodes a message x ∈ F
kR·kC as follows: In order to
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encode x, we first view x as a kC × kR matrix, and

encode each of its rows via the code R, resulting in a

kC×�R matrix x′. Then, we encode each of the columns

of x′ via the code C. The resulting �C × �R matrix is

defined to be the encoding of x via R⊗ C.

The following fact lists some of the basic and standard

properties of the tensor product operation.

Fact 3.2: Let R : F
kR → F

�R , C : F
kC → F

�C be

linear codes. We have the following:

1) An �C×�R matrix x over F is a codeword of R⊗C
if and only if all the rows of x are codewords of

R and all the columns of x are codewords of C.

2) Let δR and δC be the relative distances of R and

C respectively. Then, the code R⊗C has relative

distance δR · δC .

3) The tensor product operation is associative. That is,

if D : FkD → F
�D is a code then (R⊗ C)⊗D =

R⊗ (C ⊗D).

The associativity of the tensor product operation allows

us to use the following notation:

Notation 3.3 (Iterated tensor code): Let C : Fk → F
�

be a code. For every m ∈ N we denote by C⊗m :
F
km → F

�m the code C⊗m = C⊗m−1 ⊗ C. Suppose

that C is an evaluation code, i.e., we identify the

codewords of C with functions f : D → F for some

set D. In such case, we will identify the codewords of

C⊗m with functions g : Dm → F.

Notation 3.4 (Axis-parallel lines): For i ∈ [m] and

v = (v1, . . . , vm) ∈ Dm the set Dm|i,v =
{(v1, . . . , vi−1, x, vi+1, . . . , vm) | x ∈ D} is called the

i-axis-parallel line passing through v. Similarly, the

restriction of g to this axis-parallel line, denoted g|i,v ,

is the function with range D defined by g|i,v−i
(x) =

g(v1, . . . , vi−1, x, vi+1, . . . , vm), x ∈ D.
The following can be proven using Fact 3.2:

Fact 3.5: Let C be a linear code whose codewords are

identified with functions f : D → F. Then, a function

g : Dm → F is a codeword of C⊗m if and only if for

every 1 ≤ i ≤ m and v ∈ Dm it holds that the function

g|i,v is a codeword of C.

Another useful fact about the tensor products of sys-

tematic evaluation codes is the following.

Fact 3.6: Let C = {f : D → F} be a systematic linear

evaluation code whose messages are functions h : H →
F (where H ⊆ D). Then, C⊗m = {fm : Dm → F}
is a systematic evaluation code whose messages are

functions hm : Hm → F.

We also use the following two claims, due to [Mei10].

Claim 3.7 ( [Mei10, Claim 3.7]): Let C =

{f : D → F} be a systematic linear evaluation

code whose messages are functions h : H → F

(where H ⊆ D), and let m ∈ N. Then, for every

coordinate x ∈ Dm there exist scalars αt,z ∈ F (for

every 1 ≤ t ≤ m and z ∈ H) such that for every

codeword g ∈ C⊗m it holds that g(x) =
∑
z1∈H α1,z1 ·∑

z2∈H α2,z2 · . . .
∑
zm∈H αm,zm · g(z1, . . . , zm).

Furthermore, the scalars αt,z can be computed

in polynomial time given x and the generating

matrix of C. Moreover, for every t ∈ [m], the scalars

{αt,z}z∈H depend only on xt and on the generating

matrix of C (but not on x1, . . . , xt−1, xt+1, . . . , xm).

Claim 3.8 ( [Mei10, Claim 3.8]): Let C =
{f : D → F} be a linear evaluation code, let m ∈ N,

and let g ∈ C⊗m. Then, for every sequence of scalars

αt,z (for every 2 ≤ t ≤ m and z ∈ D) it holds that the

function f : D → F defined by f(z1) =
∑
z2∈D α2,z2 ·∑

z3∈D α3,z3 · . . .
∑
zm∈D αm,zm · c(z1, . . . , zm) is a

codeword of C.

Finally, in this work we use the fact that tensor product

codes are locally testable.

Theorem 3.9: [Vid12] There exists a randomized

polynomial-time tester that satisfies the following re-

quirements:

• The tester takes as input the generating matrix of

a linear code C : Fk → F
� of relative distance δC

and an integer m and is given oracle access to a

string w ∈ F
�m ,

• The tester uses at most log(�m)+O(logm) random

bits and �2 queries, and performs poly(�) arith-

metic operations.

• Completeness: If w ∈ C⊗m, then the tester

accepts with probability 1.

• Soundness: If w /∈ C⊗m, then the tester rejects

with probability at least γm · δ(w,C⊗m), where

γm = δ3mC /poly(m).

B. AG codes and the multiplication property

The purpose of this section is to state the key properties

of the error correcting codes required for our proof

of Main Theorem 2.3. We do so here using a limited

amount of algebraic geometry. As mentioned in the

introduction, two key properties that we need of our

codes are that they are part of multiplication code
families with constant relative distance, and that they

possess a transitive automorphism group. These notions

are defined next.

Definition 3.10 (Multiplication codes): Let

C,C ′ be two evaluation codes with the

same domain D. Define their multiplication

C · C ′ = span ({f · f ′ | f ∈ C, f ′ ∈ C ′}) where

f · f ′ is the function with domain D and range F
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defined by (f · f ′)(x) = f(x) · f ′(x), x ∈ D. We define

Ci to be the i-fold multiplication C · C · · ·C.

A sequence of evaluation codes �C = (C1, . . . , Cdmult
)

with the same domain D is called a multiplication code
family of multiplication degree dmult if for all 1 ≤
i, j ≤ dmult with i+j ≤ dmult, we have Ci ·Cj ⊆ Ci+j .

Definition 3.11: Given a code C =
{f : D → F | f ∈ L}, the automorphism group of

C is the set of permutations of D that stabilize

C. Formally, for any permutation π : D → D
and codeword f ∈ L we define f ◦ π : D → F

by (f ◦ π)(x) = f(π(x)) for x ∈ D. Then

Aut(C) = {π : D → D | {f ◦ π | f ∈ L} = C}
A code C is called transitive if its automorphism

group is transitive, i.e., for every x, y ∈ D there exists

π ∈ Aut(C) such that π(x) = y.

An asymptotically good family of transitive AG codes

was presented in [Sti06]. This family was “sparse”: the

ratio between blocklengths of consecutive members in

this family was super-constant. Applied to our frame-

work, this family would only have led to a result saying

that infinitely often circuit − SATn has constant-rate

PCPs with sublinear query complexity. The full paper

gives a family of transitive AG codes that is defined for

every message length. We now state the main properties

of these codes needed for our proof. In what follows an

integer q is called a square of a prime-power if q = p2r

for prime p and integer r.

Theorem 3.12: For any q = p2r > 4 a square

of a prime-power there exists a constant cq ≤ p
√
q−1

for which the following holds. Fix rate and distance

parameters ρ and δ respectively and a multiplication

degree parameter dmult which satisfy cq · dmult · ρ+ δ <
1 − dmult√

q−1 Then for every sufficiently large message

length k there exists a code C, and a multiplication

code family �C = (C1, C2, . . . , Cdmult
) with C1 = C

such that C is a transitive, [|D| ≤ k
ρ ,≥ k,≥ δ|D|]q-

code and for each j ≤ dmult, the code Cj has relative

distance at least δ.

C. The AG Combinatorial Nullstellensatz

In our proof we will face a problem which generalizes

the “zero-testing” problem of previous PCPs. In this

problem we have a function g : Dm → F which is a

codeword of C⊗m where C is an AG code. Our goal

is to test whether g vanishes on a set Hm. As shown

in [BS08, Lemma 4.9], the zero-testing problem for the

case of multivariate polynomials can be solved using

Alon’s Combinatorial Nullstellensatz, stated next.

Theorem 3.13 (Combinatorial Nullstellensatz [Alo99]):
For H ⊂ Fq , define ξH(Y ) =

∏
α∈H(Y − α).

Let f(X1, . . . , Xm) be a polynomial over

Fq of individual degree at most d. Then f
vanishes on Hm if and only if there exist

m polynomials f ′1, . . . , f
′
m ∈ Fq[X1, . . . , Xm]

of individual degree at most d such that

f(X1, . . . , Xm) =
∑m
i=1 f

′
i(X1, . . . , Xm) · ξH(Xi).

The importance of this theorem to PCP constructions is

that it reduces the problem of testing many constraints

to that of checking that each of f ′1, . . . , f
′
m are low-

degree polynomials along with a consistency check that

indeed, f =
m∑
i=1

f ′i · ξH(Xi).

Next we state a special case of it using the minimal

AG formalities and tailored for the purpose of proving

Theorem 2.3.

Theorem 3.14: Let C = {f : D → F} and �C =
(C1, . . . , Cdmult

) be the codes from Theorem 3.12 with

multiplication degree dmult = 6d, rate parameter ρ,

and distance parameter δ satisfying cq · dmult · ρ +
δ < 1

2 − dmult√
q−1 . Then for every H ⊂ D with

|H| <
(

1
12 − δ

6 − 2√
q−1

)
· |D|, there exist ξ(X) =

ξH(X) ∈ C2d and ξ′(X) = ξ′H(X) ∈ C3d satisfying

the following. Suppose f(X1, . . . , Xm) ∈ (Cd)
⊗m.

Then f vanishes on Hm if and only if there exist

f ′1, . . . , f
′
m : Dm → Fq , with f ′i ∈ (C4d)

⊗m for each

i ∈ [m], such that: f(X1, . . . , Xm) · ∏m
i=1 ξ

′(Xi) =∑m
i=1 f

′
i(X1, . . . , Xm) · ξ(Xi).

IV. PROOF OF MAIN THEOREM 2.3

A. From circuit-SAT to Hypercube-CSP

Our first reduction is from circuit-SAT to a family of

constraint satisfaction problems on sub-graphs of the

hypercube. We start by recalling the notions of graph

CSP and the hypercube, then state the main step in this

reduction (Theorem 4.3). We start by defining constraint

satisfaction problems on graphs and on the hypercube

graph formally.

A constraint graph G is a graph (V,E) coupled with

a finite alphabet Σ, and, for each edge (u, v) ∈ E,

a binary constraint cu,v ⊆ Σ × Σ. The size of G,

denoted |G|, is the number of edges of G.

An assignment to G is a function σ : V → Σ. We

say that an assignment σ satisfies an edge (u, v) ∈ E
if (σ(u), σ(v)) ∈ cu,v , and otherwise we say that σ
violates (u, v).

We say that σ is a satisfying assignment for G if it

satisfies all the edges of G. If G has a satisfying assign-

ment, we say that G is satisfiable, and otherwise we say

that it is unsatisfiable. graph-CSP is the language of

satisfiable constraint graphs.

Definition 4.1: The m-dimensional k-ary hypercube,
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denoted Hk,m, is the graph whose vertex set is [k]
m

,

and whose edges are defined as follows: For each pair

of distinct vertices u, v ∈ [k]
m

, the vertices u and v
are connected by an edge if and only if the Hamming

distance between u and v (when viewed as strings) is

exactly 1.

Definition 4.2 (Hypercube CSP): Hypercube-CSP is

the sub-language of graph-CSP consisting of sat-

isfiable constraint satisfaction problems over graphs

that are sub-graphs of a hypercube. We say that

G is a sub-graph of H , denoted G ≤ H ,

if G can be obtained by deleting edges and

vertices of H . Formally, Hypercube-CSP def
={

G : G ∈ graph-CSP, ∃H ∈ ⋃
k,mHk,m : G ≤ H

}
.

We now state the first step in our reduction.

Theorem 4.3 (From circuit-SAT to Hypercube-CSP):
There exists a polynomial time procedure that maps

every circuit ϕ of size n and integer m ∈ N to a

constraint graph Gϕ,m over an alphabet Σ of size 4 that

is satisfiable if and only if ϕ is satisfiable, and whose

size is at most 2m4m+2 · n. Furthermore, the graph

Gϕ,m is a 4-regular subgraph of the m-dimensional

k-ary hypercube, where k ≤ 4((4 · n)1/m + 1).

B. From Hypercube-CSP to aggregate-AGCSP

We now discuss the second part of our reduction. The

starting point is a hypercube CSP problem obtained

from Theorem 4.3. The end point will be an instance of

a generalization of algebraic CSPs (cf. [BS08]) to AG

code settings.

Aggregated Algebraic Geometry Constraint Satisfac-
tion Problems: All previous algebraic PCPs, starting

with [AS98], [ALM+98], [BFLS91], reduce instances

of circuit-SAT to various aggregated algebraic CSPs

(ACSP) (cf. [BS08, Sec. 3.2] for a definition and exam-

ples). These ACSPs are designed for RM and RS codes,

which are special (and simple) cases of AG codes.

When working with AG codes we require a proper

generalization of ACSPs to the AG setting, and we

define this generalization next. The following notation

will be useful for defining our algebraic CSP.

Notation 4.4: Let C = {f : D → F}, let π be

an automorphism of C, and let g : Dm → F

be a codeword of the tensor code C⊗m. Then,

for each i ∈ [m], we define the function

gπ,i : Dm → F by gπ,i(x1, . . . , xm) =
g(x1, . . . , xi−1, π(xi), xi+1, . . . , xm). Moreover,

if π1, . . . , πt are automorphisms of C, then we

define the function g(π1,...,πt) : Dm → F
1+t·m

to be the function obtained by aggregating the

1 + t · m functions g, gπ1,1, . . . , gπt,m. Formally,

g(π1,...,πt)(x) =
(
g(x), gπ1,1(x), . . . , gπt,m(x)

)
.

Definition 4.5 (aggregate-AGCSP): An instance of

the aggregate-AGCSP problem is a tuple ψ =
(m, d, t,F, �C,H, π1, . . . , πt, Q

(ψ)) where

• m, d, t are integers

• �C = (C1, . . . , Cd) is a multiplication code family.

• C
def
= C1 is a systematic linear evaluation code

that encodes messages h : H → F to codewords

f : D → F.

• π1, . . . , πt are automorphisms of Cj for every j ∈
[d].

• Q(ψ) : Dm × F
1+t·m → F is a function that is

represented by a Boolean circuit and satisfies the

following property

– For every codeword g ∈ C⊗m, it holds

that Q(ψ)(x, g(π1,...,πt)(x)) is a codeword of

(Cd)
⊗m

.

An assignment to ψ is a function g : Dm → F. Denote

by f (ψ,g) the function

f (ψ,g) : Dm → F, f (ψ,g)(x)
def
= Q(ψ)(x, g(π1,...,πt)(x)).

(2)

We say g satisfies the instance if and only if g is a

codeword of C⊗m for which f (ψ,g) vanishes on Hm,

i.e., f (ψ,g)(x) = 0 for all x ∈ Hm.

The problem of aggregate-AGCSP is the problem of

deciding whether an instance is satisfiable , i.e., if it has

a satisfying assignment.

The second step in our reduction is stated next. It

gives a non-uniform reduction mapping an instance

of Hypercube-CSP derived from Theorem 4.3 to an

instance of aggregate-AGCSP.

Theorem 4.6: There exists a polynomial-time procedure

which takes the following input: (1) A number m ∈ N.

(2) An alphabet Σ. (3) A constraint graph G over

Σ whose underlying graph is a 4-regular subgraph of

Hk,m. (5) A finite field F. (6) Bases for all the codes

in a multiplication code family �C = (C1, . . . , Cdmult
) of

transitive evaluation codes Cj = {f : D → F}, where

C
def
= C1 has message length at least 2 · k, and dmult ≥

|Σ|. (7) For each α, β ∈ D, a permutation π of D that (i)

maps α to β, and (ii) is an automorphism of Cj for each

j ∈ [d]. And outputs an instance of aggregate-AGCSP
ψ = (m, d

def
= |Σ| , t,F, �C,H, π1, . . . , πt, Q(ψ)) with

|H| ≤ 2k, that is satisfiable if and only if G is

satisfiable.

The next two sections provide give overviews of the

two different proofs of our main theorem. Before going

into those proofs, we first state the following lemma,

which is used in both proofs. Let ψ, C, m, and Q(ψ)

be as in the definition of aggregate-AGCSP, and let

δC be the relative distance of C. Let g : Dm → F be

an assignment to ψ and let f (ψ,g) be as in the definition
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of aggregate-AGCSP. We say that a point x ∈ Dm

is locally legal for g if for every i ∈ [m], it holds that

g|i,x ∈ C (i.e. g restricted to the axis-parallel line that

goes through x in direction i is a codeword of C). We

have the following result.

Lemma 4.7: Let ĝ : Dm → F be a codeword of Cm

that is τ -close to g for some 0 < τ < 1 (i.e., g and ĝ
disagree on at most τ fraction of the points in Dm).

Let x be a uniformly distributed point in Dm. Then

Px∈Dm

[
x locally legal for g and f (ψ,g)(x) 
= f (ψ, ˆg)(x)

]
≤ m · τ/δC .

C. A proof of Main Theorem 2.3 using AG combinato-
rial Nullstellensatz

Applying the pair of reductions described in the previ-

ous sections (cf. (1)) converts a circuit ϕ of size n to an

instance ψ of aggregate-AGCSP whose assignments

are of length O(n). Using the notation of Theorem 4.6

and Definition 4.5, we see that ϕ is satisfiable if

and only if there exists g ∈ C⊗m for which f (ψ,g)

defined in (2) vanishes on Hm. The AG combinatorial

Nullstellensatz (Theorem 3.14) says that this holds if

and only if there exist m auxiliary functions f ′1, . . . , f
′
m

that “prove” that f (ψ,g) vanishes on Hm. The verifier

thus expects to see the functions g, f (ψ,g), f ′1, . . . , f
′
m

and checks their internal consistency and that each of

them indeed belongs to the tensor of an AG code, using

Theorem 3.9. Details follow.

Proof of Theorem 2.3: We may assume ε < 1,

otherwise the statement is trivial. Let m be the smallest

integer that is strictly greater than 2/ε. We will start

by describing the verifier’s operation on input ϕ of

size n, followed by an analysis of its proof length

and soundness. The full proof can be found in the full

version of the paper.

Verifier’s operation: The verifier V applies the reduc-

tions in (1), i.e., the reduction of Theorem 4.3 followed

by the reduction of Theorem 4.6. The first reduction

maps ϕ to an instance G of Hypercube-CSP over a

subgraph of Hk,m where k ≤ 4((4 · n)1/m + 1).

For the second reduction let d = |Σ| = 4 where Σ is the

alphabet stated in Theorem 4.3. We give one possible

way of fixing parameters. Set q = 216, and note that

cq = 2255. Set dmult = 6d = 24. Set δ = 1
100 and

ρ = 1
100cq

, and note that Equation (3.14) is satisfied.

Thus we may take a transitive AG code C =
{f : D → Fq} and multiplication code family �C =
(C1, . . . , Cdmult

) as in Theorem 3.12, such that C has

message length 200k, blocklength |D| ∈ [200k, 200kρ ],
and each Cj has relative distance δ. We will be us-

ing Theorem 3.14 on this code. Note that every set

H ⊆ D of size ≤ 2k satisfies Equation (3.14), because

2k <
(

1
100

) · 200k ≤ ( 1
12 − δ

6 − 2√
q−1 ) · |D|.

Now V applies Theorem 4.6 to G with the multi-

plication code family �C (all other input parameters

needed there are clear from context). For this part

(and for the next) we assume that the following are

hardwired into the verifier V = Vε,n (this is where

we assume non-uniformity of the verifier): (1) A basis

for each Cj , j ∈ [dmult]. (2) For every α, β ∈ D, a

permutation π of D that (i) is an automorphism of each

Cj , j ∈ [dmult], and (ii) maps α to β. (3) The pair

of functions ξ = ξH , ξ
′ = ξ′H : D → Fq defined

in Theorem 3.14 where H ⊂ D, |H| ≤ 2k is part

of the aggregate-AGCSP instance ψ and defined in

Theorem 4.6.

Denote by ψ the resulting instance of aggregate-
AGCSP. As a proof oracle, the verifier V expects a total

of m+ 1 functions, denoted g, f ′1, . . . , f
′
m. All of them

have domain Dm and range Fq . The verifier expects g to

be the assignment satisfying ψ, and f ′1, . . . , f
′
m should

“prove” that f (ψ,g) (cf. (2)) vanishes on Hm as per the

AG combinatorial Nullstellensatz Theorem 3.14. The

verifier performs the following checks while recycling

randomness.

1) Tensor test: Invoke the local tester of Theorem 3.9

to test that g ∈ C⊗m and f ′� ∈ (C4d)
⊗m

for each

� ∈ [m], using the same randomness for all the

invocations.

2) Zero test: Choose a uniformly distributed point

x = (x1, . . . , xm) ∈ Dm and check that

a) f (ψ,g)(x) ·∏m
r=1 ξ

′(xr) =
∑m
j=1 f

′
j(x) · ξ(xj),

where f (ψ,g)(x) is computed by making 1+m·t
queries to g.

b) x is a locally legal for g. That is, for every

direction t ∈ [m], the axis-parallel line g|t,y is a

codeword of C.

If one of those checks fail, the verifier rejects, and

otherwise it accepts.

Proof Length.: The proof contains m + 2 functions

with domain size |D|m and range size q. Recalling

the concrete parameters from earlier on in the proof

(these parameters are not necessarily optimal) 2/ε <
m ≤ 2/ε + 1, |D| ≤ 200k

ρ ≤ 2270 · (n1/m + 1) we

conclude that the proof bit-length, for sufficiently large

n, is at most (m + 2) · log2 q · |D|m <
(
2
ε + 3

) · 16 ·
2540/ε+270 · n ≤ cε · n where, asymptotically (i.e., as

ε→ 0), cε ≤ 2c
′/ε for c′ < 600.

Soundness.: Suppose ϕ is not satisfiable. Then by

the soundness of Theorem 4.3 and Theorem 4.6 we

conclude ψ is not satisfiable, i.e., there does not exist
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g ∈ C⊗m such that f (ψ,g), as defined in (2), van-

ishes on Hm. Suppose the verifier is given the proof

g, f ′1, . . . , f
′
m. We show that the verifier rejects with

probability Ωm(1).

Let δ be the minimum of the relative distances of Cd
and C4d and note that δ does not depend on n. If g is

(δm+1/2m)-far from (Cd)
⊗m

or any of f ′1, . . . , f
′
m is

(δm+1/2m)-far from (C4d)
⊗m

, the tensor test rejects

with probability at least γm · δm+1/2m = Ωm(1)
(where γm is as defined in Theorem 3.9). Thus, we

may focus on the case in which g is (δm+1/2m)-
close to (Cd)

⊗m
and all of f ′1, . . . , f

′
m are (δm+1/2m)-

close to (C4d)
⊗m

. In this case, g, f ′1, . . . , f
′
m are close

to unique codewords ĝ, f̂ ′1, . . . , f̂
′
m of (Cd)

⊗m
and

(C4d)
⊗m

respectively.

Observe that by the union bound, we get that with

probability at least 1− δm+1/2, all of f ′1, . . . , f
′
m agree

with f̂ ′1, . . . , f̂
′
m on x respectively. Let us focus on this

case for now. Also observe that since ψ is not satisfiable,

f (ψ,ĝ) does not vanish on Hm.

Let f̂ ′ =
∑m
i=1 f̂

′
i(x) · ξ(xi) and f̂ ′′(x) = f (ψ,ĝ)(x) ·∏m

r=1 ξ
′(xr), noticing f̂ ′, f̂ ′′ ∈ (C6d)

⊗m. Since f (ψ,ĝ)

does not vanish on Hm and by the AG-Nullstellensatz

Theorem 3.14 we know that f̂ ′ 
= f̂ ′′. So by the distance

property of (C6d)
⊗m = (Cdmult

)⊗m, we conclude f̂ ′

and f̂ ′′ differ on x with probability at least δm. Now,

by Lemma 4.7, we get that with probability at least

1−m · δm+1/2m · δ ≥ 1− δm/2 one of the following

cases occur:

1) x is not locally legal for g, so the zero test rejects.

2) f (ψ,g)(x) = f (ψ,ĝ)(x), so

f (ψ,g)(x) ·
m∏
r=1

ξ′(xr) = f̂ ′′(x) 
=
m∑
i=1

f̂ ′i(x) ·ξ(xi).

Since we assumed that all of f ′1, . . . , f
′
m agree with

f̂ ′1, . . . , f̂
′
m on x, we get that

f (ψ,g)(x) ·
m∏
r=1

ξ′(xr) 
=
m∑
i=1

f ′i(x) · ξ(xi),

and therefore the zero test rejects.

We conclude that the test rejects if f̂ ′ and f̂ ′′ differ on x,

all of f ′1, . . . , f
′
m agree with f̂ ′1, . . . , f̂

′
m on x, and either

x is not locally legal for g or f (ψ,g)(x) = f (ψ,ĝ)(x).
This happens with probability at least δm − δm+1/2−
δm/2 = Ωm(1), as required.

This soundness analysis only ensured a rejection prob-

ability of Ω(δm). If we want to make the rejection

probability in the NO case be ≥ 1/2, then we would

have to repeat the verifier’s operation (while recycling

randomness via expander walks) O( 1
δm ) times.
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