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Abstract—We prove that, for all binary-input symmetric
memoryless channels, polar codes enable reliable communi-
cation at rates within ε > 0 of the Shannon capacity with a
block length, construction complexity, and decoding complexity
all bounded by a polynomial in 1/ε. Polar coding gives the first
known explicit construction with rigorous proofs of all these
properties.

We give an elementary proof of the capacity achieving
property of polar codes that does not rely on the martingale
convergence theorem. As a result, we are able to explicitly
show that polar codes can have block length (and consequently
also encoding and decoding complexity) that is bounded by a
polynomial in the gap to capacity. The generator matrix of
such polar codes can be constructed in polynomial time using
merging of channel output symbols to reduce the alphabet size
of the channels seen at the decoder.

I. INTRODUCTION

In this work, we establish that Arıkan’s celebrated polar

codes [1] have the desirable property of fast convergence

to Shannon capacity. Specifically, we prove that polar codes

can operate at rates within ε > 0 of the Shannon capacity of

binary-input memoryless output-symmetric (BIS) channels

with a block length N = N(ε) that grows only polynomially

in 1/ε. Further, a generator matrix of such a code can be

deterministically constructed in time polynomial in the block

length N . For decoding, Arıkan’s successive cancellation

decoder has polynomial (in fact O(N logN)) complexity.

Thus, the delay and construction/decoding complexity of

polar codes can all be polynomially bounded as a func-

tion of the gap to capacity. This provides a complexity-

theoretic backing for the statement “polar codes are the

first constructive capacity achieving codes,” common in the

recent coding literature. As explained below, these attributes

together distinguish polar codes from the Forney/Justesen

style concatenated code constructions for achieving capacity.

Our analysis of polar codes avoids the use of the mar-

tingale convergence theorem — this is instrumental in our

Due to space constraints, the full details of some proofs have been
omitted from this version. The full version is available on the Electronic
Colloquium on Computational Complexity (ECCC) as TR13-050.

polynomial convergence bounds and as a side benefit makes

the proof elementary and self-contained.

A. Context

Shannon’s noisy channel coding theorem implies that for

every memoryless channel W with binary inputs and a finite

output alphabet, there is a capacity I(W ) � 0 and constants

aW < ∞ and bW > 0 such that the following holds: For

all ε > 0 and integers N � aW /ε2, there exists a binary

code C ⊂ {0, 1}N of rate at least I(W )− ε which enables

reliable communication on the channel W with probability

of miscommunication at most 2−bW ε2N . A proof implying

these quantitative bounds is implicit in Wolfowitz’s proof of

Shannon’s theorem [2].

This remarkable theorem showed that a constant factor

redundancy was sufficient to achieve arbitrarily small prob-

ability of miscommunication, provided we tolerate a “delay”

of processing N channel outputs at a time for large enough

block length N . Further, together with a converse theorem,

it precisely characterized the minimum redundancy factor

(namely, 1/I(W )) needed to achieve such a guarantee. It is

also known that a block length of N � Ω(1/ε2) is required

to operate within ε of capacity and even a constant, say

0.1, probability of miscommunication; in fact, a very precise

statement that even pinned down the constant in the Ω(·)
notation was obtained by Strassen [3].

As Shannon’s theorem is based on random coding and is

non-constructive, one of the principal theoretical challenges

is to make it constructive. More precisely, the goal is to

give an explicit (i.e., constructible in deterministic poly(N)
time) description of the encoding function of the code, and a

polynomial time error-correction algorithm for decoding the

correct transmitted codeword with high probability (over the

noise of the channel). Further, it is important to achieve this

with small block length N as that corresponds to the delay

at the receiver before the message bits can be recovered.

For simplicity let us for now consider the binary sym-

metric channel (BSC) with crossover probability p, 0 <
p < 1/2, denoted BSCp (our results hold for any BIS

channel). Recall that BSCp flips each input bit independently
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with probability p, and leaves it unchanged with probability

1 − p. The Shannon capacity of BSCp is 1 − h(p), where

h(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy

function. For the BSC, the capacity can be achieved by

binary linear codes.

One simple and classic approach to construct capacity-

achieving codes is via Forney’s concatenated codes [4]. We

briefly recall this approach (see, for instance, [5, Sec. 3] for

more details). Suppose we desire codes of rate 1−h(p)− ε
for communication on BSCp. The idea is to take as an

outer code any binary linear code Cout ⊂ {0, 1}n0 of rate

1 − ε/2 that can correct a fraction γ(ε) > 0 of worst-

case errors. Then, each block of b = Θ( 1
ε2 log(1/γ)) bits

of the outer codeword is further encoded by an inner code

of rate within ε/2 of Shannon capacity (i.e., rate at least

1 − h(p) − ε/2). This inner code is constructed by brute

force in time exp(O(b)). By decoding the inner blocks

by finding the nearest codeword in exp(O(b)) time, and

then correcting up to γ(ε)n0 errors at the outer level, one

can achieve exponentially small decoding error probability.

However the decoding complexity grows like n0 exp(O(b)).
Thus both the construction and decoding complexity have an

exponential dependence on 1/ε. In conclusion, this method

allows one to obtain codes within ε of capacity with a block

length polynomially large in 1/ε. However, the construction

and decoding complexity grow exponentially in 1/ε, which

is undesirable.1

B. Our result: polynomial convergence to capacity of polar
codes

In this work, we prove that Arıkan’s remarkable polar

codes allow us to approach capacity within a gap ε > 0 with

delay (block length) and complexity both depending polyno-

mially on 1/ε. Polar codes are the first known construction

with this property.2

Below is a formal statement of the main result, stated

for BIS channels. For general, non-symmetric channels, the

same claim holds for achieving the symmetric capacity,

which is the best rate achievable with the uniform input

bit distribution.

Theorem 1. There is an absolute constant μ <∞ such that
the following holds. Let W be a binary-input memoryless
output-symmetric channel with capacity I(W ). Then there
exists aW < ∞ such that for all ε > 0 and all powers of
two N � aW (1/ε)μ, there is a deterministic poly(N) time
construction of a binary linear code of block length N and

1One can avoid the brute force search for a good inner code by using
a small ensemble of capacity-achieving codes in a Justesen-style construc-
tion [6]. But this will require taking the outer code length n0 > exp(1/ε2),
causing a large delay.

2Spatially coupled LDPC codes were also recently shown to achieve the
capacity of general BIS channels [7]. This construction gives a random code
ensemble as opposed to a specific code, and as far as we know, rigorous
bounds on the code length as a function of gap to capacity are not available.

rate at least I(W )− ε and a deterministic N · poly(logN)
time decoding algorithm for the code with block error
probability at most 2−N0.49

for communication over W .

Remarks:

1) Using our results about polar codes, we can also con-

struct codes of rate I(W )−ε with 2−Ωε(N) block error

probability (similar to Shannon’s theorem) with simi-

lar claims about the construction and decoding com-

plexity. The idea is to concatenate an outer code that

can correct a small fraction of worst-case errors with a

capacity-achieving polar code of dimension poly(1/ε)
as the inner code. A similar idea with outer Reed-

Solomon codes yielding 2−Ω(N/poly(logN)) block error

probability is described in [8].

2) The construction time in Theorem 1 can be made

poly(1/ε) + O(N logN). As our main focus is on

the finite-length behavior when N is also poly(1/ε),
we are content with stating the poly(N) claim above.

Showing that polar codes have a gap to capacity that is

polynomially small in 1/N is our principal contribution. The

decoding algorithm remains the same successive cancellation

decoder of Arıkan [1]. The proof of efficient constructibility

follows the approach, originally due to Tal and Vardy [9], of

approximating the channels corresponding to different input

bits seen at the decoder by a degraded version with a smaller

output alphabet. The approximation error of this process and

some of its variants were analyzed in [10]. We consider and

analyze a somewhat simpler degrading process. One slight

subtlety here is that we can only estimate the channel’s

Bhattacharyya parameter within error that is polynomial in

1/N in poly(N) time, which will limit the analysis to an

inverse polynomial block error probability. To get a block

error probability of 2−N0.49

we use a two step construction

method that follows our analysis of the polarization process.

As a bonus, this gives the better construction time alluded

to in the second remark above.

Prior to our work, it was known that the block error

probability of successive cancellation decoding of polar

codes is bounded by 2−N0.49

for rate approaching I(W )
in the limit of N → ∞ [11]. However, the underlying

analysis found in [11], which depended on the martingale

convergence theorems, did not offer any bounds on the finite-

length convergence to capacity, i.e., the block length N
required for the rate to be within ε of the capacity I(W ).
To quote from the introduction of the recent breakthrough

on spatially coupled LDPC codes [7]:

“There are perhaps only two areas in which polar

codes could be further improved. First, for polar

codes the convergence of their performance to

the asymptotic limit is slow. Currently no rig-

orous statements regarding this convergence for
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the general case are known. But “calculations”

suggest that, for a fixed desired error probability,

the required block length scales like 1/δμ, where

δ is the additive gap to capacity and where μ
depends on the channel and has a value around

4.”3

The above-mentioned heuristic calculations are based on

“scaling laws” and presented in [12]. We will return to the

topic of scaling laws in Section I-D on related work.

We note that upper bounds on the block length N as a

function of gap ε to capacity are crucial, as without those

we cannot estimate the complexity of communicating at

rates within ε of capacity. Knowing that the asymptotic

complexity is O(N logN) for large N by itself is insuf-

ficient (for example, to claim that polar codes are better

than concatenated codes) as we do not know how large N
has to be! While an explicit value of μ in Theorem 1 can

be calculated, it will be rather large, and obtaining better

bounds on μ, perhaps closer to the empirically suggested

bound of ≈ 4, is an interesting open problem4.

C. Techniques

Let us first briefly discuss the concept of polarization in

Arıkan’s work, and then turn to aspects of our work. More

formal background on Arıkan’s construction of polar codes

appears in Section III (with slightly different and notation

that is more conventional in the polar coding literature). A

good, easy to read, reference on polar codes is the recent

survey by Şaşoğlu [14].

Fix W to be an arbitrary symmetric channel. If we have a

capacity-achieving binary linear code C of block length N
for W , then it is not hard to see that by padding the generator

matrix of C one can get an N × N invertible matrix AN

with the following polarization property. Let u ∈ {0, 1}N
be a uniformly random (column) vector. Given the output y
of W when the N bits x = ANu are transmitted on it, for a

1− o(1) fraction of bits ui, its conditional entropy given y
and the previous bits u1, . . . , ui−1 is either close to 0 (i.e.,

that bit can be determined with good probability) or close

to 1 (i.e., that bit remains random). Since the conditional

entropies of u given y and x given y are equal to each

other, and the latter is ≈ (1 − I(W ))N , the fraction of

bits ui for which the conditional entropy given y and the

previous bits u1, . . . , ui−1 is ≈ 0 (resp. ≈ 1) is ≈ I(W )
(resp. ≈ 1− I(W )).

3The second aspect concerns universality: the design of polar codes
depends on the channel being used, and the same code may not achieve
capacity over a non-trivial class of channels.

4While we were completing the writeup of this paper and circulating a
draft, we learned about a recent independently-derived result in [13] stating
that μ ≈ 6 would suffice for block error probabilities bounded by an

inverse polynomial. Our analysis primarily focuses on the 2−N.49
block

error probability result.

Arıkan gave a recursive construction of such a polarizing

matrix AN for N = 2n: AN = G⊗n
2 Bn where G2 =

( 1 1
0 1 ) and Bn is a permutation matrix (for the bit-reversal

permutation). In addition, he showed that the recursive

structure of the matrix implied the existence of an efficiently

decodable capacity-achieving code. The construction of this

code amounts to figuring out which input bit positions have

conditional entropy ≈ 0, and which don’t (the message bits

ui corresponding to the latter positions are “frozen” to 0).

The proof that AN has the above polarization property

proceeds by working with the Bhattacharyya parameters

Zn(i) ∈ [0, 1] associated with decoding ui from y and

u1, . . . , ui−1. This quantity is the Hellinger affinity between

the output distributions when ui = 0 and ui = 1. The

values of the Bhattacharyya parameter of the 2n bit positions

at the n’th level can be viewed as a random variable Zn

(induced by the uniform distribution on the 2n positions).

The simple recursive construction of AN enabled Arıkan to

proved that the sequence of random variables Z0, Z1, Z2, . . .
form a supermartingale. In particular, Zn+1 equals Z2

n with

probability 1/2 and is at most 2Zn − Z2
n with probability

1/2. 5

One can think the evolution of the Bhattacharyya pa-

rameter as a stochastic process on the infinite binary tree,

where in each step we branch left or right with probabil-

ity 1/2. The polarization property is then established by

invoking the martingale convergence theorem for super-

martingales. The martingale convergence theorem implies

that limn→∞|Zn+1 − Zn|= 0, which in this specific case

also implies limn→∞ Zn(1 − Zn) = 0 or in other words

polarization of Zn to 0 or 1 for n→∞. However, it does not
yield any effective bounds on the speed at which polarization

occurs. In particular, it does not say how large n must be as

a function of ε before E[Zn(1− Zn)] � ε; such a bound is

necessary, though not sufficient, to get codes of block length

2n with rate within ε of capacity.

In this work, we first work with the entropy of the

channels W
(i)
n associated with decoding the i’th bit, namely

H(W
(i)
n ) = H(ui | y, u1, u2, . . . , ui−1) to prove that these

values polarize to 0 and 1 exponentially fast in the number

of steps n. Formally, we prove that for n = O(log 1/ε),
Hn ∈ (ε, 1 − ε) with probability at most ε, where Hn

is the random variable associated with the entropy values

H(W
(i)
n ) at the n’th level. As the Bhattacharyya parameter

is within a square root factor of the entropy, we get a similar

claim about Zn. The advantage in working with the entropy

instead of the Bhattacharyya parameter is that the entropy

forms a martingale, so that given Hn, the two possible

values of Hn+1 are Hn ± α for some α � 0. We show

5For the special case of the binary erasure channel, the Bhattacharyya
parameters simply equal the probability that the bit is unknown. In this
case, the upper bound of 2Zn−Z2

n becomes an exact bound, and the Zi’s
form a martingale.
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that these two values are sufficiently separated, specifically

that α � 3
4Hn(1−Hn). Thus, unless Hn is very close to 0

or 1, the two new values have a sizeable difference. We use

this to show that E[
√

Hn(1−Hn)] decreases by a constant

factor in each step, which implies the desired exponential

decay in Hn(1−Hn) and therefore also Zn(1− Zn).
6

The above bound is itself, however, not enough to prove

Theorem 1. What one needs is fine polarization, where the

smallest ≈ I(W )N values among Zn(i) all add up to a

quantity that tends to 0 for large N (in fact, this sum should

be at most 2−N0.49

if we want the block error probability

claimed in Theorem 1). To establish this, we use that in

further steps, Zn+1 reduces rapidly to Z2
n with probability

1/2, together with Chernoff-bound arguments (similar to

[11]) to bootstrap the rough polarization of the first step

to a fine polarization that suffices to bound the block error

decodability.

Our analysis is elementary and self-contained, and does

not use the martingale convergence theorem. The ingredients

in our analysis were all present explicitly or implicitly

in various previous works. However, it appears that their

combination to imply a polynomial convergence to capacity

has not been observed before, as evidenced by the explicit

mention of this as an open problem in the literature, eg.

[15, Section 6.6], [7, Section Ia], [16, Section 1.3], and [9,

Section I] (see the discussion following Corollary 2).

D. Related work

The simplicity and elegance of the construction of polar

codes, and their wide applicability to a range of classic

information theory problems, have made them a popular

choice in the recent literature. Here we only briefly discuss

aspects close to our focus on the speed of polarization.

Starting with Arıkan’s original paper, the “rate of polariza-

tion” has been studied in several works. However, this refers

to something different than our focus; this is why we delib-

erately use the term “speed of polarization” to refer to the

question of how large n needs to be before, say, Zn is in the

range (ε, 1− ε) with probability ε. The rate of polarization

refers to pinpointing a function Υ with Υ(n)→ 0 for large n
such that limn→∞ Pr[Zn � Υ(n)] = I(W ). Arıkan proved

that one can take Υ(n) = O(2−5n/4) [1], and later Arıkan

and Telatar established that one can take Υ(n) = 2−2βn

for

any β < 1/2 [11]. Further they proved that for γ > 1/2,

limn→∞ Pr[Zn � 2−2γn

] = 0. This determined the rate

at which the Bhattacharyya parameters of the “noiseless”

channels polarize to 0 in the limit of larger n. More fine

grained bounds on this asymptotic rate of polarization as a

function of the code rate were obtained in [17].

6We note that one can also prove directly that E[Zn(1−Zn)] decreases
by a constant factor in each step and an earlier version of this paper (and
independently [13]) used this approach. The analysis presented here in terms
of Hn is cleaner and more intuitive in our opinion.

For our purpose, to get a finite-length statement about

the performance of polar codes, we need to understand the

speed at which Pr[Zn � Υ(n)] approaches the limit I(W )
as n grows (any function Υ with Υ(n) = o(1/2n) will do,

though we get the right 2−20.49n type decay).

Restated in our terminology, in [18] the authors prove the

following “negative result” concerning gap to capacity: for

polar coding with successive cancellation (SC) decoding to

have vanishing decoding error probability at rates within ε
of capacity, the block length has to be at least (1/ε)3.553.

(A slight caveat is that this uses the sum of the error

probabilities of the well-polarized channels as a proxy for

the block error probability, whereas in fact this sum is only

an upper bound on the decoding error probability of the SC

decoder.)

Also related to the gap to capacity question is the work

on “scaling laws,” which is inspired by the behavior of

systems undergoing a phase transition in statistical physics.

In coding theory, scaling laws were suggested and studied in

the context of iterative decoding of LDPC codes in [19]. In

that context, for a channel with capacity C, the scaling law

posits the existence of an exponent μ such that the block

error probability Pe(N,R) as a function of block length

N and rate R tends in the limit of N → ∞ while fixing

N1/μ(C − R) = x, to f(x) where f is some function that

decreases smoothly from 1 to 0 as its argument changes

from −∞ to +∞. Coming back to polar codes, in [12],

the authors make a Scaling Assumption that the probability

Qn(x) that Zn exceeds x is such that limn→∞N1/μQn(x)
exists and equals a function Q(x). Under this assumption,

they use simulations to numerically estimate μ ≈ 3.627 for

the BEC. Using the small x asymptotics of Q(x) suggested

by the numerical data, they predict an ≈ (1/ε)μ upper bound

on the block length as a function of the gap ε to capacity

for the BEC. For general channels, under the heuristic

assumption that the densities of log-likelihood ratios behave

like Gaussians, an exponent of μ ≈ 4.001 is suggested

for the Scaling Assumption. However, to the best of our

knowledge, it does not appear that one can get a rigorous

upper bound on block length N as a function of the gap to

capacity via these methods.

II. PRELIMINARIES

We will work over a binary input alphabet B = {0, 1}.
Let W : B → Y be a binary-input memoryless symmet-

ric channel with finite output alphabet Y and transition

probabilities {W (y|x) : x ∈ B, y ∈ Y}. A binary-input

channel is symmetric when the two rows of the transition

probability matrix are permutations of each other; i.e., there

exists a bijective mapping σ : Y �→ Y where σ = σ−1 and

W (y|0) = W (σ(y)|1) for all y. Both the binary erasure

and binary symmetric channels are examples of symmetric

channels.
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Let X represent a uniformly distributed binary random

variable, and let Y represent the result of sending X through

the channel W .

The entropy of the channel W , denote H(W ), is defined

as the entropy of X , the input, given the output Y , i.e.,

H(W ) = H(X|Y ). It represents how much uncertainty

there is in the input of the channel given the output of the

channel. The mutual information of W , sometimes known

as the capacity, and denoted I(W ), is defined as the mutual

information between X and Y when the input distribution

X is uniform:

I(W ) = I(X;Y )

= 1−H(X|Y )

= 1−H(W ) .

We have 0 � I(W ) � 1, with a larger value meaning a

less noisy channel. As the mutual information expression

is difficult to work with directly, we will often refer to the

Bhattacharyya parameter of W as a proxy for the quality of

the channel:

Z(W ) =
∑
y∈Y

√
W (y|0)W (y|1) .

This quantity is a natural one to capture the similarity

between the channel outputs when the input is 0 and 1:

Z(W ) is simply the dot product between the unit vectors

obtained by taking the square root of the output distributions

under input 0 and 1 (which is also called the Hellinger

affinity between these distributions).

Intuitively, the Bhattacharyya parameter Z(W ) should be

near 0 when H(W ) is near 0 (meaning that it is easy

to ascertain the input of a channel given the output), and

conversely, Z(W ) is near 1 when H(W ) is near 1. This

intuition is quantified by the following expression (where

the upper bound is from [15, Lemma 1.5] and the lower

bound is from [20]):

Z(W )2 � H(W ) � Z(W ) . (1)

Given a single output y ∈ Y from a channel W , we would

like to be able to map it back to X , the input to the channel.

The most obvious way to do this is by using the maximum-

likelihood decoder:

X̂ = argmax
x∈B

Pr(x|y) = argmax
x∈B

W (y|x)

where a decoding error is declared if there is a tie. Thus, the

probability of error for a uniform input bit under maximum

likelihood decoding is

Pe(W ) = Pr(X̂ �= X)

=
1

2

∑
x∈B

∑
y∈Y

W (y|x)1W (y|x)�W (y|x⊕1)

where 1x denotes the indicator function of x. Directly from

this expression, we can conclude

Pe(W ) � Z(W ) (2)

since 1W (y|x)�W (y|x⊕1) �
√

W (y|x⊕ 1)/
√
W (y|x), and

the channel is symmetric (so the sum over x ∈ B and the

1/2 cancel out). Thus, the Bhattacharyya parameter Z(W )
also bounds the error probability of maximum likelihood

decoding based on a single use of the channel W .

III. POLAR CODES

A. Construction preliminaries

This is a short primer on the motivations and techniques

behind polar coding, following [1], [14]. Consider a family

of invertible linear transformations Gn : B2n → B2n defined

recursively as follows: G0 = [1] and for a 2N -bit vector

u = (u0, u1, . . . , u2N−1) with N = 2n, we define

(3)Gn+1u = Gn(u0 ⊕ u1, u2 ⊕ u3, . . . , u2N−2 ⊕ u2N−1)

◦Gn(u1, u3, u5, . . . , u2N−1)

where ◦ is the vector concatenation operator. More explicitly,

this construction can be shown to be equivalent to the

explicit form Gn = K⊗nBn (see [1, Sec. VII]) where Bn is

the 2n×2n bit-reversal permutation matrix for n-bit strings,

K =

[
1 1
0 1

]
and ⊗ denotes the Kronecker product.

Suppose we use the matrix Gn to encode a N = 2n-size

vector U , X = GnU , and then transmit X over a binary

symmetric channel W . It can be shown with a Martingale

Convergence Theorem-based proof [1] that for all ε > 0,

lim
N→∞

Pr
i

[
H(Ui|U i−1

0 , Y N−1
0 ) < ε

]
= I(W ). (4)

where the notation U j
i denotes the subvector

(Ui, Ui+1, . . . , Uj).

In words, there exists a good set of indices i so that for all

elements in this set, given all of the outputs from the channel

and (correct) decodings of all of the bits indexed less than

i, the value of Ui can be ascertained with low probability

of error (as it is a low-entropy random variable).

For every element that is outside of the good set, we do

not have this guarantee; this suggests a encoding technique

wherein we “freeze” all indices outside of this good set to

a certain predefined value (0 will do). We call the indices

that are not in the good set as the frozen set.

B. Successive cancellation decoder

The above distinction between good indices and frozen

indices suggests a successive cancellation decoding tech-

nique where if the index is in the good set, we output the

maximum-likelihood bit (which has low probability of being

wrong due to the low entropy) or if the index is in the
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frozen set, we output the predetermined bit (which has zero

probability of being incorrect). A sketch of such a successive

cancellation decoder is presented in Algorithm 1.

Definition 1. A polar code with frozen set F ⊂
{0, 1, . . . , N − 1} is defined as

CF = {Gnu | u ∈ {0, 1}N , uF = 0} .

Algorithm 1: Successive cancellation decoder

input : yN−1
0 , F , W

output: uK−1
0

1 û← zero vector of size N
2 for i ∈ 0..N − 1 do
3 if i ∈ F then
4 ûi ← 0
5 else
6 if Pr(Ui=0|Ui−1

0 =ûi−1
0 ,Y N−1

0 =yN−1
0 )

Pr(Ui=1|Ui−1
0 =ûi−1

0 ,Y N−1
0 =yN−1

0 )
> 1 then

7 ûi ← 0
8 else
9 ûi ← 1

10 return ûF

Remark. The runtime of the algorithm can be

improved to O(N logN) by computing the

probabilities on line 6 with a divide-and-conquer

approach as in [1]. We note that this runtime bound

assumes constant-time arithmetic; consideration of

n-bit arithmetic relaxes this bound to

O(Npolylog(N)). For a treatment of more aggressive

quantizations, see [13, Chapter 6].

By (4), if we take F to be the positions with conditional

entropy exceeding ε, the rate of such a code would approach

I(W ) in the limit N →∞.

To simplify the probability calculation (as seen on line 6
of Algorithm 1 and explained further in the comments), it

is useful to consider the induced channel seen by each bit,

W
(i)
n : B → YN × Bi, for 0 � i � 2n − 1. Here, we are

trying to ascertain the most probable value of the input bit

Ui by considering the output from all channels Y N−1
0 and

the (decoded) input from all channels before index i. Since

the probability of decoding error at every step is bounded

above by the corresponding Bhattacharyya parameter Z by

(2), we can examine Z(W
(i)
n ) as a proxy for Pe(W

(i)
n ).

It will be useful to redefine W
(i)
n recursively both to bound

the evolution of Z(W
(i)
n ) and to facilitate the computation.

Consider the two transformations − and + defined as fol-

lows:

W−(y1, y2|x1) =
∑
x2∈B

1

2
W (y1|x1 ⊕ x2)W (y2|x2) (5)

and

W+(y1, y2, x1|x2) =
1

2
W (y1|x1 ⊕ x2)W (y2|x2). (6)

This process (5) and (6) preserves information in the sense

that

I(W−) + I(W+) = 2I(W ), (7)

which follows by the chain rule of mutual information,

as (suppose X1 is the input seen at W− and X2 is the

input seen at W+ and Y1, Y2 are the corresponding output

variables)

I(W−) + I(W+) = I(X1;Y1, Y2) + I(X2;Y1, Y2|X1)

= I(X1, X2;Y1, Y2) = 2I(W ).

We also associate − with a “downgrading” transformation

and + with an “upgrading” transformation, as I(W−) �
I(W ) � I(W+).

Tying the operations − and + back to Z(W
(i)
n ), we notice

that W− = W
(0)
1 (the transformation − adds uniformly

distributed noise from another input x2, which is equivalent

to the induced channel seen by the 0th bit) and W+ = W
(1)
1

(where here we clearly have the other input bit). More gen-

erally, by the recursive construction (3), one can conclude

that the W
(i)
n process can be redefined in a recursive manner

as

W
(i)
n+1 =

⎧⎨
⎩
(
W

(�i/2�)
n

)−
if i is even(

W
(�i/2�)
n

)+

if i is odd
(8)

with the base channel W
(0)
0 = W .

The evolution of I(W+) and I(W−) is difficult to

analyze, but we will see in the next section that we can

adequately bound Z(W+) and Z(W−) as a proxy. Such

bounds are sufficient for analyzing our decoder, as we can

bound the block error probability obtained by the successive

cancellation decoder described in algorithm 1 with bounds

on the Bhattacharyya parameters of the subchannels. The

probability of the ith (not frozen) bit being misdecoded

by the algorithm, given the channel outputs and the input

bits with index less than i, is bounded above by Z(W
(i)
n )

by equation (2). This observation, with the union bound,

immediately gives the following lemma.

Lemma 2. The block error probability of Algorithm 1 on a
polar code C of length n with frozen set F is bounded above
by the sum of the Bhattacharyya parameters

∑
i∈F Z(W

(i)
n ).

C. Bounds on Z(W−) and Z(W+)

The proof of these well-known bounds can be found in

[1], [15].

Proposition 3. Z(W+) = Z(W )2 for all binary symmetric
channels W .
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Proposition 4. Z(W−) � 2Z(W )− Z(W )2 for all binary
symmetric channels W , with equality if the channel W is
an erasure channel.

IV. SPEED OF POLARIZATION

Our first goal is to show that for some m = O(log(1/ε)),

we have that Pri[Z(W
(i)
m ) � 2−O(m)] � I(W ) − ε (the

channel is “roughly” polarized). We will then use this rough

polarization result to show that, for some n = O(log(1/ε)),

“fine” polarization occurs: Pri[Z(W
(i)
n ) � 2−2βn

] �
I(W ) − ε. This approach is similar to the bootstrapping

method used in [21].

A. Rough polarization

We give a formal statement of rough polarization in the

proposition below. A similar statement can be constructed

for binary erasure channels (as opposed to general symmetric

channels) with a much simpler proof; this analysis can be

found in the full version of the paper.

Proposition 5. There is an absolute constant Λ < 1 such
that the following holds. For all ρ ∈ (Λ, 1), there exists a
constant cρ such that for all binary-input symmetric channels
W , all ε > 0 and m � bρ log(1/ε), there exists a roughly

polarized set

Wr ⊂ W � {W (i)
m : 0 � i � 2m − 1} (9)

such that for all M ∈ Wr, Z(M) � 2ρm and Pri(W
(i)
m ∈

Wr) � I(W )− ε.

We first offer the following quantitative bound on the

evolution of each step of the polarization process.

Lemma 6. For all channels W , we have H(W+) �
H(W ) − α(W ) and H(W−) � H(W ) + α(W ) for
α(W ) = θH(W )(1−H(W )), where θ is a constant greater
than 3/4.

Proof: Let

θ̂ = inf
W

H(W−)−H(W )

H(W )(1−H(W ))
,

where the minimization is done over all binary-input sym-

metric channels W . Expanding the definition of the −

transform, obtain

H(W−)−H(W ) = H(X1+X2|Y1, Y2)−H(X1|Y1) (10)

where X1, X2 are uniformly distributed random bits, Y1

and Y2 in the first expression are distributed according to

the transition probabilities of W− and Y1 is distributed

according to the transition probabilities of W .

[14, Lemma 2.2] implies that if (X1, Y1) and (X2, Y2)
are independent pairs of discrete random variables with

X1, X2 ∈ B and H(X1|Y1) = H(X2|Y2) = α, we have

H(X1 +X2|Y1, Y2)−H(X1|Y1) � ε(α),

where ε(α) = h(2h−1(α)(1− h−1(α)))− α (here, h is the

binary entropy function and h−1 is its inverse). Substituting

the above in (10), we can write

H(W−)−H(W ) � h(2h−1(α)(1− h−1(α)))− α. (11)

We can therefore bound the desired expression by nu-

merically minimizing the expression
h(2x(1−x))−h(x)

h(x)(1−h(x)) over

x ∈ (0, 1/2) (the range of h−1), which offers us θ̂ > .799.

Since mutual information is conserved in our transforma-

tion (as stated in Equation (7)), we can conclude the lemma,

as any θ < θ̂ suffices for the statement to be true.

We define the symmetric entropy of a channel as

T (W ) = H(W )(1−H(W )).

To relate T (W
(i)
n ) back to H(W

(i)
n ), it is useful to define

the sets (where ρ ∈ (0, 1)): Ag
ρ = {i : H(W

(i)
n ) � (1 −√

1− 4ρn)/2}, Ab
ρ = {i : H(W

(i)
n ) � (1 +

√
1− 4ρn)/2},

and Aρ = Ag
ρ ∪ Ab

ρ. We associate Ag
ρ with the “good” set

(the set of i such that the entropy, and therefore probability

of misdecoding, is small) and Ab
ρ with the “bad” set. We

record the following useful approximations, both of which

follow from
√
1− 4ρn � 1− 4ρn.

Fact 7. For i ∈ Ag
ρ, H(W

(i)
n ) � 2ρn, and for i ∈ Ab

ρ,
H(W

(i)
n ) � 1− 2ρn.

We first state a bound on the evolution of

√
T (W

(i)
n+1).

Lemma 8. There exists a universal constant Λ < 1 such
that

E
i mod 2

√
T (W

(i)
n+1) � Λ

√
T (W

(�i/2�)
n ) ,

where the meaning of the expectation is that we fix �i/2�
and allow i mod 2 to vary.

Proof: Defining h = H(W
(i)
n ), we have

E
i mod 2

√
T (W

(i)
n+1) =

1

2

(√
h(1− h) + (1− 2h)α− α2

+
√
h(1− h)− (1− 2h)α− α2

)
(12)

where α = H((W
(i)
n )−) − H(W

(i)
n ) = H(W

(i)
n ) −

H((W
(i)
n )+). By symmetry, we can assume h � 1/2 without

loss of generality, and we also know that α � θh(1 − h)
from Lemma 6. We can write (where the expectation is taken
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over i mod 2)

2E

√
T (W

(i)
n+1) �

√
h(1− h) + (1− 2h)α

+
√

h(1− h)− (1− 2h)α

�
√

h(1− h)− ((1− 2h)α)2

4 ((h(1− h))
3/2

�
√
h(1− h)− θ2

4
(1− 2h)

√
h(1− h)

where the second line is a Taylor expansion around h(1 −
h); the coefficients on the odd order terms are 0 and the

coefficients on the even order terms are negative, so we can

truncate the series and maintain the inequality. This analysis

gives the desired result for whenever 1− 2h is greater than

an absolute constant. For clarity of analysis, let us fix a

concrete constant 1− 2h � 1/100.

We can therefore focus on the case where 1−2h < 1/100,

which implies h ∈ [99/200, 1/2]. Continuing, we have

(13)α � θh(1− h) � 99θ/400,

an absolute constant bounded away from zero. We can also

write α � 2(1−2h) as 2(1−2h) � 1/50, which is less than

99θ/400, since θ > 3/4 from Lemma 6. This expression

implies

(1− 2h)α− α2 � −α2/2

which, when inserted into (12), offers

E
i mod 2

√
T (W

(i)
n+1) �

√
h(1− h)− α2

2
.

This implies the existence of a Λ < 1, since α is bounded

away from zero in (13), h(1 − h) � 1
4 , and the function√

x−c√
x

is increasing for positive c and x > c.

Corollary 9. Taking Λ as defined in Lemma 8,

Pri[T (W
(i)
n ) � αn] � 1

2

(
Λ2

α

)n/2

Proof: Clearly we have

E
i

√
T (W

(i)
n+1) � Λn

√
T (W ) � Λn · 1

2

and we can therefore use Markov’s inequality to obtain the

desired consequence.

We are now in a position where we can conclude Propo-

sition 5.

Proof of Proposition 5: We have

Pr(Aρ)max
i∈Aρ

(I(W (i)
n )) + Pr(Ab

ρ)max
i∈Ab

ρ

I(W (i)
n )+

Pr(Ag
ρ)max

i∈Ag
ρ

I(W (i)
n ) � E

i
(I(W (i)

n )) = I(W ) (14)

where the last equality follows by the conservation of mutual

information in our transformation as stated in equation (7).

As mini∈Ab
ρ
H(W

(i)
n ) � 1 − 2ρn by Fact 7, we have

maxi∈Ab
ρ
I(W

(i)
n ) � 2ρn. Using this together with equation

(14), obtain

Pr(Aρ) + Pr(Ab
ρ) · 2ρn + Pr(Ag

ρ) � I(W )

where we used the trivial inequality (for binary-input chan-

nels) I(W
(i)
n ) � 1 for every i. Rearranging terms, using

the bounds Pr(Aρ) � 1
2 (Λ

2/ρ)n/2 from Corollary 9 and

H(W
(i)
n ) � 2ρn for i ∈ Ag

ρ from Fact 7, we get

Pr
i
[H(W (i)

m ) � 2ρm] � Pr(Ag
ρ)

� I(W )− 1

2
(Λ2/ρ)m/2 − 2ρm .

(15)

Clearly, if ρ > Λ2, there is a constant bρ such that m �
bρ log(1/ε) implies that the above lower bound is at least

I(W )−ε. We conclude our analysis by noting that Z(W ) �√
H(W ), as observed in (1), so that

√
ρ > Λ can play the

role of ρ for a lower bound similar to (15) on Pri[Z(W
(i)
m ) �

2κm] for κ ∈ (Λ, 1).

B. Fine polarization

The following proposition formalizes what we mean by

“fine polarization.”

Proposition 10. Given δ ∈ (0, 1/2), there exists a constant
cδ for all binary input memoryless channels W and ε > 0
such that if n0 > cδ log(1/ε) then

Pr
i

[
Z(W (i)

n0
) � 2−2δn0

]
� I(W )− ε.

The proof of the proposition will require the following

lemma to specify one of the constants.

Lemma 11. For all γ > 0, β ∈ (0, 1/2) and ρ ∈ (0, 1),
there exists a constant θ(β, γ, ρ) such that for all ε ∈ (0, 1),
if m > θ(β, γ, ρ) · log(2/ε), then(

lg(2/ρ)γ

2
+ 1

)
exp

(
− (1− 2β)2 lg(2/ρ)m

2

)
< ε/2 .

Proof: We can rewrite this expression as

c1 exp(−c2m) < ε for constants c1, c2 that are independent

of ε and the result is clear.

The following corollary will be useful in the next sec-

tion, where we will deal with an approximation to the

Bhattacharyya parameter. It relaxes the conditions on the

polarized set from Proposition 5.

Corollary 12. Proposition 10 still holds with a modified
roughly polarized set (recall the definition of the roughly
polarized set Wr from equation (9)) W̃r where W̃r ⊃ Wr

and Z
(
W̃r

)
� √

3ρm (instead of 2ρm) with a modified
constant c̃δ .
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The proofs of Proposition 10 and Corollary 12 can be

found in the full version of the paper. The analysis is

based on the argument in [21] and follows from a Chernoff-

Hoeffding bound [22] on a modified process where Zn either

squares or doubles in every step.

V. EFFICIENT CONSTRUCTION OF POLAR CODES

The construction of a polar code reduces to determining

the frozen set of indices (the generator matrix then consists

of columns of Gn = K⊗nBn indexed by the non-frozen

positions). The core component of the efficient construction

of a frozen set is estimating the Bhattacharyya parameters

of the subchannels W
(i)
n . In the erasure case, this is simple

because the evolution equation offered by Proposition 4 is

exact. In the general case, the naı̈ve calculation takes too

much time: W
(i)
n has an exponentially large output alphabet

size in terms of N = 2n.

Our goal, therefore, is to limit the alphabet size of

W
(i)
n while roughly maintaining the same Bhattacharyya

parameter. With this sort of approach, we can select channels

with relatively good Bhattacharyya parameters. The idea

of approximating the channel behavior by degrading it via

output symbol merging is due to [9] and variants of it were

analyzed in [10]. The approach is also discussed in the sur-

vey [14, Section 3.3]. Since we can only achieve an inverse

polynomial error in estimating the Bhattacharyya parameters

with a polynomial alphabet, we use the estimation only up

to the rough polarization step, and then use the explicit

description of the subsequent good channels that is implicit

in the proof of Proposition 10.

We note that revised versions of the Tal-Vardy work

[9] also include a polynomial time algorithm for code

construction by combining their methods with the analysis

of [10]. However, as finite-length bounds on the speed of

polarization were not available to them, they could not claim

poly(N/ε) construction time, but only cεN time for some

unspecified cε.

We will first state our binning algorithm, along with its

properties, and then conclude the main theorem.

A. Binning Algorithm

For our binning, we deal with the marginal distributions

of the input bit given an output symbol. A binary-input sym-

metric channel W defines a marginal probability distribution

W (y|x). We invert this conditioning to form the expression

p(0|y) = Pr
x
(x = 0|W (x) = y) =

1

2

W (y|0)
Prx(W (x) = y)

for a uniformly distributed input bit x. In addition, we

introduce the one-argument form p(y) = Prx(W (x) = y)
for the simple probability that the output is y given an

uniformly distributed input bit x.

Algorithm 2: Binning algorithm

input : W : B → Y , k > 0
output: W̃ : B → Ỹ

1 Initialize new channel W̃ with symbols ỹ0, ỹ1 . . . ỹk
with W̃ (ỹ|x) = 0 for all ỹ and x ∈ B

2 for y ∈ Y do
3 p(0|y)← 1

2
W (y|0)

Prx(W (x)=y)

4 W̃ (ỹ�kp(0|y)�|0)← W̃ (ỹ�kp(0|y)�|0) +W (y|0)
5 W̃ (ỹ�kp(0|y)�|1)← W̃ (ỹ�kp(0|y)�|1) +W (y|1)
6 return W̃

Proposition 13. For a binary-input symmetric channel W :
B → Y and all k > 0, there exists a channel W̃ : B → Ỹ
such that

H(W ) � H(W̃ ) � H(W ) + 2 lg(k)/k, |Ỹ|� k + 1 ,

and the channel transition probabilities, W̃ (y|x), are com-
putable, by Algorithm 2, in time polynomial in |Y| and k.

The proof of Proposition 13 is omitted here and can

be found in the full version of the paper, as the details

are somewhat mechanical. We note that a slightly different

binning strategy [9] can achieve an approximation error of

O(1/k).

We will iteratively use the binning algorithm underlying

Proposition 13 to select the best channels. The following

corollary formalizes this.

Corollary 14. Let ̂
W

(i)
n indicate the result of using Algo-

rithm 2 after every application of the evolution Equations
(8); that is,

̂
W

(i)
n =

˜
˜
W̃+

−
. .
.

where the + or − is chosen depending on the corresponding
bit, starting from the least significant one, of the binary
representation of i ∈ {0, 1, . . . , 2n − 1}. Then

H(W (i)
n ) � H

(
̂
W

(i)
n

)
� H(W (i)

n ) +
2n+2 lg(k)

k
.

The proof of Corollary 14 iterates the usage of Proposition

13 and can be found in the full version of the paper.

We are now in a position to prove our main theorem

(Theorem 1).

Proof of Theorem 1: Fix an N that is a power of 2, and

let n0 = lg(N). Let Wr be the set of all channels W
(i)
m such

that H(W
(i)
m ) � 2ρm, and R(m) be the set of corresponding

indices i. Utilizing the definition of ·̂ from Corollary 14

with k =
(

2
ρ

)2m

, let Ŵr be the set of all channels W
(i)
m
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such that H

(
̂
W

(i)
m

)
� 3ρm, and let R̂(m) be the set of

corresponding indices i.

By Corollary 14 we can conclude that i ∈ R(m) implies

i ∈ R̂(m) because Z(W
(i)
m ) � 2ρm implies H(W

(i)
m ) �

Z(W
(i)
n ) � 2ρm. This in turn implies H(

̂
W

(i)
m ) � 3ρm by

our choice of k and the approximation error guaranteed by

Corollary 14. Therefore, we have

Pr
i<2m

(i ∈ R̂(m)) � Pr
i<2m

(i ∈ R(m))

and also that all M ∈ Ŵr satisfy Z(M) �
√

H(M) �√
3ρm, where the former inequality is from (1).

The above analysis, combined with Corollary 12, implies

that for some m = 1
1+γn0 and some set G(n0 −m), there

exists a set (where the notation ikj = i/2j mod 2k−j+1

means the integer with the binary representation of the jth

through kth bits of i, inclusive):

F̂n0
=

⎧⎪⎨
⎪⎩i

∣∣∣∣∣∣∣
0 � i � 2n0 − 1,

im−1
0 ∈ R̂(m),

in0−1
m ∈ G(n0 −m)

⎫⎪⎬
⎪⎭

such that for n0 > cδ log(1/ε), Pri(i ∈ F̂n0
) � I(W ) − ε

and for all i in F̂n0 , Z(W
(i)
n0 ) � 2−2δn0

.

This implies that
∑

i∈F̂n0

Z(W
(i)
n ) � N2−Nδ

. Taking

δ = .499 and μ = c̃δ , we can conclude the existence of

an aW such that for N � aW (1/ε)μ,∑
i∈F̂n0

Z(W (i)
n ) � 2−N .49

,

as such μ satisfies the conditions of Corollary 12. We

conclude by using Lemma 2: the block error probability of

polar codes with a frozen set F under successive cancellation

decoding is bounded by the sum of the Bhattacharyya

parameters of the channels not in F .

We note that this set F̂n0
is computable in poly(1/ε,N)

time: R̂(m) can be computed with poly-time Algorithm

2 with parameter k � poly(1/ε) and G(n0 − m) is

computable in O(N) time: internally, the proof of Corollary

12 only requires the counting of 1 bits in various intervals

to determine the “good” indices.
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