
Element Distinctness, Frequency Moments, and Sliding Windows

Paul Beame∗
Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

beame@cs.washington.edu

Raphaël Clifford†
Department of Computer Science

University of Bristol
Bristol BS8 1UB, United Kingdom
clifford@cs.bris.ac.uk

Widad Machmouchi∗
Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

widad@cs.washington.edu

Abstract— We derive new time-space tradeoff lower bounds
and algorithms for exactly computing statistics of input data,
including frequency moments, element distinctness, and order
statistics, that are simple to calculate for sorted data. In particular,
we develop a randomized algorithm for the element distinctness
problem whose time T and space S satisfy T ∈ Õ(n3/2/S1/2),
smaller than previous lower bounds for comparison-based algo-
rithms, showing that element distinctness is strictly easier than
sorting for randomized branching programs. This algorithm is
based on a new time- and space-efficient algorithm for finding
all collisions of a function f from a finite set to itself that are
reachable by iterating f from a given set of starting points.

We further show that our element distinctness algorithm can be
extended at only a polylogarithmic factor cost to solve the element
distinctness problem over sliding windows [18], where the task is
to take an input of length 2n− 1 and produce an output for each
window of length n, giving n outputs in total.

In contrast, we show a time-space tradeoff lower bound of
T ∈ Ω(n2/S) for randomized multi-way branching programs,
and hence standard RAM and word-RAM models, to compute
the number of distinct elements, F0, over sliding windows. The
same lower bound holds for computing the low-order bit of F0

and computing any frequency moment Fk for k �= 1. This shows
that frequency moments Fk �= 1 and even the decision problem
F0 mod 2 are strictly harder than element distinctness. We provide
even stronger separations on average for inputs from [n].

We complement this lower bound with a T ∈ Õ(n2/S)
comparison-based deterministic RAM algorithm for exactly com-
puting Fk over sliding windows, nearly matching both our general
lower bound for the sliding-window version and the comparison-
based lower bounds for a single instance of the problem. We also
consider the computations of order statistics over sliding windows.

Keywords-Time-space tradeoffs, Frequency moments, Branching
programs, Collision finding

1. INTRODUCTION

Problems related to computing elementary statistics of

input data have wide applicability and utility. Despite their

usefulness, there are surprising gaps in our knowledge about

the best ways to solve these simple problems, particularly

in the context of limited storage space. Many of these

elementary statistics can be easily calculated if the input data

is already sorted but sorting the data in space S, requires

time T ∈ Ω(n2/S) [12], [9], a bound matched by the

∗Research supported by NSF grants CCF-1217099 and CCF-0916400†Research supported by the EPSRC. This work was done while the
author was visiting the University of Washington.

best comparison algorithms [26] for all S ∈ O(n/ log n).
It has not been clear whether exactly computing elementary

statistical properties, such as frequency moments (e.g. F0,

the number of distinct elements in the input) or element

distinctness (ED, whether or not F0 equals the input size)

are as difficult as sorting when storage is limited.

The main approach to proving time-space tradeoff lower

bounds for problems in P has been to analyze their com-

plexity on (multi-way) branching programs. (The input is

assumed to be stored in read-only memory and the output in

write-only memory and neither is counted towards the space

used by any algorithm. The multi-way branching program

model simulates both Turing machines and standard RAM

models that are unit-cost with respect to time and log-cost

with respect to space.) An important method for this analysis

was introduced by Borodin and Cook for sorting [12] and

has since been extended and generalized to randomized

computation of a number of other important multi-output

problems (e.g., [33], [2], [3], [9], [24], [29]). Unfortunately,

the techniques of [12] yield only trivial bounds for problems

with single outputs such as F0 or ED.

Element distinctness has been a particular focus of

lower bound analysis. The first time-space tradeoff lower

bounds for the problem apply to structured algorithms.

Borodin et al. [13] gave a time-space tradeoff lower bound

for computing ED on comparison branching programs

of T ∈ Ω(n3/2/S1/2) and, since S ≥ log2 n, T ∈
Ω(n3/2

√
log n/S). Yao [32] improved this to a near-optimal

T ∈ Ω(n2−ε(n)/S), where ε(n) = 5/(lnn)1/2. Since these

lower bounds apply to the average case for randomly ordered

inputs, by Yao’s lemma, they also apply to randomized

comparison branching programs. These bounds also triv-

ially apply to all frequency moments since, for k �= 1,

ED(x) = n iff Fk(x) = n. This near-quadratic lower bound

seemed to suggest that the complexity of ED and Fk should

closely track that of sorting.

For multi-way branching programs, Ajtai [4] showed that

any linear time algorithm for ED must consume linear

space. Moreover, when S is no(1), Beame et al. [11] showed

a T ∈ Ω(n
√
log(n/S)/ log log(n/S)) lower bound for

computing ED. This is a long way from the compar-

ison branching program lower bound and there has not

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.39

290

been much prospect for closing the gap since the largest

lower bound known for multi-way branching programs

computing any single-output problem in P is only T ∈
Ω(n log((n log n)/S)).

We show that this gap between sorting and element

distinctness cannot be closed. More precisely, we give a

randomized multi-way branching program algorithm that for

any space bound S ∈ [c log n, n] computes ED in time

T ∈ Õ(n3/2/S1/2) where Õ suppresses polylogarithmic

factors in n, significantly beating the lower bound that

applies to comparison-based algorithms. Our algorithm for

ED is based on an extension of Floyd’s cycle-finding

algorithm [21] (more precisely, its variant, Pollard’s rho

algorithm [27]). Pollard’s rho algorithm finds the unique

collision reachable by iterating a function f : [n]→ [n] from

a single starting location in time proportional to the size of

the reachable set, using only a constant number of pointers.

Variants of this algorithm have been used in cryptographic

applications to find collisions in functions that supposedly

behave like random functions [15], [30], [25].

More precisely, our new ED algorithm is based on a

new deterministic extension of Floyd’s algorithm to find

all collisions of a function f : [n] → [n] reachable by

iterating f from any one of a set of k starting locations, using

only O(k) pointers and using time roughly proportional to

the size of the reachable set. Motivated by cryptographic

applications, [31] previously considered this problem for the

special case of random functions and suggested a method

using ‘distinguished points’, though the only analysis they

gave was heuristic and incomplete. Our algorithm, developed

independently, uses a different method, applies to arbitrary

functions, and has a fully rigorous analysis.

Does the gap between ED and sorting extend to fre-

quency moment computation? Given the general difficulty of

obtaining strong lower bounds for single-output functions,

we consider the relative complexity of computing many

copies of each of the functions at once and apply techniques

for multi-output functions to make the comparison. Since

we want to retain a similar input size to that of our original

problems, we need to evaluate them on overlapping inputs.

Evaluating the same function on overlapping inputs occurs

as a natural problem in time series analyis when it is

useful to know the value of a function on many different

intervals or windows within a sequence of values or updates,

each representing the recent history of the data at a given

instant. Such computations have been termed sliding-window
computations for the associated functions [18]. In particular,

we consider inputs of length 2n − 1 where the sliding-

window task is to compute the function for each window

of length n, giving n outputs in total. We write F�n to

denote this sliding-window version of a function F .

Many natural functions have been studied for sliding win-

dows including entropy, finding frequent symbols, frequency

moments and order statistics, which can be computed ap-

proximately in small space using randomization even in one-

pass data stream algorithms [18], [8], [7], [22], [23], [16],

[14]. Approximation is required since exactly computing

these values in this online model can easily be shown to

require large space.

We show that computing ED over n sliding windows

only incurs a polylogarithmic overhead in time and space

versus computing a single copy of ED. In particular, we

can extend our randomized multi-way branching program

algorithm for ED to yield an algorithm for ED�n that for

space S ∈ [c log n, n] runs in time T ∈ Õ(n3/2/S1/2).

In contrast, we prove strong time-space lower bounds

for computing the sliding-window version of any frequency

moment Fk for k �= 1: The time T and space S to compute

F�n
k must satisfy T ∈ Ω(n2/S) and S ≥ log n. The bounds

are proved directly for randomized multi-way branching

programs which imply lower bounds for the standard RAM

and word-RAM models, as well as for the data stream

models discussed above. We show that the same lower bound

holds for computing the parity of the number of distinct

elements, F0 mod 2, in each window. This formally proves

that sliding-window F0 mod 2 is strictly harder than sliding-

window ED and suggests that for proving strong complexity

lower bounds, F0 mod 2 may be a better choice to analyze

than ED.

Our lower bounds for frequency moment computation

hold for randomized algorithms even with small success

probability 2−O(S) and for the average time and space

used by deterministic algorithms on inputs in which the

values are independently and uniformly chosen from [n].
(For comparison with the latter average case results, it is

not hard to show that over the same input distribution ED
can be solved with T ∈ Õ(n/S) and our reduction shows

that this can be extended to T ∈ Õ(n/S) bound for ED�n

on this input distribution.)

We complement our lower bound with a comparison-

based RAM algorithm for any F�n
k that has T ∈ Õ(n2/S),

showing that this is nearly an asymptotically tight bound for

RAM algorithms. Since our algorithm for computing F�n
k

is comparison-based, the comparison lower bound for Fk

implied by [32] is not far from matching our algorithm even

for a single instance of Fk. In the full paper we also show

that quantum algorithms for F�n
k require only Õ(n3/2) time

when the space is O(log n).

The range of relationships between the complexity of

computing a function F and that of computing F�n is

illustrated by considering problems of computing the tth

order statistic in each window. In the case of t = n
(maximum) or t = 1 (minimum) we show that computing

these properties over sliding windows can be done by a

comparison based algorithm in O(n log n) time and only

O(log n) bits of space so there is very little growth in

291

complexity. In contrast, we show that a T ∈ Ω(n2/S) lower

bound holds when t = αn for any fixed 0 < α < 1. Even

for algorithms that only use comparisons, the expected time

for errorless randomized algorithms to find the median in

a single window is T ∈ Θ(n log logS n) [17]; hence, these

problems have a dramatic increase in complexity over sliding

windows.

Related work: Sliding-windows versions of problems have

been considered in the context of online and approximate

computation but the only instance of which we are aware

that has considered sliding windows for exact offline com-

putation is a lower bound for generalized string matching

due to Abrahamson [2]. This shows that for any fixed

string y ∈ [n]n with n distinct values, H�n
y requires

T · S ∈ Ω(n2/ log n) where decision problem Hy(x) is 1

if and only if the Hamming distance between x and y is

n. This bound is an Ω(log n) factor smaller than our lower

bound for sliding-window F0 mod 2.

Frequency Moments, Element Distinctness, and Order Statis-
tics: Let a = a1a2 . . . an ∈ Dn for some finite set

D. We define the kth frequency moment of a, Fk(a), as

Fk(a) =
∑

i∈D fk
i , where fi is the frequency (number of

occurrences) of symbol i in the string a and D is the set

of symbols that occur in a. Therefore, F0(a) is the number

of distinct symbols in a and F1(a) = |a| for every string

a. The element distinctness problem is a decision problem

defined as: ED(a) = 1 if F0(a) = |a| and 0 otherwise. We

write EDn for the ED function restricted to inputs a with

|a| = n. The tth order statistic of a, Ot, is the tth smallest

symbol in a. Therefore On is the maximum of the symbols

of a and O�n
2 � is the median.

Branching programs: Let D and R be finite sets and n and

m be positive integers. A D-way branching program is a

connected rooted directed acyclic graph and possibly many

sink nodes. Each non-sink node is labeled with an input

index∈ [n] and every edge is labeled with a symbol from

D, which corresponds to the value of the input indexed at the

originating node. In order not to count the space required for

outputs, as is standard for the multi-output problems [12],

we assume that each edge can be labeled by some set of

output assignments. For a directed path π in a branching

program, we call the set of indices of symbols queried by π
the queries of π, denoted by Qπ; we denote the answers to

those queries by Aπ : Qπ → D and the outputs produced

along π as a partial function Zπ : [m] → R. A branching

program computes a function f : Dn → Rm by following

the path given by the query outcomes in the obvious way.

A branching program B is computes a function f if for

every x ∈ Dn, the output of B on x, denoted B(x), is

equal to f(x). The computation of B on x is a directed

path, denoted πB(x), from the source to a sink in B whose

queries to the input are consistent with x. The time T of a

branching program is the length of the longest path from the

source to a sink and the space S is the logarithm base 2 of the

number of the nodes in the branching program. Therefore,

S ≥ log T where we write log x to denote log2 x.

A randomized branching program B is a probability

distribution over deterministic branching programs with the

same input set. B computes a function f with error at most

η if for every input x ∈ Dn, PrB∼B[B(x) = f(x)] ≥ 1−η.

The time (resp. space) of a randomized branching program is

the maximum time (resp. space) of a deterministic branching

program in the support of the distribution.

While our lower bounds apply to randomized branching

programs, which allow the strongest non-explicit random-

ness, our randomized algorithms for element distinctness

will only require a weaker notion, input randomness, in

which the random string r is given as an explicit input to a

RAM algorithm. For space-bounded computation, it would

be preferable to only require the random bits to be available

online as the algorithm proceeds.

As is usual in analyzing randomized computation via

Yao’s lemma, we also will consider complexity under distri-

butions μ on the input space Dn. A branching program B
computes f under μ with error at most η iff B(x) = f(x)
for all but an η-measure of x ∈ Dn under distribution μ.

2. ELEMENT DISTINCTNESS AND SMALL-SPACE

COLLISION-FINDING

2.1. Small-space collision-finding with many sources

Our approach for solving the element distinctness problem

has at its heart a novel extension of Floyd’s small space

“tortoise and hare” cycle-finding algorithm [21]. Given a

start vertex v in a finite graph G = (V,E) of outdegree

1, Floyd’s algorithm finds the unique cycle in G that is

reachable from v. The out-degree 1 edge relation E can be

viewed as a set of pairs (u, f(u)) for a function f : V → V .

Floyd’s algorithm, more precisely, stores only two values

from V and finds the smallest s and � > 0 and vertex w
such such that fs(v) = fs+�(v) = w using only O(s + �)
evaluations of f .

We say that vertices u �= u′ ∈ V are colliding iff

f(u) = f(u′) and call v = f(u) = f(u′) a collision.

Floyd’s algorithm for cycle-finding can also be useful for

finding collisions since in many instances the starting ver-

tex v is not on a cycle and thus s > 0. In this case

i = fs−1(v) �= j = fs+�−1(v) satisfy f(i) = f(j) = w,

which is a collision in f , and the iterates of f produce

a ρ shape (see Figure 1a). These colliding points may

be found with minimal cost by also storing the previous

values of each of the two pointers as Floyd’s algorithm

proceeds. The ρ shape inspired the name of Pollard’s rho

algorithm for factoring [27] and solving discrete logarithm

problems [28] and the application of Floyd’s cycle finding

algorithm to collision-finding usually goes by this name.

292

(a) (b)

(c) (d)

Figure 1: Collision-finding with multiple sources

There is considerable work, particularly for cryptographic

applications, on collision-finding algorithms that use larger

space than Floyd’s algorithm and improve the constant

factors in the number of edges that must be traversed

(function evaluations) to find a collision reachable from a

single starting point (c.f. [15], [30], [25] and references

therein).

Motivated by our application of efficiently solving ele-

ment distinctness, we examine the time and space com-

plexity of finding all colliding vertices, along with their

predecessors, in the subgraph reachable from a possibly

large set of k starting vertices, not just from a single start

vertex. We will show how to do this using storage equivalent

to only O(k) elements of V and time roughly proportional

to the size of the subgraph reachable from this set of

starting vertices. Note that the obvious approach of running

k independent copies of Floyd’s algorithm in parallel from

each of the start vertices does not solve this problem since

it may miss collisions between different parallel branches

(see Figure 1c), and it may also traverse large regions of the

subgraph many times.

In [31], van Oorschot and Wiener gave a deterministic

parallel algorithm for finding all collisions of a random
function using k processors, which keeps a record of visits

to predetermined vertices (‘distinguished points’) allowing

the separate processes to determine quickly if they are a

previously explored path. They gave a heuristic argument

suggesting a bound of O(n3/2/k1/2) function evaluations,

though they were unable to supply a rigorous argument. Our

method is very different in detail and developed indepen-

dently; we provide a fully rigorous analysis that roughly

matches the heuristic bound of [31] for the related problem

of collision-finding on random hash functions applied to

worst-case inputs for element distinctness:

For v ∈ V , define f∗(v) = {f i(v) | i ≥ 0} to be the set

of vertices reachable from v and f∗(U) =
⋃

v∈U f∗(v) for

U ⊆ V .

Theorem 2.1. There is an O(k log n) space determin-
istic algorithm COLLIDEk that, given f : V → V
for a finite set V and K = {v1, . . . , vk} ⊆ V , finds
all pairs (v, {u ∈ f∗(K)|f(u) = v}) and runs in time
O(|f∗(K)|√log k/ log log kmin{k, log n}).

Proof: We first describe the algorithm COLLIDEk: In addi-

tion to the original graph and the collisions that it finds, this

algorithm maintains a redirection list R ⊂ V of size O(k)
vertices that it provisionally redirects to map to a different

location. For each vertex in R it stores the name of the new

vertex to which it is directed. We maintain a separate list L
of all vertices from which an edge of G has been redirected

away and the original vertices that point to them.

COLLIDEk:

Set R = ∅.
For j = 1, . . . , k do:

1) Execute Floyd’s algorithm starting with vertex vj on

the graph G using the redirected out-edges for nodes

from the redirection list R instead of f .

2) If the cycle found does not include vj , there must be a

collision.

a) If this collision is in the graph G, report the collision

v as well as the colliding vertices u and u′, where

u′ is the predecessor of v on the cycle and u is the

predecessor of v on the path from vj to v.

b) Add u to the redirection list R and redirect it to

vertex vj .

3) Traverse the cycle again to find its length and choose

two vertices w and w′ on the cycle that are within 1 of

half this length apart. Add w and w′ to the redirection

list, redirecting w to f(w′) and w′ to f(w). This will

split the cycle into two parts, each of roughly half its

original length.

The redirections for a single iteration of the algorithm are

shown in Figure 1b. The general situation for later iterations

in the algorithm is shown in Figure 1d.

In each iteration of the loop there is at most one vertex v
where collisions can occur and at most 3 vertices are added

to the redirection list. Moreover, after each iteration, the set

of vertices reachable from vertices v1, . . . , vj appear in a

collection of disjoint cycles of the redirected graph. Each

iteration of the loop traverses at most one cycle and every

cycle is roughly halved each time it is traversed.

In order to store the redirection list R, we use a dynamic

dictionary data structure of O(k log n) bits that supports

insert and search in O(log k) time per access or insertion.

We can achieve this using balanced binary search trees

and we can improve the bound to O(
√

log k/ log log k)
using exponential trees [6]. Before following an edge (i.e.,

evaluating f), the algorithm will first check list R to see

if it has been redirected. Hence each edge traversed costs

O(log k) time (or O(
√

log k/ log log k) using exponential

trees). Since time is measured relative to the size of the

reachable set of vertices, the only other extra cost is that of

re-traversing previously discovered edges. Since all vertices

are maintained in cycles and each traversal of a cycle

roughly halves its length, each edge found can be traversed

at most O(min{k, log n}) times.

293

2.2. A randomized T 2S∈ Õ(n3) element distinctness algo-
rithm

We will use collision-finding for our element distinctness

algorithm. The vertex set V will be the set of indices [n],
and the function f will be given by fx,h(i) = h(xi) where

h is a (random) hash function that maps [m] to [n].

Observe that if we find i �= j such that fx,h(i) = fx,h(j)
then either

• xi = xj and hence ED(x) = 0, or

• we have found a collision in h: xi �= xj but h(xi) =
h(xj); we call xi and xj “pseudo-duplicates” in this

latter case.

Given a parameter k, on input x our randomized algorithm

will repeatedly choose a random hash function h and a

random set K of roughly k starting points and then call

the COLLIDEk algorithm given in Theorem 2.1 on K using

the function f = fx,h and check the collisions found to

determine whether or not there is a duplicate among the

elements of x indexed by f∗x,h(K). The space bound S of

this algorithm will be O(k log n).

The running time of COLLIDEk depends on |f∗x,h(K)|,
which in turn is governed by the random choices of h and

K and may be large.

Since f∗x,h(K) is also random, we also need to argue that

if ED(x) = 0, then there is a reasonable probability that a

duplicate in x will be found among the indices in f∗x,h(K).
The following two lemmas analyze these issues.

Lemma 2.2. Let x ∈ [m]n. For h : [m] → [n] chosen
uniformly at random and for K ⊆ [n] selected by uniformly
and independently choosing 2 ≤ k ≤ n/32 elements of [n]
with replacement, Pr[|f∗x,h(K)| ≤ 2

√
kn] ≥ 8/9.

Lemma 2.3. Let x ∈ [m]n be such that ED(x) = 0. Then
for h : [m] → [n] chosen uniformly at random and for
K ⊆ [n] selected by uniformly and independently choosing
2 ≤ k ≤ n/32 elements of [n] with replacement, then
Pr[|f∗x,h(K)| ≤ 2

√
kn and ∃i �= j ∈ f∗x,h(K) s.t. xi = xj]

is at least k/(18n).

These lemmas, together with the properties of COLLIDEk

yield the following theorem.

Theorem 2.4. For any ε > 0, and any S with c log n ≤
S ≤ n/32 for some constant c > 0, there is a randomized
RAM algorithm with input randomness computing EDn with
1-sided error (false positives) at most ε, that uses space
S and time T ∈ O(n

3/2

S1/2 log
5/2 n log(1/ε)). Further, when

S ∈ O(log n), we have T ∈ O(n3/2 log(1/ε)).

Proof: Choose k ≥ 2 such that the space usage of COLLIDEk

on [n] is at most S/2. Therefore k ∈ Ω(S/ log n). The

algorithm is as follows:

On input x, run (18n/k) log(1/ε) independent runs of

COLLIDEk on different fx,h, each with independent random

choices of hash functions h and independent choices, K, of

k starting indices, and each with a run-time cut-off bounding

the number of explored vertices of f∗x,h(K) at t∗ = 2
√
kn.

On each run, check if any of the collisions found is a

duplicate in x, in which case output ED(x) = 0 and halt.

If none are found in any round then output ED(x) = 1.

The algorithm will never incorrectly report a duplicate in

a distinct x and by Lemma 2.3, each run has a probability of

at least k/(18n) of finding a duplicate in an input x such that

ED(x) = 0 so the probability of failing to find a duplicate

in (18n/k) log(1/ε) rounds is at most ε.

Using Theorem 2.1 each run of our bounded version

of COLLIDEk, requires runtime O(
√
kn log kmin{k, log n})

and hence the total runtime of the algorithm is O(
√
kn·n/k ·

log kmin{k, log n} log(1/ε)) which is O(n3/2 log(1/ε)) for

k constant and O(n3/2/k1/2 · log2 n · log(1/ε)) for general

k. The claim follows using k ∈ Ω(S/ log n).

3. SLIDING WINDOWS

Let D and R be two finite sets and f : Dn → R be a

function over strings of length n. We define the operation �
which takes f and returns a function f�t : Dn+t−1 → Rt,

defined by f�t(x) = (f(xi . . . xi+n−1))
t
i=1.

3.1. Element Distinctness over Sliding Windows

The main result of this section shows that our randomized

branching program for EDn can even be extended to a

T ∈ Õ(n3/2/S1/2) randomized branching program for its

sliding windows version ED�n
n . We do this in two steps.

We first give a deterministic reduction which shows how

the answer to an element distinctness problem allows one

to reduce the input size of sliding-window algorithms for

computing ED�m
n .

Lemma 3.1. Let n > m > 0.
(a) If EDn−m+1(xm, . . . , xn) = 0 then

ED�m
n (x1, . . . , xn+m−1) = 0m.

(b) If EDn−m+1(xm, . . . , xn) = 1 then define
iL = max{j ∈ [m−1] | EDn−j+1(xj , . . . , xn) = 0}
where iL = 0 if the set is empty and define
iR = min{j ∈ [m−1] |EDn−m+j(xm, . . . , xn+j) = 0}
where iR = m if the set is empty. Then
ED�m

n (x1, . . . , xn+m−1) = 0iL1m−iL ∧ 1iR0m−iR

∧ ED�m
m−1(x1, . . . , xm−1, xn+1, . . . , xn+m−1)

where each ∧ represents bit-wise conjunction.

Proof: The elements M = (xm, . . . , xn) appear in all m
of the windows so if this sequence contains duplicated

elements, so do all of the windows and hence the output

for all windows is 0. This implies part (a).

If M does not contain any duplicates then any duplicate

in a window must involve at least one element from

294

L = (x1, . . . , xm−1) or from R = (xn+1, . . . , xn+m−1).
If a window has value 0 because it contains an element

of L that also appears in M , it must also contain the

rightmost such element of L and hence any window that

is distinct must begin to the right of this rightmost such

element of L. Similarly, if a window has value 0 because

it contains an element of R that also appears in M ,

any window that is distinct must end to the left of the

leftmost such element of R. The only remaining duplicates

that can occur in a window can only involve elements

of both L and R. In order, the m windows contain the

following sequences of elements of L∪R: (x1, . . . , xm−1),
(x2, . . . , xm−1, xn+1), . . ., (xm−1, xn+1, . . . , xn+m−2),
(xn+1, . . . , xn+m−1). These are precisely the sequences

for which ED�m
m−1(x1, . . . , xm−1, xn+1, . . . , xn+m−1)

determines distinctness. Hence part (b) follows.

We use the above reduction in input size to show that any

efficient algorithm for element distinctness can be extended

to solve element distinctness over sliding windows at a small

additional cost.

Lemma 3.2. If there is an algorithm A that solve element
distinctness, ED, using time at most T (n) and space at
most S(n), where T and S are nondecreasing functions of n,
then there is an algorithm A∗ that solves the sliding-window
version of element distinctness, ED�n

n , in time T ∗(n) that is
O(T (n) log2 n) and space S∗(n) that is O(S(n) + log2 n).
Moreover, if T (n) is Ω(nβ)for β > 1, then T ∗(n) is
O(T (n) log n).

If A is deterministic then so is A∗. If A is randomized with
error at most ε then A∗ is randomized with error o(1/n).
Moreover, if A has 1-sided error (only false positives) then
the same property holds for A∗.

Proof: We first assume that A is deterministic. Algorithm A∗

will compute the n outputs of ED�n
n in n/m groups of m

using the input size reduction method from Lemma 3.1. In

particular, for each group A∗ will first call A on the middle

section of input size n−m+1 and output 0m if A returns 0.

Otherwise, A∗ will do two binary searches involving at most

2 logm calls to A on inputs of size at most n to compute iL
and iR as defined in part (b) of that lemma. Finally, in each

group, A∗ will make one recursive call to A∗ on a problem

of size m.

It is easy to see that this yields a recurrence of the form

T ∗(n) = (n/m)[cT (n) logm+ T ∗(m)].

In particular, if we choose m = n/2 then we obtain T ∗(n) ≤
2T ∗(n/2) + 2cT (n) log n. If T (n) is Ω(nβ) for β > 1 this

solves to T ∗(n) ∈ O(T (n) log n). Otherwise, it is immediate

from the definition of T (n) that T (n) must be Ω(n) and

hence the recursion for A∗ has O(log n) levels and the total

cost associated with each of the levels of the recursion is

O(T (n) log n). The space for all the calls to A can be re-

used in the recursion. and the algorithm A∗ only needs to

remember a constant number of pointers for each level of

recursion for a total cost of O(log2 n) additional bits.

We now suppose that the algorithm A is randomized with

error at most ε. For the recursion based on Lemma 3.1, we

use algorithm A and run it C = O(log n) times on input

(xm, . . . , xn), taking the majority of the answers to reduce

the error to o(1/n2). In case that no duplicate is found in

these calls, we then apply the noisy binary search method of

[20] to determine iL and iR with error at most o(1/n2) by

using only C = O(log n) calls to A. (If the original problem

size is n we will use the same fixed number C = O(log n)
of calls to A even at deeper levels of the recursion so that

each subproblem has error o(1/n2).) There are only O(n)
subproblems so the final error is o(1/n). The rest of the

run-time analysis is the same as in the deterministic case.

If A has only has false positives (if it claims that the input

is not distinct then it is certain that there is a duplicate) then

observe that A∗ will only have false positives.

Combining Theorem 2.4 with Lemma 3.2 we obtain our

algorithm for element distinctness over sliding windows.

Theorem 3.3. For space S ∈ [c log n, n], ED�n can be
solved in time T ∈ O(n3/2 log7/2 n/S1/2) with 1-sided
error probability o(1/n). If the space S ∈ O(log n) then
the time is reduced to T ∈ O

(
n3/2 log n

)
.

When the input alphabet is chosen uniformly at random

from [n] there exists a much simpler 0-error sliding-window

algorithm for ED�n that is efficient on average.

Theorem 3.4. For input randomly chosen uniformly from
[n]2n−1, ED�n can be solved in average time T ∈ O(n)
and average space S ∈ O(log n).

By way of contrast, under the same distribution, we prove

an average case time-space lower bound of T ∈ Ω(n2/S)
for (F0 mod 2)�n in the next section.

3.2. Frequency Moments over Sliding Windows

We now show a T ∈ Ω(n2/S) lower bound for ran-

domized branching programs computing frequency moments

over sliding windows. This contrasts with our significantly

smaller T ∈ Õ(n3/2/S1/2) upper bound from the previous

section for computing element distinctness over sliding win-

dows in this same model, hence separating the complexity

of ED and Fk for k �= 1 over sliding windows. Our lower

bound also applies to F0 mod 2.

3.2.1. A general sequential lower bound for F�n
k and

(F0 mod 2)�n: We derive a time-space tradeoff lower

bound for randomized branching programs computing F�n
k

for k = 0 and k ≥ 2. Further, we show that the lower

bound also holds for computing (F0 mod 2)�n. (Note that

the parity of Fk for k ≥ 1 is exactly equal to the parity of n;

thus the outputs of (Fk mod 2)�n are all equal to n mod 2.)

295

Theorem 3.5. Let k = 0 or k ≥ 2. There is a constant
δ > 0 such that any [n]-way branching program of time
T and space S that computes F�n

k with error at most η,
0 < η < 1 − 2−δS , for input randomly chosen uniformly
from [n]2n−1 must have T · S ∈ Ω(n2). The same lower
bound holds for (F0 mod 2)�n.

Corollary 3.6. Let k = 0 or k ≥ 2. (a) The average time
T and average space S needed to compute (Fk)

�n(x) for
x randomly chosen uniformly from [n]2n−1 satisfy T · S ∈
Ω(n2). (b) For 0 < η < 1− 2−δS , any η-error randomized
RAM or word-RAM algorithm computing F�n

k using time T
and space S satisfies T · S ∈ Ω(n2).

Proof of Theorem 3.5: We present the lower bound for

F�n
0 ; the relatively straightforward modifications for k ≥ 2

and for computing (F0 mod 2)�n are given in the full paper.

For convenience, on input x ∈ [n]2n−1, we write yi for the

output Fk(xi, . . . , xi+n−1).

We use the general approach of Borodin and Cook [12]

together with the observation of [3] of how it applies to av-

erage case complexity and randomized branching programs:

We assume w.l.o.g. that branching program B of length T is

leveled and divide it into layers of height q each. Each layer

is now a collection of small branching programs B′, each

of whose start nodes is a node at the top level of that layer.

Since the branching program must produce n outputs for

each input x, for every input x there exists a small branching

program B′ of height q in some layer that produces at least

nq/T > S outputs. There are at most 2S nodes in B and

hence there are at most 2S such small branching programs

among all the layers of B. One would normally prove that

the fraction of x ∈ [n]2n−1 for which any one such small

program correctly produces nq/T outputs is much smaller

than 2−S which implies the desired lower bound.

This outline is more complicated in our argument: If a

small program B′ finds that certain values are equal, then the

answers to nearby windows may be strongly correlated (e.g.,

if xi=xi+n then yi=yi+1) which may make correct outputs

too likely. Therefore, we only reason about the outputs from

positions that are not duplicated in the input. Moreover,

inputs for which the value of F0 in a window is extreme, say

n (all distinct) or 1 (all identical), allow an almost-certain

prediction of the value of F0 for the next window. We show

that with high probability under the uniform distribution

there will be a linear number of unduplicated input positions

and extreme values of F0 do not occur.

The following is an easy application of Azuma-Hoeffding

bounds and the observation that the expected number of

distinct elements approaches (1− 1/e)n.

Lemma 3.7. Let a be chosen uniformly at random from
[n]n. Then the probability that F0(a) is between 0.5n and
0.85n is at least 1− 2e−n/50.

We say that xj is unique in x if and only if xj /∈
{x1, . . . , xj−1, xj+1, . . . , x2n−1}.
Lemma 3.8. Let x be chosen uniformly at random from
[n]2n−1 with n ≥ 2. With probability at least 1− 4ne−n/50,
(a) all outputs of F�n

0 (x) are between 0.5n and 0.85n, and
(b) the number of positions j < n such that xj is unique in
x is at least n/24.

Correctness of small branching programs:

DEFINITION 3.1. Let B′ be an [n]-way branching program
and let π be a source-sink path in B′ with queries Qπ and
answers Aπ : Qπ → [n]. An index � < n is said to be π-

unique iff either (a) � /∈ Qπ , or (b) Aπ(�) /∈ Aπ(Qπ−{�}).
To measure the correctness of a small branching program,

we restrict our attention to outputs that are produced at

positions that are π-unique and upper-bound the probability

that a small branching program correctly computes outputs

of F�n
0 at many π-unique positions in the input.

Let E be the event that all outputs of F�n
0 (x) are between

0.5n and 0.85n.

Lemma 3.9. Let r > 0 be a positive integer, let ε ≤ 1/10,
and let B′ be an [n]-way branching program of height
q = εn. Let π be a path in B′ on which outputs from
at least r π-unique positions are produced. For random x
uniformly chosen from [n]2n−1, conditioned on πB′(x) = π,
the probability that these r outputs are correct for F�n

0 (x)
and the event E also holds is at most (17/18)r.

Proof: Roughly, we will show that when E holds (outputs

for all windows are not extreme) then, conditioned on

following any path π in B′, each output produced for a

π-unique position will have only a constant probability

of success conditioned on any outcome for the previous

outputs. Because of the way outputs are indexed, it will be

convenient to consider these outputs in right-to-left order.

Let π be a path in B′, Qπ be the set of queries along π,

Aπ : Qπ→[n] be the answers along π, and Zπ : [n]→[n] be

the partial function denoting the outputs produced along π.

Note that πB′(x)=π if and only if xi=Aπ(i) for all i∈Qπ .

Let 1≤i1< . . . <ir<n be the first r of the π-unique posi-

tions on which π produces output values; i.e., {i1, . . . , ir} ⊆
dom(Zπ). Define zi1=Zπ(i1), . . . , zir=Zπ(ir).

We will decompose the probability over the input x that

E and all of yi1=zi1 , . . . , yir=zir hold via the chain rule.

In order to do so, for � ∈ [r], we define event G� to be that

yi�=zi� , . . . , yir=zir and event E� to be 0.5n ≤ F
(i)
0 (x) ≤

0.85n for all i > i�. We also write E0 def
= E . Then

Pr[yi1=zi1 , . . . , yir=zir , E | πB′(x)=π]

= Pr[Er | πB′(x)=π]

×
∏r

�=1
Pr[yi�=zi� , E�−1 | G�+1, E�, πB′(x)=π]

296

≤
∏r

�=1
Pr[yi�=zi� | G�+1, E�, πB′(x)=π]. (1)

We now upper bound each term in the product in (1). De-

pending on how much larger i�+1 is than i�, the conditioning

on the value of yi�+1
may imply a lot of information about

the value of yi� , but we will show that even if we reveal more

about the input, the value of yi� will still have a constant

amount of uncertainty.

For i ∈ [n], let Wi denote the vector of input elements

(xi, . . . , xi+n−1), and note that yi = F0(Wi); we call Wi

the ith window of x. The values yi for different windows

may be closely related. In particular, adjacent windows Wi

and Wi+1 have numbers of distinct elements that can differ

by at most 1 and this depends on whether the extreme

end-points of the two windows, xi and xi+n, appear among

their common elements Ci = {xi+1, . . . , xi+n−1}. More

precisely,

yi − yi+1 = 1{xi �∈Ci} − 1{xi+n �∈Ci}. (2)

In light of (2), the basic idea of our argument is that, because

i� is π-unique and because of the conditioning on E�, there

will be enough uncertainty about whether or not xi� ∈ Ci�

to show that the value of yi� is uncertain even if we reveal

1) the value of the indicator 1{xi�+n �∈Ci�
}, and

2) the value of the output yi�+1.

We now make this idea precise by bounding each term

in the product in (1). Set H�,B′
def
= (G�+1 ∧ E� ∧ πB′(x)=π)

and Y�,m,b
def
= (yi�+1=m ∧ 1{xi�+n �∈Ci�

}=b).

Pr[yi�=zi� | H�,B′]

=
∑

m∈[1,n]
b∈{0,1}

Pr[yi�=zi� | yi�+1=m, 1{xi�+n �∈Ci�
}=b,H�,B′]

× Pr[yi�+1=m, 1{xi�+n �∈Ci�
}=b | H�,B′]

≤ max
m∈[0.5n,0.85n]
b∈{0,1}

Pr[yi�=zi� | yi�+1=m, 1{xi�+n �∈Ci�
}=b,H�,B′]

= max
m∈[0.5n,0.85n]
b∈{0,1}

Pr[1{xi�
�∈Ci�

}=zi�−m+b | Y�,m,b,H�,B′] (3)

where the inequality follows because the conditioning on

H�,B′ and hence on E� implies that yi�+1 is between

0.5n and 0.85n and the last equality follows because of

the conditioning together with (2) applied with i = i�.
Obviously, unless zi� − m + b ∈ {0, 1} the probability of

the corresponding in the maximum in (3) will be 0. We will

derive our bound by showing that given all the conditioning

in (3), the probability of the event {xi� �∈ Ci�} is between

2/5 and 17/18 and hence each term in the product in (1) is

at most 17/18.

Membership of xi� in Ci� : First note that the condition

Y�,m,b (and hence yi�+1 = m and 1{xi�+n �∈Ci�
} = b) implies

that Ci� contains precisely m − b distinct values. We now

use the fact that i� is π-unique and, hence, either i� /∈ Qπ

or Aπ(i�) /∈ Aπ(Qπ − {i�}).

First consider the case that i� /∈ Qπ and the condi-

tions Y�,m,b, H�,B′ . By definition, the events yi�+1 = m,

1{xi�+n �∈Ci�
} = b, E�, and G�+1 only depend on xi for i > i�

and the conditioning on πB′(x) = π is only a property of xi

for i ∈ Qπ . Therefore, given conditions Y�,m,b and H�,B′ ,

xi� is still a uniformly random value in [n]. Therefore the

probability that xi�∈Ci� is precisely (m−b)/n in this case.

Now assume that i� ∈ Qπ . In this case, the conditioning

on πB′(x) = π implies that xi� = Aπ(i�) is fixed and not

in Aπ(Qπ − {i�}). Again, from the conditioning we know

that Ci� contains precisely m − b distinct values. Some of

the elements that occur in Ci� may be inferred from the

conditioning – for example, their values may have been

queried along π – but we will show that there is significant

uncertainty about whether any of them equals Aπ(i�). In this

case we will show that the uncertainty persists even if we

reveal (condition on) the locations of all occurrences of the

elements Aπ(Qπ − {i�}) among the xi for i > i�.

Other than the information revealed about the occurrences

of the elements Aπ(Qπ−{i�}) among the xi for i > i�, the

conditioning on the events yi�+1=m, 1{xi�+n �∈Ci�
}=b, E�,

and G�+1, only biases the numbers of distinct elements and

patterns of equality among inputs xi for i > i�. Further, the

conditioning on πB′(x)=π does not reveal anything more

about the inputs in Ci� than is given by the occurrences of

Aπ(Qπ−{i�}).
Let q′ = |Aπ(Qπ −{i�})| ≤ q− 1 and let q′′ ≤ q′ be the

number of distinct elements of Aπ(Qπ−{i�}) that appear in

Ci� . Therefore, since the input is uniformly chosen, subject

to the conditioning on Y�,m,b and H�,B′ , there are m−b−q′′

distinct elements of Ci� not among Aπ(Qπ − {i�}), and

these distinct elements are uniformly chosen from among the

elements [n]−Aπ(Qπ−{i�}). Therefore, the probability that

any of these m− b− q′′ elements is equal to xi� = Aπ(i�)
is precisely (m− b− q′′)/(n− q′) in this case.

It remains to analyze the extreme cases of the probabilities

(m− b)/n and (m− b− q′′)/(n− q′) from the discussion

above. Since q = εn, q′′ ≤ q′ ≤ q − 1, and b ∈ {0, 1},
we have the probability Pr[xi� ∈ Ci� | Y�,m,b,H�,B′] ≤

m
n−q+1 ≤ 0.85n

n−εn ≤ 0.85n
n(1−ε) ≤ 0.85/(1 − ε) ≤ 17/18 since

ε ≤ 1/10. Similarly, Pr[xi� /∈ Ci� | Y�,m,b,H�,B′] < 1 −
m−q
n ≤ 1 − 0.5n−εn

n ≤ 0.5 + ε ≤ 3/5 since ε ≤ 1/10.

Plugging in the larger of these upper bounds in (1), we get:

Pr[zi1 , . . . , zir are correct for F�n
0 (x), E | πB′(x) = π] is

at most (17/18)r, which proves the lemma.

Putting the pieces together: We now combine the above

lemmas. Suppose that TS ≤ n2/4800 and let q = n/10.

We can assume without loss of generality that S ≥ log2 n
since we need T ≥ n to determine even a single answer.

Consider the fraction of inputs in [n]2n−1 on which B
correctly computes F�n

0 . By Lemma 3.8, for input x chosen

uniformly from [n]2n−1, the probability that E holds and

297

there are at least n/24 positions j < n such that xj is

unique in x is at least 1− 4ne−n/50. Therefore, in order to

be correct on any such x, B must correctly produce outputs

from at least n/24 outputs at positions j < n such that xj

is unique in x.

For every such input x, by our outline, one of the 2S

[n]-way branching programs B′ of height q contained in

B produces correct output values for F�n
0 (x) in at least

r = (n/24)q/T ≥ 20S positions j < n such that xj is

unique in x.

We now note that for any B′, if π = πB′(x) then the

fact that xj for j < n is unique in x implies that j must

be π-unique. Therefore, for all but a 4ne−n/50 fraction of

inputs x on which B is correct, E holds for x and there is

one of the ≤ 2S branching programs B′ in B of height q
such that the path π = πB′(x) produces at least 20S outputs

at π-unique positions that are correct for x.

Consider a single such program B′. By Lemma 3.9

for any path π in B′, the fraction of inputs x such that

πB′(x) = π for which 20S of these outputs are correct

for x and produced at π-unique positions, and E holds for

x is at most (17/18)20S < 3−S . By Proposition 3.8, this

same bound applies to the fraction of all inputs x with

πB′(x) = π for which 20S of these outputs are correct

from x and produced at π-unique positions, and E holds for

x is at most (17/18)20S < 3−S .

Since the inputs following different paths in B′ are

disjoint, the fraction of all inputs x for which E holds

and which follow some path in B′ that yields at least

20S correct answers from distinct runs of x is less than

3−S . Since there are at most 2S such height q branching

programs, one of which must produce 20S correct outputs

from distinct runs of x for every remaining input, in total

only a 2S3−S = (2/3)S fraction of all inputs have these

outputs correctly produced.

In particular this implies that B is correct on at most

a 4ne−n/50 + (2/3)S fraction of inputs. For n sufficiently

large this is smaller than 1 − η for any η < 1 − 2−δS for

some δ > 0, which contradicts our original assumption. This

completes the proof of Theorem 3.5.

3.2.2. A time-space efficient algorithm for F�n
k : We now

show that our time-space tradeoff lower bound for F�n
k is

nearly optimal even for restricted RAM models.

Theorem 3.10. There is a comparison-based deterministic
RAM algorithm for computing F�n

k for any fixed integer
k ≥ 0 with time-space tradeoff T · S ∈ O(n2 log2 n) for all
space bounds S with log n ≤ S ≤ n.

Proof Sketch: Denote the i-th output of F�n
k by yi. We

first compute y1 using the comparison-based O(n2/S) time

sorting algorithm of Pagter and Rauhe [26]. This produces

the outputs in order by building a space S data structure D

and then repeatedly removing and returning (popping) the

index of the smallest element from D. By keeping track of

the latest symbol popped, we compute the frequency of each

symbol and add its k-th power to the running total of Fk.

Let S′ = S/ log2 n. We compute the remaining outputs

in n/S′ groups of S′ outputs at a time. In particular,

suppose that we have already computed yi. We compute

yi+1, . . . , yi+S′ by storing the values xi, . . . , xi+S′−1 (the

old elements) and xi+n, . . . , xi+n+S′−1 (the new elements)

in a binary search tree. We also keep a set of pointers

associating each index of these elements with the leaf in

the tree that represents it. For an old element, we keep a

counter of its occurrences to its right in xi, . . . , xi+S′−1

and similarly for a new one, we count its occurrences

to its left in xi+n, . . . , xi+n+S′−1. The n − S′ elements

xi+S′ , . . . , xi+n−1 contribute to all the outputs, hence we

scan them and maintain a counter at each leaf of the

binary search tree to record the number of occurrences

of a symbol in those common elements. Each symbol in

xi, . . . , xi+n+S′−1 has counters for its occurrences in the

old elements, the new elements and the common elements

xi+S′ , . . . , xi+n−1. For j ∈ [i, i + S′ − 1], we produce

yj+1 from yj by using the above counters to update the

occurrences of xj and xj+n in the window xj+1, . . . , xj+n.

The total storage required for the search trees and pointers

is O(S′ log n) which is O(S). The total time to compute

yi+1, . . . , yi+S′ is O(n logS) time. This computation must

be done (n − 1)/S times for a total of O(n
2 log S
S) time.

Hence, the total time including that to compute y1 is

O(n
2 logn log S

S) and hence T · S ∈ O(n2 log2 n).

4. ORDER STATISTICS IN SLIDING WINDOWS

When order statistics are extreme, their complexity over

sliding windows does not significantly increase over that of

a single instance.

Theorem 4.1. There is a deterministic comparison algo-
rithm that computes MAX�n

n (equivalently MIN�n
n) using

time T ∈ O(n log n) and space S ∈ O(log n).

In contrast, when an order statistic is near the middle, we

obtain a lower bound by a simple reduction using known

time-space tradeoff lower bounds for sorting [12], [9].

Theorem 4.2. For t ∈ [n], any branching program comput-
ing O�n

t in time T and space S requires T · S ∈ Ω(t2).
The same bound applies to expected time for randomized
algorithms.

For the median (t = �n/2�), there is an errorless

randomized algorithm for the single-input version with

T ∈ O(n log logS n) for S ∈ ω(log n) and this is tight

for comparison algorithms [17]. This yields a significant

separation in complexity between the sliding-window and

single-input versions.

298

5. DISCUSSION

Our algorithm for element distinctness can implemented by

RAM algorithms using input randomness with the T ∈
Õ(n3/2/S1/2) bound. The impediment to implementing

using online randomness is our use of truly random hash

functions h. It seems plausible that a similar analysis

would hold if those hash functions were replaced by some

logO(1) n-wise independent hash function such as h(x) =
(p(x) mod m) mod n where p is a random polynomial of

degree logO(1) n, which can be specified in space logO(1) n
and evaluated in time logO(1) n. This would suffice to yield

essentially the same time-space tradeoff upper bound.

A time-space tradeoff separation between ED and Fk

or F0 mod 2 rather than their sliding windows versions

remains an open question. In the context of quantum query

complexity there is a separation between the complexities of

the ED and F0 mod 2: ED has quantum query complexity

Θ(n2/3) ([1], [5]). On other hand, the lower bound in [10]

implies that F0 mod 2 has quantum query complexity Ω(n).

REFERENCES

[1] S. Aaronson and Y. Shi, “Quantum lower bounds for the
collision and the element distinctness problems,” J. ACM,
vol. 51(4), pp. 595–605, 2004.

[2] K. R. Abrahamson, “Generalized string matching,” SIAM
Journal on Computing, vol. 16(6), pp. 1039–1051, 1987.

[3] ——, “Time–space tradeoffs for algebraic problems on gen-
eral sequential models,” Journal of Computer and System
Sciences, vol. 43(2), pp. 269–289, Oct. 1991.

[4] M. Ajtai, “A non-linear time lower bound for Boolean branch-
ing programs,” Theory of Computing, vol. 1(1), pp. 149–176,
2005.

[5] A. Ambainis, “Quantum walk algorithm for element distinct-
ness,” SIAM Journal on Computing, vol. 37(1), pp. 210–239,
2007.

[6] A. Andersson and M. Thorup, “Dynamic ordered sets with
exponential search trees,” J. ACM, vol. 54(3), pp. 13:1–40,
2007.

[7] A. Arasu and G. S. Manku, “Approximate counts and quan-
tiles over sliding windows,” in Proc. 23rd ACM PODS, 2004,
pp. 286–296.

[8] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and issues in data stream systems.” in Proc. 21st
ACM PODS, 2002, pp. 1–16.

[9] P. Beame, “A general sequential time-space tradeoff for
finding unique elements,” SIAM Journal on Computing,
vol. 20(2), pp. 270–277, 1991.

[10] P. Beame and W. Machmouchi, “The quantum query com-
plexity of AC0,” Quantum Information & Computation,
vol. 12(7–8), pp. 670–676, 2012.

[11] P. Beame, M. Saks, X. Sun, and E. Vee, “Time-space trade-
off lower bounds for randomized computation of decision
problems,” J. ACM, vol. 50(2), pp. 154–195, 2003.

[12] A. Borodin and S. A. Cook, “A time-space tradeoff for sorting
on a general sequential model of computation,” SIAM Journal
on Computing, vol. 11(2), pp. 287–297, May 1982.

[13] A. Borodin, F. E. Fich, F. Meyer auf der Heide, E. Upfal, and
A. Wigderson, “A time-space tradeoff for element distinct-
ness,” SIAM Journal on Computing, vol. 16(1), pp. 97–99,
Feb. 1987.

[14] V. Braverman, R. Ostrovsky, and C. Zaniolo, “Optimal sam-
pling from sliding windows,” Journal of Computer and Sys-
tem Sciences, vol. 78(1), pp. 260–272, 2012.

[15] R. P. Brent, “An improved Monte Carlo factorization algo-
rithm,” BIT Numerical Mathematics, vol. 20, pp. 176–184,
1980.

[16] A. Chakrabarti, G. Cormode, and A. McGregor, “A near-
optimal algorithm for computing the entropy of a stream,”
in Proc. 18th ACM-SIAM SODA, 2007, pp. 328–335.

[17] T. M. Chan, “Comparison-based time-space lower bounds for
selection,” ACM Transactions on Algorithms, vol. 6(2), pp.
26:1–16, 2010.

[18] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
stream statistics over sliding windows,” SIAM Journal on
Computing, vol. 31(6), pp. 1794–1813, 2002.

[19] D. P. Dubhashi and A. Panconesi, Concentration of Measure
for the Analysis of Randomized Algorithms. Cambridge
University Press, 2012.

[20] U. Feige, P. Raghavan, D. Peleg, and E. Upfal, “Comput-
ing with noisy information,” SIAM Journal on Computing,
vol. 23(5), pp. 1001–1018, 1994.

[21] D. E. Knuth, Seminumerical Algorithms, ser. The Art of
Computer Programming. Addison-Wesley, 1971, vol. 2.

[22] L. K. Lee and H. F. Ting, “Maintaining significant stream
statistics over sliding windows,” in Proc. 17th ACM-SIAM
SODA, 2006, pp. 724–732.

[23] ——, “A simpler and more efficient deterministic scheme for
finding frequent items over sliding windows,” in Proc. 25th
ACM PODS, 2006, pp. 290–297.

[24] Y. Mansour, N. Nisan, and P. Tiwari, “The computational
complexity of universal hashing,” Theoretical Computer Sci-
ence, vol. 107, pp. 121–133, 1993.

[25] G. Nivasch, “Cycle detection using a stack,” Information
Processing Letters, vol. 90(3), pp. 135–140, 2004.

[26] J. Pagter and T. Rauhe, “Optimal time-space trade-offs for
sorting,” in Proc. 39th IEEE FOCS, 1998, pp. 264–268.

[27] J. M. Pollard, “A Monte Carlo method for factorization,” BIT
Numerical Mathematics, vol. 15(3), pp. 331–334, 1975.

[28] ——, “Monte Carlo methods for index computation
(mod p),” Mathematics of Computation, vol. 32(143), pp.
918–924, 1978.

[29] M. Sauerhoff and P. Woelfel, “Time-space tradeoff lower
bounds for integer multiplication and graphs of arithmetic
functions,” in Proc. 35th ACM STOC, 2003, pp. 186–195.

[30] R. Sedgewick, T. G. Szymanski, and A. C.-C. Yao, “The
complexity of finding cycles in periodic functions,” SIAM
Journal on Computing, vol. 11(2), pp. 376–390, 1982.

[31] P. C. van Oorschot and M. J. Wiener, “Parallel collision
search with cryptanalytic applications,” Journal of Cryptol-
ogy, vol. 12(1), pp. 1–28, 1999.

[32] A. C. Yao, “Near-optimal time-space tradeoff for element
distinctness,” in Proc. 29th IEEE FOCS, 1988, pp. 91–97.

[33] Y. Yesha, “Time-space tradeoffs for matrix multiplication
and the discrete Fourier transform on any general sequential
random-access computer,” Journal of Computer and System
Sciences, vol. 29, pp. 183–197, 1984.

299

