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Abstract—We give a new (1 + ε)-approximation for
SPARSEST CUT problem on graphs where small sets expand
significantly more than the sparsest cut (expansion of
sets of size n/r exceeds that of the sparsest cut by a
factor

√
log n log r, for some small r; this condition holds

for many natural graph families). We give two different
algorithms. One involves Guruswami-Sinop rounding on
the level-r Lasserre relaxation. The other is combinatorial
and involves a new notion called Small Set Expander Flows
(inspired by the expander flows of [1]) which we show
exists in the input graph. Both algorithms run in time
2O(r)poly(n).

We also show similar approximation algorithms in
graphs with genus g with an analogous local expansion
condition.

This is the first algorithm we know of that achieves
(1 + ε)-approximation on such general family of graphs.

I. INTRODUCTION

This paper concerns a new and promising analysis

of Lasserre [2]/Parrilo [3] SDP relaxations for the

(uniform) SPARSEST CUT problem, which are shown

to yield (1 + ε)-approximation on several natural fam-

ilies of graphs. Note that Lasserre/Parillo relaxations

subsume all relaxations for the problem that were

previously analysed: the spectral technique of Alon-

Cheeger [4], the LP relaxation of Leighton-Rao [5]

with approximation ratio O(log n), and the SDP with

triangle inequality of Arora, Rao, Vazirani [1] with

approximation ratio O(
√
log n). The approximation ra-

tio of O(
√
log n) has proven resistant to improvement

in almost a decade (and there is some evidence the

ratio may be tight for the ARV relaxation; see Lee-

Sidiropoulos[6]). For a few families of graphs such as

graphs of constant genus, an O(1)-approximation is

known. An efficient weakly polynomial time approxi-

mation scheme is known only for planar graphs [7] for

the closely related problem of edge expansion.

Recently, there has been increasing optimism among

experts that Lasserre [2]/Parrilo [3] relaxations —

which are actually a hierarchy of increasingly tighter

relaxations whose rth level can be solved in nO(r)

time— may provide better approximation algorithms

for SPARSEST CUT as well as other problems such as

MAX CUT and UNIQUE GAMES, and possibly even refute

Khot’s unique games conjecture. For instance Barak,

Raghavendra, and Steurer [8], relying on the earlier

subexponential algorithm of Arora, Barak, Steurer [9],

showed that Lasserre relaxations can be used to de-

sign subexponential algorithms for the UNIQUE GAMES

problem. Independently, Guruswami and Sinop [10]

gave another rounding that looks quite different but

yielded very similar results. Subsequently, Barak et

al. [11] showed that Lasserre relaxations can easily

dispose of families of UNIQUE GAMES instances that

seemed “difficult” for simpler SDP relaxations: many

families of instances can be solved near-optimally in

4-8 rounds! This result was subsequently extended by

O’Donnell and Zhou [12] to “difficult” families of

graphs from [13] which exhibit large integrality gaps on

the standard SDP relaxations for uniform sparsest cut

and balanced separator. Of course, it is unclear whether

this demonstrates the power of Lasserre relaxations,

or merely the limitations of our current lowerbound

approaches. Nevertheless, the rise in researchers’ hopes

for better algorithms is palpable.

But the stumbling blocks in this quest are also

quite clear. First, known ideas for analysing Lasserre

relaxations generally require some condition on the

rth eigenvalue of the Laplacian for some small r,

whereupon some f(r, ε) levels of Lasserre are shown to

suffice for (1 + ε)-approximation. Unfortunately, many

real-life graphs (eg, even the 2D-grid) do not satisfy this

eigenvalue condition so new ideas seem needed.

Another stumbling block has been the inability to

relate these new rounding algorithms for Lasserre re-

laxations to existing SDP rounding algorithms such as

Goemans-Williamson and ARV. Since Lasserre relax-

ations greatly generalize normal SDP relaxations, one

would like general purpose rounding algorithms which

for small r reduce to earlier rounding algorithms. A con-

crete question is: does the Guruswami-Sinop rounding

algorithm always give an approximation ratio as good

as the ARV ratio of
√
log n for SPARSEST CUT once r
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is sufficiently large? This has been unclear.

The current paper makes some progress on these

stumbling blocks. We show that the GS rounding al-

gorithm achieves (1 + ε)-approximation for SPARSEST

CUT on an interesting family graphs that are not small

set expanders and may not have large rth eigenvalue.

If φlocal denotes the minimum sparsity of sets of size

n/r, and φglobal the minimum sparsity among all sets,

then we require φlocal/φglobal � √
log n log r. Note

that φlocal is often larger than φglobal in natural families

of graphs. For example, in normalized d-dimensional

n1/d×. . .×n1/d-grid graphs, φglobal ≤ 1
dn1/d , φlocal �

1
d

(
r
n

)1/d
whereas λr � 1

d

(
r
n

)2/d
. Note that when

the condition is not met, a simple modification of our

algorithm returns a subset of size n/r that has sparsity√
log n log r times φglobal. Thus setting r = O(1) one

recovers the ARV bound —though the analysis of this

case also uses ARV ideas1.

Comparison with existing work.: As mentioned,

earlier analyses of Lasserre relaxations require a lower-

bound on the rth eigenvalue of the graph: the tightest

such result from [14] requires λr > φglobal. Efforts

to get around such limitations have focused on under-

standing structure of graphs which do not satisfy the

eigenvalue condition: an example is the so-called high
order Cheeger inequality of [9] (improved by Louis

et al [15] and Lee et al. [16]) according to which –

roughly speaking—a graph with many eigenvalues close

to o(1) has a small nonexpanding set. In other words,

the graph is not a Small-Set Expander2. However, in all

these papers there is an inherent Cheeger-like gap (φ vs√
φ) between eigenvalues and expansion that seems to

limit the possible improvements. Our algorithms work

even without a bound on the rth eigenvalue; they only

need bounds on expansion (The d-dimensional grids

are good examples.) Furthermore, they yield (1 + ε)-
approximation, which in context of SPARSEST CUT

seems quite surprising.

Subsequent to our work and inspired by it, Gha-

ran and Trevisan [18] have shown how to obtain factor

1We also know how to achieve qualitatively similar results as our
main result using BRS rounding + ARV ideas applied to Lasserre
solutions at the expense of stricter requirements on small set expan-
sion. However, that method seems unable to give better than O(1)-
approximation, whereas GS rounding is able to give (1 + ε).

2In fact, the unexpected appearance of Small Set Expansion (SSE)
in this setting is believed to not be a fluke. It appears in the SSE con-
jecture of Raghavendra and Steurer [17] (known to imply the UGC),
their “Unique games with SSE” conjecture, as well as in the known
subexponential algorithms for UNIQUE GAME. Furthermore, attempts
to construct difficult examples for known SDP-based algorithms also
end up using graphs (such as the noisy hypercube) which are small
set expanders.

O(
√
log k) approximation from the basic ARV relax-

ation for the sparsest cut problem under local expansion

or spectral conditions.

Better algorithms for bounded genus graphs.: Re-

call that for genus g graphs there are known O(log g)-
approximation algorithms for SPARSEST CUT [19].

We can show that GS rounding gives a (1 + ε)-
approximation if φlocal ≥ Ω( log g

ε2 )φglobal. Thus for the

2D-grid, it implies that O(1/ε4) rounds of Lasserre

yield a (1 + ε)-approximation. Again, when the local

expansion condition is not satisfied our algorithm finds a

witnessing small set, allowing us to recover the existing

O(log g) approximation for the general case.

Combinatorial algorithm.: In addition to the above

Lasserre-based algorithm, we also give a new combi-

natorial algorithm with similar (but somewhat weaker)

guarantees. This algorithm is inspired by the primal-

dual algorithms for SPARSEST CUT stemming from the

expander flows notion of ARV (see [20], [21], [22]).

We introduce a new notion called small set expander
flows: a multicommodity flow whose demand graph is

an expander on small sets. Let a (r, d, β)-flow be an

undirected multicommodity flow in which d units of

flow is incident to each node, and the demand graph

has expansion β on sets of size at most n/r (in other

words, the amount of flow leaving the set S is dβ|S|).
We show that in every graph there is an SSE flow with

d = Ω(φlocal

√
log r/

√
log n), β = Ω((log r)−2), and

this flow —or something close to it—can be found

in polynomial time. Using such flows one can —with

some more work—compute a (1 + ε)-approximation to

SPARSEST CUT as above.

Note that the expander flow idea of ARV was mo-

tivated by the observation that expander flows consist

of a family of dual solutions to the SDP. We suspect

that something analogous holds for SSE flows and the

Lasserre relaxation but are unable to prove this formally.

However, we can informally show a connection as

follows: if a graph has a (r, d, β)-flow where

dβ2/ log r � value of O(r)-rounds of Lasserre relaxation

then the integrality gap is at most (1 + o(1)). Thus

the existence of SSE flows is another reason —besides

the more direct rounding approach mentioned earlier—

why such relaxations are near-optimal when φlocal

φglobal
�√

log n log r.

II. PRELIMINARIES AND BACKGROUND

A. Expansion and Graph Laplacian

Let G = (V,E) be an undirected graph with edge

capacities ce ≥ 0 for all e ∈ E. For simplicity we
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assume that the input graph is regular with (normalized)

degree 1, that is, for all vertices i ∈ V
∑

j c(i,j) = 1
(our results in Sections III and IV can also be applied to

irregular graphs). We always use n to denote the number

of vertices in G.

The expansion of a set is defined as Φ(S) =
E(S,V \S)

min{|S|,n−|S|} , where E(A,B) =
∑

i∈A,j∈B c(i,j). The

sparsity of a set φ(S) is defined as
n·E(S,V \S)
|S|·(n−|S|) . There

are several problems related to sparsity of cuts:

• The sparsest cut of the graph is a set S that

minimizes the sparsity Φ(S) = E(S,V \S)
|S|·(n−|S|)} . We

use Φsparsest to denote its expansion and φsparsest

to denote its sparsity.

• The edge expansion of a graph is a set S that

minimizes the expansion Φ(S). We use Φglobal to

denote its expansion. For regular graphs, this is

equivalent to the graph conductance problem.

• The c-balanced separator of a graph is a set S that

minimizes the expansion Φ(S) among all sets of

size at least cn. We use Φc-balanced to denote its

expansion.

While all these problems are closely related (for

example, sparsest cut and edge expansion are equivalent

up to a factor of 2), we carefully differentiate between

them in this paper because we are looking for 1 + ε
approximation algorithms.

We are also interested in the expansion of small sets:

let Φr(G) be the smallest expansion of a set of size

at most n/r and φr(G) be the smallest sparsity of a

set of size at most n/r. Sometimes when r is fixed

(or understood) we drop r and use Φlocal and φlocal

instead3.

Notice that the requirement of our algorithms will

have the form φlocal/φglobal � f(n, r)4. Since spar-

sity φ and expansion Φ are within a factor of 2

(Φ(S) ≤ φ(S) ≤ 2Φ(S)), in such requirements the

ratios φlocal/φglobal and Φlocal/Φglobal can be inter-

changed

The adjacency matrix A of the graph G is a ma-

trix whose (i, j)-th entry is equal to c(i,j). If di =∑
(i,j)∈E c(i,j) denotes the degree of i-th vertex with D

being the diagonal matrix of degrees, then the Laplacian

of the graph G is defined as L = D − A (for regular

graph this is just I − A). The normalized Laplacian of

the graph is defined as L = D−1/2LD−1/2.

Graph Laplacians are closely related to the expansion

of sets. In particular, the Rayleigh Quotient of a vector

x, R(x) = xTLx
xT x

is exactly equal to the sparsity of a

3Φlocal and φlocal usually denote the optimal expansion and
sparsity of sets of size at most O(n/r)

4f � g means f ≥ Cg for some large universal constant C

set S when x is the indicator vector of S (and S has

size at most 1/2).

We will denote by φSDP the optimum value of the

Lasserre relaxation for SPARSEST CUT. The number of

levels in the Lasserre hierarchy will be implicit in the

context.
B. Lasserre Relaxation and GS Rounding

We will show sufficient conditions under which r
rounds of Lasserre Hierarchy relaxation can be rounded

to (1 + ε)-approximation for sparsest cut and related

problems. In particular, we will show that the particular

rounding algorithm from [14] outputs such an approx-

imation. (See the full version or [14]for details on the

Lasserre relaxation and the GS rounding algorithm.)

In general working with Lasserre relaxations involves

tedious notation involving subsets of variables and as-

signments to them. Luckily all that has been handled

in [14], leaving us to work with the relatively clean

(standard) SDP notation.

For the sake of simplicity, we will focus on the

uniform sparsest cut problem on regular graphs. Other

variants, such as edge expansion, can easily be handled

by changing the objective function. Let [xu]u∈V be the

vectors corresponding to each node in G obtained as a

solution for r-rounds of Lasserre Hierarchy relaxation.

In particular, xu’s minimize the following ratio:

φSDP �
∑

u<v Cuv‖xu − xv‖2
1
n

∑
u<v ‖xu − xv‖2

≤ φsparsest.

The denominator, whose value we will denote by ν, can

also be written as:

ν =
1

n

∑
u<v

‖xu − xv‖2 =
∑
u

∥∥∥xu − 1

n

∑
v

xv

∥∥∥2

.

We define Xu as Xu � xu− 1
n

∑
v xv , so that

∑
u Xu =

0. Observe ‖Xu‖ ≤ 1.

We use X = [Xu] to denote the matrix whose

columns are the vectors Xu. Since Xu − Xv =
xu − xv , X ∈ �22 (i.e. columns of matrix X
satisfy the triangle inequality) and:

∑
uv Cuv‖Xu −

Xv‖2 = φSDP
1
n

∑
u<v ‖Xu − Xv‖2 = φSDP ‖X‖2F

as
∑

u Xu = 0. Using X , we can re-state Theorem 3.1

from [14] in the following way:

Theorem II.1 (Theorem 3.1 from [14]). If there exists
a subset S ∈ (

V
r

)
with

‖X⊥
S X‖2F =

∑
u

‖X⊥
S Xu‖2 ≤ γ‖X‖2F , (1)

then the rounding algorithm from [14] outputs a set T
such that φG(T ) ≤ φSDP

1−γ .Here XS is the projection
matrix onto the span of the submatrix indexed by S
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and X⊥
S is the projection matrix onto the orthogonal

complement of XS’s column span. Furthermore, the
SDP solver and rounding procedure can be implemented
in time 2O(r)poly(n) using [23].

III. PROOF VIA ORTHOGONAL SEPARATORS

Theorem II.1 implies that for (1 + ε)-approximation

it suffices to show the existence of a small subset S
of vertices such that the relative distance of all other

vertices to the span of XS is smaller than any small

constant.

Theorem III.1 (Main). For any graph G and ε > 0
there is a constant C = C(ε) such that the following
is true. Provided that all subsets of at most 2n/r
vertices have sparsity φlocal ≥ CφSDP

√
log n log r

in G, there exists a set S of r vertices such that
‖X⊥

S X‖2F ≤ ε‖X‖2F . (Here φSDP ≤ φsparsest is the
value of the SDP relaxation for r + 3 rounds and X’s
are the corresponding translated vectors with mean 0.

This existence result will be proven using orthogonal
separators of [24] together with modifications of Bansal

et al.[25], which, not surprisingly, were also developed

in context of algorithms for small set expansion. (We

know how to give a more direct proof without using

orthogonal separators but it brings in an additional

factor of log r in the local expansion condition.)

Definition III.2 (Orthogonal Separator). Let X be an

�22 space. A distribution over subsets of X is called an

m-orthogonal separator with distortion D, probability
scale α > 0 and separation threshold β < 1 if the

following conditions hold for S ⊂ X chosen according

to this distribution.

1) For all Xu ∈ X , Pr[Xu ∈ S] = α‖Xu‖2.
2) For all Xu, Xv ∈ X with ‖Xu − Xv‖2 ≥
βmin{‖Xu‖2, ‖Xv‖2},

Pr[{Xu, Xv} ⊂ S] ≤ min{Pr[Xu ∈ S],Pr[Xv ∈ S]}
m

.

3) For all Xu, Xv ∈ X , Pr[IS(Xu) 
= IS(Xv)] ≤ αD ·
‖Xu −Xv‖2, where IS is the indicator function of S.

Bansal et al. [25] showed the existence of such sepa-

rators and also gave an efficient algorithm to construct

them.

Lemma III.3 ([25]). For all β < 1 there ex-
ists an m-orthogonal separator with distortion D =

O

(√
log |X| logm

β

)
provided that 0 ∈ X . There is also

a poly-time algorithm to sample from this distribution.

The dependency on β follows from calculations in

Lemma 4.9 in [24]. From the explanation of the above

Lemma in [25], we know γ =
√
β/8, so the exponent

in Lemma 4.9 in [24] is 1/(1 − γ2) − 1 = O(β),
and we want (logm′/m′)O(β) to be smaller than 1/m.

Setting m′ = mO(1/β) suffices. Then the distortion is

O(
√

log |X| logm′) = O

(√
log |X| logm

β

)
.

Now we show the following, which immediately

implies Theorem III.1.

Theorem III.4. For any δ > 0, 0.25 > β > 0, let m =
10r2/δ. Let D denote the best distortion possible for an
m-orthogonal separator with separation β. If X is any
set of vectors in �22, one for each vertex in the graph,
and the minimum expansion φlocal among subsets of
at most 2n/r vertices satisfies φlocal ≥ Ω(φSDPD/δ),
then there exist r points S in X such that ‖X⊥

S X‖2F ≤
O(δ + β)‖X‖2F .

The actual construction of orthogonal separators

from [24] requires the origin to be inside the vector

set. To achieve this, we will translate all vectors in the

same direction:

Proposition III.5. Given X whose subsets do not
satisfy eq. (1), there exists a translation of X , X ′, such
that: (i) X ′ ∈ �22, (ii) 0 ∈ X ′ , (iii) no size r − 1
subset of X ′ satisfies eq. (1) for γ/2 (this only affects
the constants in O-notation).

Proof: Given such X = [Xu]u, we know that∑
u ‖Xu‖2 = 1

2Eu

∑
v ‖Xu−Xv‖2. Hence there exists

some t for which
∑

u ‖Xu − Xt‖2 ≤ 2
∑

u ‖Xu‖2.
After having fixed such t, we define our new vectors as

X ′
u ← Xu −Xt. It is easy to see that X ′ ∈ �22, 0 ∈ X ′

and no size r− 1 subset of X ′ satisfies eq. (1) for γ/2.

We start by showing that most sets in the support of

the orthogonal separator should have large size.

Lemma III.6. If φlocal ≥ 2φSDPD/δ as in the hypoth-
esis of Theorem III.4, and S is chosen according to the
orthogonal separator, then E[|S| · I|S|≤2n/r] ≤ δE[|S|],
where I|S|≤2n/r is the indicator for “|S| ≤ 2n/r.”

Proof: On one hand, we know:

E[number of edges cut] ≥ E[|S| · I|S|≤2n/r] · Φlocal

≥ E[|S| · I|S|≤2n/r] · φlocal/2.

On the other hand, by item 3 of Definition III.2:

E[number of edges cut] ≤ αD
∑

Cuv‖Xu −Xv‖2.

Substituting
∑

Cuv‖Xu −Xv‖2 ≤ φSDP

∑ ‖Xu‖2 =
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φSDPE[|S|]/α yields:

E[|S| · I|S|≤2n/r] ≤ 1

φlocal
αD

∑
Cuv‖Xu −Xv‖2

which is at most δE[|S|].
We now introduce a definition for later convenience:

Definition III.7 (volume). The volume of a subset X ′ ⊂
X is defined as vol(X ′) �

∑
Xu∈X′ ‖Xu‖2

∑
Xu∈X ‖Xu‖2 .

Corollary III.8. Given an orthogonal separator for �22
space X , constructed in accordance with Lemma III.3,
there exists X ′ ⊂ X with vol(X ′) ≥ 1 − 2δ satisfying
the following. Let S be chosen randomly according to

the separator and define S′ �
{
S if |S| ≥ 2n/r,

∅ else.
Then:
1) For all Xu ∈ X ′, we have Pr[Xu ∈ S′] ≥
α‖Xu‖2/2.

2) For all Xu, Xv ∈ X with ‖Xu − Xv‖2 ≥
βmin{‖Xu‖2, ‖Xv‖2}:

Pr[{Xu, Xv} ⊂ S′] ≤ min{Pr[Xu ∈ S],Pr[Xv ∈ S]}
m

.

Proof: (Sketch) The first condition is by Markov.

The second condition holds because the S′ is always a

subset of S, so the probability of LHS only decreases.

Proof: (Theorem III.4) We give an algorithm that

iteratively picks r points such that most of the volume

in X ′ lies close to them.

1) Start with none of the points marked and set i ← 1.

2) While there is still a point in X ′ that is not marked:

a) Let Xi be the point with largest norm among

the unmarked points of X ′.
b) Let Qi be the set of points that have squared

distance at most β ‖Xi‖22 from Xi.

c) Pick a set Si (|Si| ≥ 2n/r) containing Xi and at

most 2n/m points outside Qi (such a set exists

as shown below.)

d) Mark all points in Si as well as all points that

have squared distance at most 2β‖Xi‖2 from

Xi. Set i ← i+ 1.

First we show using the probabilistic method why we

can always perform step 2c. Pick a random set S′

from the distribution of the separator, conditioning on

its containing Xi. By the properties of S′ we know if

‖Xi−Xv‖2 ≥ β‖Xi‖2, then the conditional probability

is bounded by Pr[Xv ∈ S′|Xi ∈ S′] ≤ 2/m. So the

expected number of points in S′ whose distance is at

least β‖Xi‖2 from Xi is at most 2n/m, and in particular

there must be one set that satisfies the condition.

Then we need to show that this process terminates in

r steps. To do so it suffices to show that each Si has

at least n/r points that were not in any Sj for j < i.
We know that |Si| > 2n/r. We claim its intersection

with any Sj for j < i is at most 4n/m. The reason

is that Xi was unmarked at the start of this phase,

which implies that that Qi and Qj (the balls of radius

β‖Xj‖2 and β‖Xi‖2 around Xj and Xj respectively)

must be disjoint (note that ‖Xj‖ > ‖Xi‖) and thus the

only intersections among Si, Sj are from points outside

these balls, which we know to be at most 4n/m. Since

4nr/m < n/r (recall m = 10r2/δ), we can conclude

that each Si introduces at least n/r new points, so the

process must terminate in r steps.

Finally we will show that
‖X⊥

S X‖2F
‖X‖2F

≤ O(δ + β).

All points outside X ′ (the set in Corollary III.8)

anyway have volume at most 2δ, so their contribution

is upperbounded by that. To bound the contribution

of points in X ′, we define disjoint sets M1, ...,Mt as

follows. All points in Qi are in Mi (recall that Qi’s are

disjoint by construction). Otherwise Xu belongs to Mi

where i is the time that Xu gets marked.

All points in Mi have norm at most ‖Xi‖2 since

otherwise they would have been picked instead of Xi.

Also more than n/r points (in fact, 2n/r − 2n/m >
n/r) in Mi are β‖Xi‖2-close to Xi, so∑

Xu∈Mi
‖Xu‖2

‖Xi‖2 ≥ (|Mi| − 2n/m)(1− 2β) ≥ |Mi|/3.

On the other hand, after projection to the orthogonal

complement of XS , all but 2n/m points have squared

length smaller than 2β‖Xi‖2. Consequently:∑
Xu∈Mi

‖X⊥
i Xu‖2 ≤ (|Mi| − 2n

m
· 2β‖Xi‖2 + 2n

m
· ‖Xi‖2

≤ O(β + δ)|Mi|‖Xi‖2.
Summing up over i ∈ [r] proves the theorem.

Algorithmic version: The above proof can immedi-

ately be made algorithmic using the efficient algorithmic

constructions of orthogonal separators [25].

Corollary III.9. There is an algorithm that, given
a weighted graph G = (V,E) with φlocal >
Ω(

√
log n log r/ε)ε−3/2φsparsest, computes a (1 + ε)-

approximation to SPARSEST CUT in time 2O(r)poly(n).
Here φlocal is the minimum sparsity of sets of size at
most 2n/r.

In fact the algorithm outputs a subset S such that:
(i) Either Φ(S) ≤ (1 + ε)φSDP; (ii) Or |S| ≤ 2n

r

and Φ(S) ≤ O(
√

logn log r/ε)

ε3/2
φSDP . Here φSDP is the

optimum of r + 3 rounds of SDP relaxation.
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Proof: (Sketch) Consider the algorithm from The-

orem II.1. If it outputs a partition, we are done.

Otherwise, we apply the algorithm for constructing

orthogonal separator in [25] on the set of vectors as

constructed in Proposition III.5. The above existence

proof of the set S fails for this set of vectors, therefore

by contrapositive of Lemma III.6, there must be a

small set in the orthogonal separator that has desired

expansion.

IV. BOUNDED GENUS GRAPHS

In this section, we prove an analog of our result

for graphs with orientable genus g. The standard LP

relaxation [5] for SPARSEST CUT on such graphs has

an integrality gap of O(log g) [19]. For planar graphs

(when g = 0), Park and Phillips [7] presented a weakly

polynomial time algorithm for the problem of edge

expansion using dynamic programming.

Here we show how to give a (1 + ε)-approximation

when the graph satisfies a certain local expansion con-

dition. Note that this expansion condition is true for in-

stance in O(1)-dimensional grids when r = poly(1/ε).

Theorem IV.1. There is a polynomial-time algorithm
that given a weighted graph G with orientable genus g
in which φlocal >

Ω(log g)
ε2 φsparsest (where φlocal is the

minimum sparsity of sets of size at most n/r) computes
a (1 + ε)-approximation to SPARSEST CUT and similar
problems in 2O(r)poly(n).

In fact the algorithm outputs a subset S such that:
(i) Either Φ(S) ≤ (1 + ε)φSDP, (ii) Or |S| ≤ n/r and
Φ(S) ≤ (1+ε)O(log g)

ε2 φSDP . Here φSDP is the optimum
value of SDP relaxation for r + 3 rounds.

Before proving Theorem IV.1, let us first recall the

theory of random partitions of metric spaces, and its

specialization to graphs of bounded genus. If (V, d) is

a metric space then a padded decomposition at scale
Δ is a distribution over partitions P of V where each

block of P has diameter Δ. Its padding parameter is

the smallest β ≥ 1 such that the ball of radius Δ/β
around a point has a good chance of lying entirely in

the block containing the point:

ProbP [Bd(u,Δ/β) ⊆ P (u)] ≥ 1/8 for all u ∈ V .

(2)

The padding parameter of a graph G is the smallest

β such that every semimetric formed by weighting

the edges of G has a padded decomposition with

padding parameter at most β. The following theorems

are known.

Theorem IV.2. Given a graph G, its padding parameter
is: (i) O(log g) if G has orientable genus g [19],
(ii) O(p2) if G has no Kp,p minor [26].

Our main technical lemma is the following.

Lemma IV.3. Given a graph G = (V,E), integer r ≥ 0
and real ε > 0, there exists an algorithm which runs in
time 2O(r)poly(n) and outputs a subset S such that:
(i) Either Φ(S) ≤ (1 + ε)φSDP, (ii) Or |S| ≤ n

r and
Φ(S) ≤ O(β)

ε2 φSDP . Here φSDP is the optimum value
of r + 3 rounds of SDP relaxation.

Proof: The idea is to apply the algorithm from The-

orem II.1. If it finds a cut of sparsity (1+ ε)φSDP, then

we are done. Otherwise let [Xu]u be the vectors output

by it. We show how to use padded decompositions of the

shortest-path semimetric given by distances ‖Xu−Xv‖2
and then produce a small nonexpanding set.

Let ν denote the average squared length of these

vectors, i.e. ν � 1
n‖X‖2F so that ν = μ(1−μ). Choose

Δ at least εν
2 . Take a padded decomposition at scale Δ

and pick a random partition P out of it.
CLAIM: The expected number of nodes that lie in sub-
sets of size less than n/r in P is at least ε

2

∑
u ‖Xu‖2.

Proof For each subset S ∈ P with size |S| ≥ n
r , if we

choose an arbitrary t ∈ S, eq. (1) implies that ε‖X‖2F
is bounded by:

≤
∑

S∈P :|S|≥n
r

∑
u∈S

‖Xt −Xu‖2 +
∑

T∈P :|T |<n
r

‖XT ‖2F

≤
∑

S∈P :|S|≥n
r

Δ|S|+
∑

T∈P :|T |<n
r

‖XT ‖2F

≤ ε

2

∑
u

‖Xu‖2 +
∑

T∈P :|T |<n
r

|T |.

Therefore, (ε/2)‖X‖2F ≤ ∑
T∈P :|T |<n

r
|T |.

Now we choose a threshold τ ∈ [0,Δ/β] uniformly

at random. Then for each T ∈ P with |T | ≤ n
r , let

T̂ ⊆ T be the subset of nodes which are in the same

partition block as the ball of radius τ around them.

We output such T̂ with minimum sparsity among all

T ∈ P with |T | ≤ n
r . Any pair of nodes u and v is

separated with probability ≤ ‖Xu−Xv‖2
Δ/β . Hence the total

expected capacity cut is ≤ β
Δ

∑
u<v Cuv‖Xu − Xv‖2.

Moreover eq. (2) implies that:

EP

[ ∑
T∈P :|T |≤n/r

|T̂ |
]
≥ 1

8

∑
T∈P :|T |≤n/r

|T | ≥ ε

16
‖X‖2F .

Putting all together, we see that there exists some T ∈ P
with |T | ≤ n

r such that φG(T ) ≤ O(β)
ε2 φSDP .

Combining Lemma IV.3 with the bounds from The-

orem IV.2 immediately implies Theorem IV.1.
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V. SMALL-SET EXPANDER FLOWS

In [1], expander flows are used as approximate cer-

tificates for expansion, which work for all values of ex-

pansion. (By contrast, the eigenvalue or spectral bound

of Alon-Cheeger is most useful only for expansion

close to Ω(1).) This section concerns small-set expander
flows (SSE flows) which can be viewed as approximate

certificates of the expansion of small sets. An (r, d, β)-
SSE flow is a multicommodity flows in which small

sets S (sets of size at most n/r for some small r) have

βd|S| outgoing flow where β is close to Ω(1). The flow

is undirected, and the amount of flow originates at every

node is at most d. Since the flow resides in the host

graph and βd|S| amount leaves every small small set S,

an (r, d, β)-SSE flow is trivially a certificate that small

sets have edge expansion Ω(dβ) in the host graph.

Of particular interest here will be a surprising con-

nection between SSE flows and finding near-optimal

SPARSEST CUT. In other words, information about ex-

pansion of small sets can be leveraged into knowledge

about the expansion of all sets. We note that such

a leveraging was already shown in [9] using spec-

tral techniques, but only when Small set expansion is

Ω(1), roughly speaking (the reason is that the proof is

Cheeger-like).

We note that given a flow it seems difficult (as far

as we know) to verify that it is an SSE flow. Thus we

will also be interested in a closely related notion of

spectral SSE flow, which by contrast is easily recognized

using eigenvalue computation. This is the one used in

our algorithm.

Definition V.1 (Spectral SSE Flow). A (r, d, λ)-spectral
SSE flow is a multicommodity flow whose vertices

have degree between d/2 and d, and the rth smallest

eigenvalue of its Laplacian matrix is at least dλ.

The relationship between the two types of flow

rely upon the so-called higher order Cheeger inequali-

ties [15], [16].

Theorem V.2 (Rough statement, see full version.). If
the graph has an (r, d, β) SSE flow then it also has
an (2r, d,Ω(β2/ log r)) spectral SSE flow. Conversely,
if the graph has an (r, d, λ) spectral SSE flow then it
has a weaker version of (r, d, β = λ) combinatorial
SSE flow.

Now we describe how these results are useful. First,

just existence of SSE flows implies a low integrality

gap for the Lasserre relaxation. This is reminiscent of

primal-dual frameworks (e.g., expander flows being a

family of dual solutions for the ARV SDP relaxation

and thus giving a lower bound on the optimum) but we

don’t know how to make that formal yet.

Theorem V.3. If a (r, d, λ)-spectral SSE flow exists
in the graph for dλ � 1

εφsparsest, then the GS
rounding algorithm computes a (1 + ε)-approximation
to SPARSEST CUT when applied on the O(r/ε)-level
Lasserre solution. In particular, the integrality gap of
the Lasserre relaxation is at most (1 + ε).

The other result is a more direct approximation algo-

rithm that does not use SDP hierarchies at all. Instead it

uses a form of spectral rounding (as in [9]) that produces

a set with low symmetric difference to the optimum

sparsest cut, followed by the clever idea of Andersen

and Lang [27] to purify this set into a bonafide cut of

low expansion.

Theorem V.4. There is a 2O(r)poly(n) time algorithm
that given a graph and a (r, d, λ)-spectral SSE flow for
dλ � 1

ε2φsparsest outputs a cut of sparsity at most
(1 + ε)φsparsest.

The above two theorems become important only

because of the following two theorems which concern

the existence of the flow.

Theorem V.5. If d � Φlocal

√
log r/

√
log n then the

graph has a (r, d,Ω((log r)−2)) SSE flow.

See the full version for a proof of this Lemma.

Theorem V.6. If d � Φlocal

√
log r/

√
log n then the

graph has a (2r, d,Ω((log r)−5)) spectral SSE flow.
Furthermore, a (4r, d,Ω((log r)−5)) spectral SSE flow
can be found in polynomial time.

This theorem follows Theorems V.2 and V.5. The

algorithm to find the spectral SSE flow uses the fact that

maximizing the sum of first r eigenvalues of a matrix

is a convex objective.
In fact, when Φlocal is small, we can actually find a

small set that does not expand well.

Theorem V.7. For any graph G = (V,E) and any
value d, there is a polynomial time algorithm that either
finds a (4r, d,Ω((log r)−5)) spectral SSE flow, or finds
a set of size at most 100n/r that has expansion at most
O(d

√
log n/

√
log r).

A. Proof Overview for Existence of SSE flows
From a distance, the existence proof for SSE flows

uses similar ideas as the one for expander flows in [1]:

we write an exponential size LP that is feasible iff the

desired flow exists, and then reason about the properties

of dual solutions (using properties of flows, cuts, and

�22 metrics) to show that the LP is feasible.
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We write an LP that enforces each vertex has degree

at most d in the flow, and for every set S of size n/3r
to n/r, the amount of outgoing flow is at least βd|S|,
the precise LP can be found in the full version.

The dual of this LP consists of a nonnegative weight

si for all vertices and we for each edge, and also a

nonegative weight for every set of size between n/3r
to n/r. We shall prove the following Lemma:

Lemma V.8 (imprecise). Given a valid dual solution
with degree d and β parameter = Θ((log r)−2), there
is an algorithm that finds a set of size at most 100n/r
with expansion O(d

√
log n/

√
log r).

In order for the algorithm to run in polynomial

time, we first need to represent the LP dual concisely,

and as stated above it involves a nonegative weight

on exponentially many cuts! As in ARV, this concise

representation is possible since a nonnegative weighting

of cuts is an �1 metric and the algorithm is only

interested in the “distance” between two vertices in this

metric (which is the measure of sets that contains one

of the vertices but not the other). The �1 metric can be

concisely represented by some �22 vectors; see the full

version for more details.

The proof of the Lemma above uses the “chaining”

idea from [1], but there are many differences which we

list here. See full paper for details.

(a) The proof is handicapped since it is only allowed to

use local expansion (i.e., expansion of sets of size at

most O(n/r)), and this requires us to invent novel

ways of applying the region-growing framework in

[5].Many steps in our algorithms rely on such region

growing arguments.

(b) In [1] all vectors have unit norm, here however

the �22 vectors can have different norms. We use

a known reduction that transforms the vectors for a

large subset of vertices, so that they are in a sphere

of fixed radius.

(c) The existence of matching covers used in the ARV

proof is unclear and has to be carefully estab-

lished. This uses a certain “spreading constraint”

that holds for �22 metrics supported on small sets.

Also, a matching cover may not exist because a

set of vertices is far away from other vertices in

graph distance (distance according to the weights

on edges). We call such sets obstacle sets of type I,
and use region-growing arguments to remove these

sets.

(d) The crux of the ARV proof is to prove the existence

of a special pair of vertices that are close in graph

metric (i.e., the metric given by the weights on

the edges) and far apart in �22 metric). From the

existence proof and global expansion Φglobal, one

can immediately establish the existence of Ω(n)
such pairs, which is needed in the argument. The

analogous idea does not work here since the proof

is handicapped by being restricted to only use local

expansion. However, we show that this step can

only fail if there exists an obstacle set of type II.
We design another region-growing type argument to

handle this.

(e) The ARV argument uses Alon-Cheeger inequality:

for d regular graphs, the second eigenvalue of the

Laplacian is Ω(1) iff the graph has expansion Ω(1).
The analogous result for small set expansion, the so-

called “higher order Cheeger inequality,” has only

recently been established, and only in one direction

and in a weaker form [15], [16]. This weak form

makes us lose extra poly(log r) factors in many

theorems which are potentially improveable.

B. Finding Sparsest Cut using SSE flow

Before we delve into the long proof of existence of

SSE flows, we quickly show how they are useful in

approximating SPARSEST CUT. As mentioned, there are

two methods for this.

1) Rounding Lasserre Hierarchy Relaxation: This

will use a modification of an idea of Guruswami-Sinop

which we now recall. Recall (see [14]) that the solutions

for r′ + 2 rounds of Lasserre Hierarchy relaxation

satisfies
∑

u<v Cuv‖Xu −Xv‖2 = φSDP ‖X‖2F , where

the approximation ratio is bounded by (1− ‖X⊥
S X‖2F
‖X‖2F

)−1

over all sets S of size r′ by Theorem II.1.

Theorem V.9 (Theorem 3.2 in [14]). Given integer r ≥
1 and real ε > 0, the above approximation ratio is at

most
(
1− 1

1−ε

∑
i>r σi(X

TX)

‖X‖2F

)−1

for r′ = r
ε + r + 1.

Proof: (Sketch) Using the column based low-

rank matrix reconstruction error bound from [28], it

can be shown that there exists set S of size r′ =
r/ε + r − 1 such that the numerator ‖X⊥

S X‖2F ≤
(1 − ε)−1

∑
j≥r+1 σj(X

TX), where σj(X
TX) is the

jth largest eigenvalue of XTX .

In order to bound the sum of eigenvalues, the analysis

in [14] uses von Neumann’s trace inequality, which we

present in a slightly more general form:

Lemma V.10. For any matrix Y � 0 and positive
integer r,

∑
i≥r+1 σi(Y ) = minZ�0

Tr(Y ·Z)
λr+1(Z) .

In the analysis of [14], this claim is used with

Y ← XTX and Z ← L(G), whereupon one obtains
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∑
i>r σi(X

TX)

‖X‖2F
≤ Tr(XTX·L(G))

λr+1(G)‖X‖2F
≤ φSDP

λr+1(G) . Conse-

quently, the rounding analysis in [14] requires a bound

on the λr+1 value of the graph.

Our idea is to use Lemma V.10 by substituting the

Laplacian of the spectral SSE flow as Z in the above

calculation, and then use the lowerbound on the λr value

of this flow Laplacian. This uses the following lemma.

Lemma V.11. If X is described above, then for any
flow F that lies in the host graph G,

∑
i>r σi(X

TX) ≤
φSDP ‖X‖2F /λr+1(F ).

Proof: Since F is routable in G and X ∈ �22,

Tr(XTX · L(F )) ≤ Tr(XTX · L(G)) ≤ φSDP ‖X‖2F .
For Y ← XTX and Z ← L(F ), the Claim implies:∑

i>r σi(X
TX) ≤ Tr(XTX · L(F ))/λr+1(F ) ≤

φSDP ‖X‖2F /λr+1(F ).
Theorem V.3 follows from Lemmas V.10 and V.11.

Remark: Note that we only need λr+1(F ) to be more

than φSDP . Such flows could potentially exist under

more general conditions than our local expansion con-

dition.

2) Subspace Enumeration and Cut Improvement: We

show that given a (r, d, λ) spectral SSE flow, where

dλ is much larger than the expansion Φ of sparsest

cut, it is possible to use eigenspace enumeration idea

of [9] together with the ideas of [27] to get a good

approximation to SPARSEST CUT.

Lemma V.12 (Eigenspace Enumeration, [9]). There is
a 2O(r)nO(1) time algorithm that, given a graph with
λr ≥ 20Φ/ε, outputs X ⊂ {0, 1}V with the following
guarantee: for every subset S that has expansion Φ,
there is a vector x ∈ X such that |x−

	1S |
|	1S | ≤ 8Φ

λr
.

The above eigenspace enumeration allows us to com-

pute a “guess” that has low symmetric difference with

the optimum cut. Then we can use a simple version of

cut improvement algorithm of [27] to improve it:

Lemma V.13. There is a 2O(r)nO(1) time algorithm that
given a graph G = (V,E), and a (r, d, λ) spectral SSE
flow embeddable in G, enumerates 2O(r)nO(1) sets with
the following guarantee. For any set S of size at most
n/2 that has expansion Φ(S) � dλεδ (for ε+ δ < 1),
there is a set Q in the output such that |QΔS|

|S| ≤ δ and
Φ(Q) ≤ (1+ ε)Φ(S) (Δ denotes symmetric difference).

Proof: The capacity of flow that crosses S in the

spectral SSE flow can only be smaller than Φ(S) · |S|
because the flow is embeddable in G. Hence when we

apply Lemma V.12 on the flow, we know there is a

vector 1T in X such that
|TΔS|
|S| ≤ εδ/2 .

Using this vector, suppose we know the expansion

Φ(S) (later we shall see we only need to know this

value up to multiplicative factor, so the algorithm will

enumerate all possible values). Construct a max-flow

instance where we add a source s and sink t to the

graph. For each vertex i ∈ T (resp. i /∈ T ), there is an

edge from i to t (resp. s to i) with capacity 4Φ(S)/δ.

Now we find the min-cut that separates s and t. Since

T is close to S, the capacity of this cut is at most (1+
ε/2)Φ(S)|S| (consider {s} ∪ S.) Let the vertices that

are on the same side with sink be Q, then we know

|QΔT | ≤ (1+ε/2)Φ(S)|S|
4Φ(S)/δ ≤ |S|δ/2. Therefore

|QΔS|
|S| ≤

|QΔT |+|TΔS|
|S| ≤ δ.

On the other hand, the expansion of Q is at most

(1 + ε/2)Φ(S)|S| − |QΔT | · 4Φ(S)/δ
|S| − |SΔT | − |QΔT |

=
(1 + ε/2)Φ(S)− 4xΦ(S)/δ

(1− εδ/2)− x
≤ (1 + ε)Φ(S).

(in the second step, we substituted x � |QΔT |
|S| ).

Corollary V.14. Given graph G = (V,E) and a
(r, d, λ) spectral SSE flow embeddable in G. There is a
2O(r)nO(1) time algorithm that finds a set S with:
• φ(S) ≤ (1+O(ε))φsparsest if dλ � φsparsest/ε

2;
• Φ(S) ≤ (1 +O(ε))Φglobal if dλ � Φglobal/ε;
• |S| ≥ cn/2 and Φ(S) ≤ (1+O(ε))Φc-balanced if
dλ � Φc-balanced/O(ε).

Proof: (sketch) For sparsest cut, choose δ = ε in

Lemma V.13. For edge expansion, choose δ = 1/2. For

c-balanced separator, choose δ = c/2.

VI. CONCLUSIONS

The fact that it is possible to compute (1 + ε)-
approximation for SPARSEST CUT on an interesting fam-

ily of graphs seems very surprising to us. Further study

of Guruswami-Sinop rounding also seems promising:

our analysis is still not using the full power of their

theorem.

Our work naturally leads us to the following impre-

cise conjecture, which if true would yield immediate

progress.

Conjecture: (Imprecise) In “interesting” families of
graphs —ie those where existing algorithms for SPARS-

EST CUT fail— Φlocal/Φglobal is large, say � √
log n.

As support for this conjecture we observe that if our

algorithm does not beat
√
log n-approximation on some

graph, then there is a constant r and a set of size n/r
whose expansion is at least

√
log n times the optimum.

Furthermore, it is conceivable that SSE flows exist

in graphs even when the local expansion condition is
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not met. For our analysis of the rounding algorithm

from [14] we only need the existence of an SSE flow

of degree say > 1.1φsparsest (see Section V-B1). Con-

ceivably such flows exist in a wider family of graphs,

and this could be another avenue for progress.
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