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Abstract—We introduce a new approach to the maxi-
mum flow problem in undirected, capacitated graphs using
congestion-approximators: easy-to-compute functions that ap-
proximate the congestion required to route single-commodity
demands in a graph to within some factor α. Our algorithm
maintains an arbitrary flow that may have some residual
excess and deficits, while taking steps to minimize a potential
function measuring the congestion of the current flow plus an
over-estimate of the congestion required to route the residual
demand. Since the residual term over-estimates, the descent
process gradually moves the contribution to our potential
function from the residual term to the congestion term,
eventually achieving a flow routing the desired demands with
nearly minimal congestion after Õ(α2ε−2 log2 n) iterations.
Our approach is similar in spirit to that used by Spielman
and Teng (STOC 2004) for solving Laplacian systems, and we
summarize our approach as trying to do for �∞-flows what
they do for �2-flows.

Together with a nearly linear time construction of a
no(1)-congestion-approximator, we obtain 1+ ε-optimal single-
commodity flows undirected graphs in time m1+o(1)ε−2, yield-
ing the fastest known algorithm for that problem. Our require-
ments of a congestion-approximator are quite low, suggesting
even faster and simpler algorithms for certain classes of graphs.
For example, an α-competitive oblivious routing tree meets our
definition, even without knowing how to route the tree back in the
graph. For graphs of conductance φ, a trivial φ−1-congestion-
approximator gives an extremely simple algorithm for finding
1 + ε-optimal-flows in time Õ(mφ−1).

I. INTRODUCTION

The maximum flow problem and its dual, the minimum

cut problem are fundamental combinatorial optimization

problems with a wide variety of applications. In the well-

known maximum s− t flow problem we are given a graph

G with edge capacities ce, and aim to route as much flow

as possible from s to t while restricting the magnitude

of the flow on each edge to its capacity. We will prefer

instead to think in terms of the equivalent problem of

routing a single unit of flow from s to t while minimizing

the maximum congestion |fe/ce| on any edge; clearly the

minimum congestion for unit flow is equal to one divided by

the maximum flow of congestion one. Once formulated that

way, we need no longer restrict ourselves to s−t flows; given
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a demand vector b ∈ R
n specifying the excess desired at

each vertex, we aim to find a flow f ∈ R
m with divergence

equal to b that minimizes the maximum congestion |fe/ce|.1
In this paper, we introduce a new approach to this problem

in undirected graphs. We maintain a flow that may not quite

route b exactly, but we also keep track of an upper bound

on how much it will cost us in congestion to fix it back up.

We will aim to minimize a potential function measuring the

current congestion plus an over-estimate on the cost of fixing

up the residuals. By not needing to worry about precisely

conserving flow at every vertex, we can take large steps

in each iteration towards minimizing our potential function.

On the other hand, by intentionally over-estimating the cost

of fixing up the residuals, in the course of minimizing our

potential function we must inevitably fix them up, as it will

cost strictly less to do so.

For a graph G, let C be the m × m diagonal matrix

containing the edge capacities, and let B be the n × m
divergence matrix, where (Bf)i is the excess at vertex i. For

a set S ⊆ V , we’ll write bS =
∑

i∈S bi, the total excess in

S, and cS =
∑

e:S↔V \S ce, the capacity of the cut (S, V \S)
in G. A valid demand vector satisfies bV = 0.

The minimum congestion flow problem for demands b,
and its dual, the maximum congested cut, are

min ‖C−1f‖∞ s.t. Bf = b (1)

max b�v s.t. ‖CB�v‖1 ≤ 1 (2)

We refer to the optimum value of these problems as opt(b).
It is well-known that for problem (2), one of the threshold

cuts with respect to v achieves bS/cS ≥ b�v.

A. History

Much of the early work on this problem considers the

general, directed edge case, culminating in the still-best

binary blocking flow algorithm of Goldberg and Rao[1] that

achieves Õ(mmin(m1/2, n2/3)) time. Karger and Levine[2]

give evidence that the undirected case seems easier in graphs

with small flow values. The smooth sparsification technique

1In fact the s− t case is no less general, since one could always add a
new vertices s and t, connect each v to s or t according to the sign of bv
with an edge of capacity β|bv | and scale β until the additional edges are
saturated.
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of Benczúr and Karger[3] shows one can split a graph

with m edges into t = Õ(mε2/n) graphs each with with

Õ(nε−2) edges, and each of which has at least (1− ε)/t of

the capacity of the original graph. Therefore, for undirected

graphs, any algorithm running in time T (m,n) can be re-

placed with one running in time Õ(m)+(m/n)T (Õ(n), n).
Using the algorithm of Goldberg and Rao yields approximate

maximum flows in Õ(mn1/2) time, and for many years that

was the best known.

In a breakthrough, Christiano, Kelner, Madry, Spielman,

and Teng show how to compute approximate maximum

flows in Õ(mn1/3) time[4]. Their new approach uses the

nearly linear-time Laplacian solver of Spielman and Teng[5]

to take steps in the minimization of a softmax approximation

of the edge congestions. Each step involves minimizing

‖WC−1f‖2, a weighted �2-norm of the congestions. While

a naive analysis yields immediately yields a method that

makes Õ(
√
m) such iterations (because ‖ · ‖2 approximates

‖ · ‖∞ by a
√
m factor), they present a surprising and

insightful analysis showing in fact only Õ(m1/3) such �2
iterations suffice. The maximum-flow-specific parts of [4]

are quite simple, needing only to maintain the weights W
and then using the Spielman-Teng solver as a black box.

Kelner, Orrechia, Lee, and Sidford have independently

obtained a nearly-linear time algorithm for the maximum

flow problem[6]. The overall approaches are similar, with

the main difference being [6] requires a flow approximator,

while we only require a cut-approximator. On the one hand,

the cut-approximator approach yields simpler algorithms. On

the other hand, the flow-approximator construction may be

of independent interest to other problems.

B. Outline

In this work we pry open that box, extract the parts

we need, and apply them directly to the maximum flow

problem. In the course of doing so, we push the running

time for this decades-old problem nearly down to linear.

Solving a Laplacian system Lv∗ = b∗, where L = BCB�,

corresponds to finding a flow f∗ with Bf∗ = b∗ minimizing

‖C−1/2f‖2. While Spielman and Teng work entirely in the

dual space of vertex potentials and never explicitly represent

flows, we can still translate between spaces throughout the

algorithm to get an idea of what is actually going on. At

any point, the vertex potentials v induce an optimal flow for

some demands b = Lv; just perhaps not the ones desired.

The solution of Spielman and Teng is to maintain a simpler

graph G′ that approximates G, in the sense that the �2 cost of

routing flows in G′ is within some factor α of the cost in G.

The residual flow is routed optimally in G′(recursively), by

solving L′v′ = b∗− b. The potentials that induced that flow

are added to v, in the hope that Lv+Lv′ � Lv+L′v′ = b∗.
Indeed, if G′ approximates G by a factor α, then b∗−b gets

smaller in a certain norm by (1 − 1/α), nudging the flow

towards actually routing b∗.

Our first step towards obtaining a ST-like algorithm is

the definition of a good approximator for the congestion

required by �∞-flows.

Definition I.1. An α-congestion-approximator for G is a
matrix R such that for any demand vector b,

‖Rb‖∞ ≤ opt(b) ≤ α‖Rb‖∞
Our main result is that we can use good congestion

approximators to quickly find near-optimal flows in a graph.

We prove the following theorem in section II.

Theorem I.2. There is an algorithm that, given demands
b and access to an α-congestion-approximator R, makes
Õ(αε−2 log2(n)) iterations and then returns a flow f and
cut S with Bf = b and ‖C−1f‖ ≤ (1 + ε)bS/cS . Each
iteration requires O(m) time, plus a multiplication by R
and R�.

For the sake of giving the reader a concrete example

of what a congestion-approximator might look like before

continuing, we’ll begin with two simple toy examples.

Example I.3. Let T be a maximum weight spanning tree in
G, and let R be the n− 1× n matrix with a row for each
edge in T , and

(Rb)e =
bS
cS

where (S, V \S) is the cut in G induced by removing e from
T .

Then, R is a m-congestion-approximator.

Proof: Since (Rb)e is the congestion on the cut in G
induced by removing e from T , certainly opt(b) ≥ ‖Rb‖∞.

On the other hand, at least 1/m of the capacity of those cuts

is contained in T , so routing b through T congests e by at

most m|(Rb)e|. Multiplication by R and R� can be done

in O(n) time via elimination on leaves.

For graphs of large conductance, we can obtain a trivial

approximator by simply looking at how much the demand

into each vertex congests its total degree.

Example I.4. Let G have conductance φ. Let R be n × n
diagonal matrix with Ri,i = 1/deg(i) where deg(i) = c{i}.
Then, R is a φ−1-congestion-approximator.

Proof: Routing |bi| into or out of vertex i certainly

must congest one of its edges by at least |bi|/ deg(i), so

opt(b) ≥ ‖Rb‖∞. On the other hand, the capacity of any

cut in G is at least φ times the total degree of the smaller

side. It follows that if no vertex is congested by more than

β, then no cut is congested by more than φ−1β.

Those two simple examples are analogous to the simple

cases for �2 flows in the ST-algorithm. The former is

analogous to preconditioning by a small-stretch spanning

tree, while the latter is analogous to not preconditioning

at all. As in the ST-algorithm, those two simple examples
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in fact capture the ideas behind our real constructions. In

section III, we show how to apply the j-tree decomposition
of Madry[7] (itself based on the ultrasparsifiers of Spielman

and Teng[5])) to obtain good congestion approximators for

any graph.

Theorem I.5. For any 1 ≤ k ≤ log n, there is an algorithm
to construct a data structure representing a log(n)O(k)-
congestion-approximator R in time Õ(m + n1+1/k). Once
constructed, R and R� can each be applied in time
Õ(n1+1/k).

Combining theorem I.5 where k = θ̃(
√
log n) with

theorem I.2 yields our main result of a nearly-linear time

algorithm for minimum congestion flows.

Theorem I.6. There is an algorithm to compute (1 + ε)-
approximate minimum congestion flows in time mε−2 ·
exp(Õ(

√
log n)). For graphs of conductance φ, the same

can be done in time Õ(mφ−2ε−2).

II. CONGESTION POTENTIAL

The key to our scheme lies transforming problem (1) to an

unconstrained optimization problem, using the congestion-

approximator to bound the cost of routing the residual. To

that end, we introduce our potential function.

min ‖C−1f‖∞ + 2α‖R(b−Bf)‖∞ (3)

We believe the mere statement of the potential function

(3) to be the most important idea in this paper. Once (3)

has been written down, the remainder of our algorithm is

nearly obvious. We solve problem (3) nearly-optimally by

approximating ‖ · ‖∞ with a softmax. The softmax is well-

approximated by its gradient in the region where steps are

taken with �∞-norm O(1). Since ‖RBC‖∞→∞ ≤ 1 for a

congestion-approximator, we can take steps on edge e of size

Ω(α−1)ce. We include the details at the end of this section,

proving the following theorem.

Theorem II.1. There is an algorithm AlmostRoute that
given b and ε ≤ 1/2, performs Õ(α2ε−2 log n) iterations
and returns a flow f and cut S with,

‖C−1f‖∞ + 2α‖R(b−Bf)‖∞ ≤ (1 + ε)
bS
cS

Each iteration requires O(m) time plus a multiplication
by R and R�.

The flow f may not quite route the demands we wanted.

Fortunately, that will be easy to fix. The extra factor of two

in equation (3) means that half of the contribution to the

objective value from the residual part is pure slack. On the

other hand, if f is nearly optimal, there can’t be too much

slack.

Lemma II.2. Suppose ‖C−1f‖∞ + 2α‖R(b − Bf)‖∞ ≤
(1 + ε)opt(b). Then, ‖R(b−Bf)‖∞ ≤ ε‖Rb‖∞.

Proof: Let f meet the assumption. Let f ′ be a routing

of b−Bf in G with ‖C−1f ′‖∞ ≤ α‖R(b−Bf)‖∞. Then,

moving from f to f + f ′ decreases the objective value by

atleast α‖R(b − Bf)‖. On the other hand, that decrease

can’t exceed εopt(b). Since opt(b) ≤ α‖Rb‖∞, the lemma

follows.

So while AlmostRoute may not route b, our bound

for the congestion to route the residual is at most half of

our bound to route the original demands. Furthermore, the

objective already pays the cost of routing that residual. In

fact, it pays it with a factor of two, so we need only route

the remaining residual within a factor-two of optimal. That

suggests an obvious way to route demands b: repeatedly

invoke AlmostRoute on the remaining residual, until the

congestion required to route it is extremely small compared

to the congestion required to route b. Then route the final

residual in a naive way, such as via a maximal spanning

tree. The cost of that final routing will be paid for by the

slack in the objective value of the first routing, simply by

finding a factor 3/2-optimal routing for each residual after

the first case.

Formalizing the latter argument completes our proof

of theorem I.2. Set b0 ← b, and let (f0, S0) ←
AlmostRoute(b0, ε). Next for i = 1, . . . , T where T =
log(2m), set bi ← bi−1 − Bfi−1 and (fi, Si) ←
AlmostRoute(bi, 1/2) (we don’t actually need any Si after

S0). Finally, let bT+1 = bt − Bft, and let fT+1 be a

flow routing bT+1 in a maximal spanning tree of G. Output

f1 + · · ·+ fT+1 and S0. Observe that theorem II.1 yields

‖C−1f0‖∞ + 2α‖Rb1‖∞ ≤ (1 + ε)bS0/cS0

‖C−1fi‖∞ + 2α‖Rbi+1‖∞ ≤ 3

2
opt(bi) ≤ 3

2
α‖Rbi‖∞

Beginning with the former inequality and repeatedly apply-

ing the latter yields,

(1 + ε)
bS0

cS0

≥ ‖C−1f0‖∞ + 2α‖Rb1‖∞
≥ (1/2)α‖Rb1‖∞ + ‖C−1f0‖∞

+‖C−1f1‖∞ + 2α‖Rb2‖∞
...

≥ (1/2)α‖Rb1‖∞ + ‖C−1f0‖∞ + · · ·
+‖C−1fT ‖∞ + 2α‖RbT+1‖∞

On the other hand, by choice of T , we have

‖C−1fT+1‖∞ ≤ mα‖RbT+1‖∞
≤ mα2−T ‖Rb1‖∞ ≤ (1/2)α‖Rb1‖∞

Combining the two yields the theorem.

A. Proof of Theorem II.1

We prove theorem II.1 with slightly worse parameters

of Õ(α2ε−3 log2(n)), using naive steepest descent. The
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additional factor of ε−1 is removed by more careful scaling;

we defer the details to the full version of the paper. We

approximate ‖ · ‖∞ using the symmetric softmax function.

lmax(x) = log

(∑
i

exi + e−xi

)

We make use of some elementary facts about lmax.

Fact II.3. Let x, y ∈ R
d. Then,

‖∇ lmax(x)‖1 ≤ 1 (4)

∇ lmax(x)�x ≥ lmax(x)− log(2d)(5)

‖∇ lmax(x)−∇ lmax(y)‖1 ≤ ‖x− y‖∞ (6)

We will approximate problem (3) with the potential func-

tion,

φ(f) = lmax(C−1f) + lmax (2αR(b−Bf)) (7)

Since equation (7) approximates equation (3) to within

an additive θ(log n), we will be concerned with minimizing

φ(f) after scaling f, b so φ(f) = θ(ε−1 log n).

AlmostRoute(b, ε):

• Initialize f = 0, scale b so 2α‖Rb‖∞ =
16ε−1 log(n).

• Repeat:

– While φ(f) < 16ε−1 log(n), scale f and b up by

17/16.

– Set δ ← ‖C∇φ(f)‖1.

– If δ ≥ ε/4, set fe ← fe− δ
1+4α2 sgn(∇φ(f)e)ce

– Otherwise, terminate and output f together with

the potentials induced by ∇φ(f)(see below),

after undoing any scaling.

Each step requires computing ∇φ(f), which requires

O(m) time plus a multiplication by R and a multiplication

by R�. Further, the partial derivative of the residual part for

a particular edge is equal to a potential difference between

the endpoints of that edge. When φ(f) is nearly-optimal,

those potentials yield a good dual solution for our original

problem.

Lemma II.4. When AlmostRoute terminates, we have a
flow f and potentials v with,

‖C−1f‖∞ + 2α‖R(b−Bf)‖∞ ≤ (1 + ε)
b�v

‖CB�v‖1
Proof: Set x1 = C−1f , x2 = 2αR(b−Bf), and pi =

∇ lmax(xi). Set v = R�p2 to be our potentials. Observe

that ∇φ(f) = C−1p1 − 2αB�v. First, equation (4) yields

2α‖CB�v‖1 ≤ ‖p1‖1 + ‖p1 − 2αCB�v‖1 ≤ 1 + δ

By equation (5), using the fact that C and R have at most

n2/2 rows and φ(f) ≥ 16ε−1 log n,

p�1 C
−1f+2αp�2 R(b−Bf) ≥ φ(f)−4 logn ≥ φ(f)(1−ε/4)

On the other hand,

δφ(f) ≥ ‖C∇φ(f)‖1‖C−1f‖∞
≥ ∇φ(f)�f
= (C−1p1 − 2αBTRT p2)

�f
= p�1 C

−1f − 2αp�2 RBf

Combining the two yields,

2αb�v ≥ φ(f)(1− ε/4− δ)

Altogether, using the fact that δ < ε/4 at termination, we

have
b�v

‖CB�v‖1 ≥
φ(f)(1− ε/2)

1 + ε/4
≥ φ(f)

1 + ε

Observing that φ(f) overestimates ‖C−1f‖∞ + 2α‖R(b −
Bf)‖∞ completes the proof.

Lemma II.5. AlmostRoute terminates after at most
Õ(α2ε−3 log n) iterations.

Proof: Let us call the iterations between each scaling

a phase. Since ‖Rb‖∞ gives us the correct scale to within

factor α, we will scale at most O(logα) times.

Let he = − δ
1+4α2 sgn(∇fφ(f)e)ce be our step. Then,

equation (6), together with the fact that ‖RBC‖∞→∞ ≤ 1
for a congestion-approximator R yields,

φ(f + h) ≤ φ(f) +∇φ(f)�h+
1 + 4α2

2
‖C−1h‖2∞

= φ(f)− δ2

2 + 8α2

= φ(f)− Ω(ε2α−2)

Since we raised φ(f) by at most ε−1 log n when scaling,

and each step drops φ(f) by at least Ω(ε2α−2), there can

be at most O(α2ε−3 log n) steps between phases.

III. COMPUTING CONGESTION-APPROXIMATORS

In this section we prove theorem I.5, using a construction

of Madry[7], itself based on a construction of Spielman and

Teng[5].

Definition III.1 (Madry[7]). A j-tree is a graph formed
by the union of a forest with j components, together with
a graph H on j vertices, one from each component. The
graph H is called the core.

Theorem III.2 (Madry[7]). For any graph G and t ≥ 1, we
can find in time Õ(tm) a distribution of t graphs (λi, Gi)
such that,
• Each Gi is a O(m logm/t)-tree, with a core containing

at most m edges.
• Gi dominates G on all cuts.
•
∑

i λiGi can be routed in G with congestion Õ(log n).

We briefly remark that while the statement of theorem

III.2 in [7] contains an additional logarithmic dependence on
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the capacity-ratio of G, that dependence is easily eliminated.

We elaborate further in the appendix. Our construction will

simply apply theorem III.2 recursively, sparsifying the core

on each iteration. To accomplish that, we use an algorithm

of Benczúr and Karger[3].

Theorem III.3 (Benczúr, Karger[3]). There is an algorithm
Sparsify(G, ε) that, given a graph G with m edges,
takes Õ(m) time and returns a graph G′ with m′ =
O(nε−2 log n) edges such that the capacity of cuts in the
respective graphs satisfy

G ≤ G′ ≤ (1 + ε)G

Further, the edges of G′ are scaled versions of a subset of
edges in G.

We now present the algorithm for computing the

data structure representing a congestion-approximator. The

algorithm ComputeTrees assumes its input is sparse;

our top-level data-structure is constructed by invoking

ComputeTrees(Sparsify(G, 1), n1/k), where k is the pa-

rameter of theorem I.5.

ComputeTrees(G, t):

• If n = 1, return.

• Using theorem III.2, compute distribution (λi, Gi)
t′
i

of max(1, n/t)-trees.

• Pick the t graphs of largest λi, throw away the rest,

and scale the kept λi to sum to 1.

• For i = 1, . . . , t:

– H ′
i ← Sparsify(Hi, 1), where Hi is the core

of Gi

– Li ← ComputeTrees(H ′
i, t)

• Return the list L = (λi, Fi, Li)
t
i=1 where Fi is the

forest of Gi.

The analysis of ComputeTrees correctness will make use

of another algorithm for sampling trees. The SampleTree

procedure is only used for analysis, and is not part of our

flow algorithm.

SampleTree(L = (λi, Fi, Li)
t
i):

• Pick i with probability λi.

• Output Fi + SampleTree(Li)

Lemma III.4. Let G have Õ(n) edges, and set L ←
ComputeTrees(G, t). Then, every tree in the sample
space of SampleTree(L) dominates G on all cuts, and
E[SampleTree(L)] is routable in G with congestion
log(n)log(n)/log(t). Further, the computation of L takes
Õ(tn) time.

Proof: By induction on n. For n = 1 the claim is

vacuous, so suppose n = tk+1. Since G has O(n log n)
edges, the distribution output by theorem III.2 will have

O(t log2 n) entries. We have H ′
i ≥ Hi and Hi + Fi ≥ G.

Furthermore, the inductive hypothesis implies that every tree

Ti in SampleTree(Li) dominates H ′
i . Then,

Ti + Fi ≥ H ′
i + Fi ≥ Hi + Fi = Gi ≥ G

Sparsifying the distribution from O(t log2 n) to t scales

λi by at most O(log2 n), so that
∑t

i=1 λiGi is routable

in G with congestion at most log2 n larger than the orig-

inal distribution. Since H ′
i ≤ 2Hi, by the multicom-

modity max-flow/min-cut theorem[9] H ′
i is routable in

Hi with congestion O(log n). By the inductive hypothe-

sis, E[SampleTree(Li)] is routable in H ′
i with conges-

tion logO(k)(n). It follows then that E[SampleTree(L)] is

routable in G with congestion at most logO(k+1)(n).

Finally, ComputeTrees requires Õ(tn) time to compute

the distribution, another Õ(tn) time to sparsify the cores,

and then makes t recursive calls on sparse graphs with n/t
vertices. It follows that the running time of ComputeTrees

is Õ(tn).

Lemma III.5. Let R be the matrix that has a row for each
forest edge in our data structure, and (Rb)e is the congestion
on that edge when routing b. If E[SampleTree(L)] is
routable in G with congestion α, then R is a α-congestion-
approximator for G. Further, R has Õ(tn) rows.

Proof: Since the capacity of each tree-edge dominates

the capacity of the corresponding cut in G, opt(b) ≥
‖Rb‖∞. On the other hand, b can be routed in every tree

with congestion ‖Rb‖∞. By routing a Pr[T ] fraction of the

flow through tree T , we route b in E[SampleTree(L)] with

congestion ‖Rb‖∞. But then b can be routed in G while

congesting by at most an α factor larger.

The total number of edges in R satisfies the recurrence

E(n) ≤ nt+ tE(n/t) as each edge is either in one of the t
toplevel forests, or in one of the t subgraphs.

Having constructed our representation of R, it remains

only to show how to multiply by R and R�. We use

the following lemmas as subroutines, which are simple

applications of leaf-elimination on trees.

Lemma III.6. There is an algorithm TreeFlow that, given
a tree T and a demand vector b, takes O(n) time and outputs
for each tree edge, the flow along that edge when routing b
in T .

Lemma III.7. There is an algorithm TreePotential that,
given a tree T annotated with a price pe for each edge, takes
O(n) time and outputs a vector of vertex potentials v such
that, for any i, j, the sum of the prices on the path from j
to i in T is vi − vj .

We begin with computing R. We take as input the demand

vector b, and then annotate each forest edge e with the con-

gestion re induced by routing b through a tree containing e.
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ComputeR(b, L = (λi, Fi, Ti)
t
i):

• For i = 1, . . . , t:

– Let T be the tree formed by taking Fi, adding a

new vertex s, and an edge from s to each core-

vertex of Fi. Augment b with demand zero to the

new vertex.

– f ← TreeFlow(b, T ).
– Set re ← fe/ce for each forest edge in Fi.

– Set b′ to a vector indexed by core-vertices, with

b′j equal to the flow on the edge from s to core-

vertex j.

– ComputeR(b′, Ti).

Lemma III.8. The procedure ComputeR(b, L) correctly
annotates each edge e with re = (Rb)e, and takes Õ(tn)
time.

Proof: Let L = (λi, Fi, Ti)
t
i. We argue by induction on

the depth of recursion. Fix a level and index i. Observe that

the cut in G induced by cutting a forest edge is the same

regardless of what tree T lies on the core: it is the cut that

separates the part of Fi not containing the core from the

rest of the vertices. It follows that we may place any tree

on the core vertices, invoke TreeFlow, and obtain the flow

on each forest edge. Next, for each component S of Fi, the

total excess bS must enter S via the core vertex. It follows

that in a flow routing b on Fi + T ′, for any tree T ′, the

restriction of that flow to T ′ must have excess bS on the

core vertex of S, so it suffices to find a flow in the core

with demands b′j = bSj . But routing b in Fi + T will place

exactly bSj
units of flow on the edge from s to core-vertex

j.

The running time consists of t invocations of TreeFlow

each taking O(n) time, plus t recursive calls on graphs of

size n/t, for a total running time of Õ(tn).
To compute R�, we assume each forest edge e has been

annotated with a price pe that must be paid by any flow per

unit of congestion on that edge, and output potentials v such

that vi − vj is the total price to be paid for routing a unit

of flow from j to i.

ComputeR�(L = (λi, Fi, Ti)
t
i):

• v ← 0
• For i = 1, . . . , t:

– v′ ← ComputeR�(Ti).
– Let T be the tree formed by taking Fi, adding a

vertex s, and an edge from s to each core-vertex

of Fi. Set qe = pe/ce for each forest edge, and

qe = v′j for edge e from s to core-vertex j.

– v′′ ← TreePotential(T, q)
– Add v′′ to v after removing the entry for s.

• Return v

Lemma III.9. Given edges annotated with per-congestion
prices, the procedure ComputeR�(L) correctly returns po-
tentials v such that vk − vj is the cost per unit of flow from
vertex j to k.

Proof: Let L = (λi, Fi, Ti)
t
i. We argue by induction

on the depth of recursion. Fix a level; a flow must pay its

toll to each Gi, so the resulting potential equals the sum

of the potentials for each i. Fix an index i. A unit of flow

from j to k is first routed from j to the core-vertex of the

component of Fi containing j, then to the core-vertex of the

component containing k, and then finally to k. By induction,

we assume that v′ yields potentials that give the per-unit

costs of routing between core-vertices. Placing a star on the

core with the edge from s to core-vertex j having per-unit

cost v′j preserves those costs. If pe is the price of an edge

per unit of congestion, then qe = pe/ce is the price of an

edge per unit of flow. It follows that the total toll paid is

the same as the toll paid in T ; thus, the potentials output by

TreePotential(T, q) are correct.

The running time consists of t recursive calls to

ComputeR� on graphs of size n/t, plus t invocations of

TreePotential each taking O(n) time, for a total running

time of Õ(tn).

IV. FINAL REMARKS

We remark that there are many other ways to obtain good

congestion approximators. The oblivious routing schemes of

[10], [11] require polynomial time to compute, but, once

computed, give us a single tree whose single-edge cuts

yield a log(n)O(1)-congestion approximator. Furthermore,

we only need the actual tree, and not the routings of the

tree back in the original graph. If such a single tree could

be computed in nearly-linear time, it would make an ideal

candidate for use in our algorithm.

There have been substantial simplifications to Spielman

and Teng’s original algorithm (see [12], [13]). It may be

possible to use some of those techniques to further simplify

our algorithm.
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APPENDIX

The proof of theorem III.2 maintains a length function

l(e) for each edge, and repeatedly invokes an algorithm

SmallStretchTree that returns a spanning tree T on G
with, ∑

e

lT (e)c(e) ≤ Õ(log n)
∑
e

l(e)c(e) (8)

where lT (e) is the length of the path between e’s endpoints

in the tree. Without loss of generality, by scaling, we assume∑
e l(e)c(e) = m. Let χ(e, e′) = 1 if e′ is a tree edge that

lies on the path in T containing e. Then,∑
e

lT (e)c(e) =
∑
e

c(e)
∑
e′

chi(e, e′)l(e′)

=
∑
e′

l(e′)
∑
e

χ(e, e′)c(e)

=
∑
e′

l(e′)cT (e′)

where cT (e
′) is the total capacity of edges routed through

e′ in T .

The dependence on the capacity ratio arises from the fact

that there may be many different scales of congestion on

the edges of T . The solution is simply to replace l with

l′(e) = l(e)+c(e)−1

2 , a mixture of the original lengths with

the inverse capacities. Constructing a small-stretch tree with

respect to l′ still satisfies equation (8) with an extra factor

of two, but also implies no tree edge is congested by more

than Õ(m).
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