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Abstract—We present an Õ(m
10
7 ) = Õ(m1.43)-time1 al-

gorithm for the maximum s-t flow and the minimum s-t
cut problems in directed graphs with unit capacities. This
is the first improvement over the sparse-graph case of the
long-standing O(mmin{√m,n2/3}) running time bound due
to Even and Tarjan [16]. By well-known reductions, this
also establishes an Õ(m

10
7 )-time algorithm for the maximum-

cardinality bipartite matching problem. That, in turn, gives
an improvement over the celebrated O(m

√
n) running time

bound of Hopcroft and Karp [25] whenever the input graph
is sufficiently sparse.

At a very high level, our results stem from acquiring a
deeper understanding of interior-point methods – a powerful
tool in convex optimization – in the context of flow problems,
as well as, utilizing certain interplay between maximum flows
and bipartite matchings.

Keywords-maximum flow problem; minimum s-t cut prob-
lem; bipartite matchings; electrical flows; interior-point meth-
ods; central path; Laplacian linear systems;

I. INTRODUCTION

The maximum s-t flow problem and its dual, the mini-

mum s-t cut problem, are two of the most fundamental and

extensively studied graph problems in combinatorial opti-

mization [45], [2]. They have a wide range of applications

(see [3]), are often used as subroutines in other algorithms

(see, e.g., [5], [46]), and a number of other important

problems – e.g., bipartite matching problem [11] – can be

reduced to them. Furthermore, these two problems were

often a testbed for development of fundamental algorithmic

tools and concepts. Most prominently, the Max-Flow Min-

Cut theorem [15], [18] constitutes the prototypical primal-

dual relation.

Several decades of extensive work resulted in a number

of developments on these problems (see Goldberg and Rao

[22] for an overview) and many of their generalizations

and special cases. Still, despite all this effort, the basic

problem of computing maximum s-t flow and minimum

s-t cut in general graphs has resisted progress for a long

time. In particular, the current best running time bound of

†A full version of this paper is available as [39].
∗Part of this work was done when the author was with Microsoft

Research New England.
1We recall that ˜O(f) denotes O(fpoly(log f)).

O(mmin{m 1
2 , n

2
3 } log(n2/m) logU) (with U denoting the

largest arc capacity) was established over 15 years ago in

a breakthrough paper by Goldberg and Rao [22] and this

bound, in turn, matches the O(mmin{m 1
2 , n

2
3 }) bound for

unit-capacity graphs that Even and Tarjan [16] put forth over

35 years ago.

Recently, however, important progress was made in the

context of undirected graphs. Christiano et al. [9] devel-

oped an algorithm that allows one to compute a (1 + ε)-
approximation to the undirected maximum s-t flow (and

the minimum s-t cut) problem in Õ(mn
1
3 ε−11/3) time.

Their result relies on devising a new approach to the

problem that combines electrical flow computations with

multiplicative weights update method (see [5]). Later, Lee et

al. [34] presented a quite different – but still electrical-flow-

based – algorithm that employs purely gradient-descent-

type view to obtain an Õ(mn1/3ε−2/3)-time (1 + ε)-
approximation for the case of unit capacities. Finally, very

recently, this line of work was culminated by Sherman [46]

and Kelner et al. [26] who independently showed how to

integrate non-Euclidean gradient-descent methods with fast

poly-logarithmic-approximation algorithms for cut problems

of M ↪adry [37] to get an O(m1+o(1)ε−2)-time (1 + ε)-
approximation to the undirected maximum flow problem.

Finally, we note that, in parallel to the above work that is

focused on designing weakly-polynomial algorithms for the

maximum s-t flow and minimum s-t cut problems, there is

also a considerable interest in obtaining running time bounds

that are strongly-polynomial, i.e., that do not depend on

the values of arc capacities. The current best such bound

is O(mn) and it follows by combining the algorithms of

King et al. [29] and Orlin [43].

Bipartite Matching Problem: Another problem that we

will be interested in is the (maximum-cardinality) bipartite

matching problem – a fundamental assignment problem with

numerous applications (see, e.g., [2], [36]) and long history.

Already in 1931, König [30] and Egerváry [14] provided

first constructive characterization of maximum matchings

in bipartite graphs. This characterization can be turned into

a polynomial-time algorithm. Then, in 1973, Hopcroft and

Karp [25] devised the celebrated O(m
√
n)-time algorithm.

Till date, this bound is the best one known in the regime of
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relatively sparse graphs. It can be improved, however, when

the input graph is dense, i.e., when m is close to n2. In

this case, one can combine the algebraic approach of Rabin

and Vazirani [44] – that itself builds on the work of Tutte

[50] and Lovász [35] – with matrix-inversion techniques of

Bunch and Hopcroft [8] to get an algorithm that runs in

O(nω) time (see [41]), where ω ≤ 2.3727 is the exponent of

matrix multiplication [10], [51]. Also, later on, Alt et al. [4],

as well as, Feder and Motwani [17] developed combinatorial

algorithms that offer a slight improvement – by a factor of,

roughly, logn
n2

m – over the O(m
√
n) bound of Hopcroft

and Karp whenever the graph is sufficiently dense.

Finally, it is worth mentioning that there was also a lot

of developments on the (maximum-cardinality) matching

problem in general, i.e., not necessarily bipartite, graphs.

Starting with the pioneering work of Edmonds [13], these

developments led to bounds that essentially match the run-

ning time guarantees that were previously known only for

bipartite case. More specifically, the running time bound of

O(m
√
n) for the general-graph case was obtained by Micali

and Vazirani [40], [52] (see also [19] and [21]). While,

building on the algebraic characterization of the problem due

to Rabin and Vazirani [44], Mucha and Sankowski [42] and

then Harvey [23] gave O(nω)-time algorithms for general

graphs.

A. Our Contribution

In this paper, we develop a new algorithm for solving

maximum s-t flow and minimum s-t cut problems in

directed graphs. More precisely, we prove the following

theorem.

Theorem I.1. Let G = (V,E) be a directed graph with m
arcs and unit capacities. For any two vertices s and t, one
can compute an integral maximum s-t flow and minimum
s-t cut of G in Õ(m

10
7 ) time.

This improves over the long-standing

O(mmin{√m,n2/3}) running time bound due to Even

and Tarjan [16] and, in particular, finally breaks the Ω(n
3
2 )

running time barrier for sparse directed graphs.

Furthermore, by applying a well-known reduction (see

[11]), our new algorithm gives the first improvement on the

sparse-graph case of the seminal Hopcroft-Karp algorithm

[25] for the maximum-cardinality bipartite matching prob-

lem.

Theorem I.2. Let G = (V,E) be an undirected bipartite
graph with m edges, one can solve the maximum-cardinality
bipartite matching problem in G in Õ(m

10
7 ) time.

This, again, breaks the 40-years-old running time barrier of

Ω(n
3
2 ) for this problem in sparse graphs.

Additionally, we design a simple reduction of the max-

imum s-t flow problem to perfect bipartite b-matching

problem (see Theorem III.1). (This reduction can be seen

as an adaptation of the reduction of the maximum vertex-

disjoint s-t-path problem to the bipartite matching problem

due to Hoffman [24] – cf. Section 16.7c in [45].2) As

the reduction in the other direction is well-known already,

this establishes an algorithmic equivalence of these two

problems. We also show (see Theorem III.3 and Corollary

III.4) how this reduction, together with the sub-linear-time

algorithm for perfect matching problem in regular bipartite

graphs of Goel et al. [20], leads to an efficient, nearly-linear

time, rounding procedure for s-t flows.3

Finally, our main technical contribution is a primal-dual

algorithm for (near-)perfect bipartite b-matching problem

(see Theorem III.2). This iterative algorithm draws on ideas

underlying interior-point methods and the electrical flow

framework of Christiano et al. [9]. It employs electrical flow

computations to gradually improve the quality of maintained

solution by advancing it toward (near-)optimality along so-

called central path.

We develop a way of analyzing this algorithm’s rate of

convergence by relating it to the structure of the correspond-

ing electrical flows. This understanding enables us to devise

a way of perturbing and preconditioning our intermediate

solutions to ensure a convergence in only Õ(m
3
7 ) iterations

and thus improve over the well-known barrier of Ω(m
1
2 )

iterations that all the previous interior-point-methods-based

algorithms suffer from. (To the best of our knowledge, this

is the first time that this barrier was broken for a natural

optimization problem.)

We also note that most of this understanding of con-

vergence behavior of interior-point methods can be carried

over to general LP setting. Therefore, we are hopeful that

our techniques can be extended and will eventually lead to

breaking the Ω(m
1
2 ) iterations barrier for general interior-

point methods.

B. Our Approach

The core of our approach comprises two components. One

of them is combinatorial in nature and exploits an intimate

connection between the maximum s-t flow problem and

bipartite matching problem. The other one is more linear-

algebraic and relies on interplay of interior-point methods

and electrical flows.

Maximum flows and bipartite matchings: The combina-

torial component shows that not only one can reduce bipar-

tite matching problem to the maximum s-t flow problem, but

also that a reduction in the other direction exists. Namely,

one can reduce, in a simple and purely combinatorial way,

the maximum s-t flow problem to a certain variant of

bipartite matching problem (see Theorem III.1). Once this

reduction is established, it allows us to shift our attention to

the matching problem.

2We thank Lap Chi Lau [33] for pointing out this similarity.
3Recently, it came to our attention that a very similar rounding result

was independently obtained by Khanna et al. [28].
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Also, as a byproduct, this reduction – together with the

algorithm of Goel et al. [20] – yields a fast procedure for

rounding fractional maximum flows (see Corollary III.4).

This enables us to focus on obtaining solutions that are only

nearly-optimal, instead of being optimal.
Bipartite Matchings and Electrical Flows: The other

component is based on using the interior-point method

framework in conjunction with nearly-linear time electrical

flow computations, to develop a faster algorithm for the

bipartite matching problem.

The point of start here is a realization that the recent

approaches to approximating undirected maximum flow [9],

[34], [47], [26], despite achieving impressive progress, have

fundamental limitations that make them unlikely to yield

improvements for the exact undirected or (approximate)

directed setting.4 Very roughly speaking, these limitations

stem from the fact that, at their core, all these algorithms em-

ploy some version of gradient-descent method that relies on

purely primal arguments, while almost completely neglect-

ing the dual aspect of the problem. It is well-understood,

however, that getting a running time guarantee that depends

logarithmically, instead of polynomially, on ε−1 – and such

dependence is a prerequisite to making progress in directed

setting – one needs to also embrace the dual side of the

problem and take full advantage of it.
Interior-point methods and fast algorithms: The above

realization motivates us to consider a more sophisticated ap-

proach, one that is inherently primal-dual and achieves log-

arithmic dependence on ε−1: interior-point methods. These

methods constitute a powerful optimization paradigm that

is a cornerstone of convex optimization (see, e.g., [7], [53],

[54]) and already led to development of polynomial-time

exact algorithms for a variety of problems. Unfortunately,

despite all its advantages and successes in tackling hard

optimization tasks, this paradigm has certain shortcomings

in the context of designing fast algorithms. The main reason

for that is the fact that each iteration of interior-point

method requires solving of a linear system, a task for

which the current fastest general-purpose algorithm runs in

O(nω) = O(n2.3727) time [1], [10], [51]. So, this bound

becomes a bottleneck if one was aiming for, say, even sub-

quadratic-time algorithm.

Fortunately, it turns out that there is a way to circumvent

this issue. Namely, even though the above bound is the best

one known in general, one can get a better running time

when dealing with some specific problem. This is achieved

by exploiting the special structure of the corresponding

linear systems. A prominent (and most important from our

point of view) example here is the family of flow problems.

Daitch and Spielman [12] showed that in the context of

flow problems one can use the power of fast (approximate)

4Note that it is known – see, e.g., [38] – that computing exact maximum
s-t flow in undirected graphs is algorithmically equivalent to computing
the exact or approximate maximum s-t flow in directed graph.

Laplacian system solvers [49], [31], [32], [27] to solve

the corresponding linear systems in nearly-linear time. This

enabled [12] to develop a host of Õ(m
3
2 )-time algorithms

for a number of important generalizations of the maximum

flow problem for which there was no such algorithms before.

Unfortunately, this bound of Õ(m
3
2 ) time turns out to also

be a barrier if one wants to obtain even faster algorithms.

The new difficulty here is that the best worst-case bound on

the number of iterations needed for an interior-point method

to converge to near-optimal solution is Ω(m1/2). Although

it is widely believed that this bound is far from optimal,

it seems that our theoretical understanding of interior-point

method convergence is still insufficient to make any progress

on this front. In fact, improving this state of affairs is a major

and long-standing challenge in mathematical programing.

Beyond the Ω(m
1
2 ) barrier: Our approach to cir-

cumventing this Ω(m
1
2 ) barrier and obtaining the desired

Õ(m
10
7 )-time algorithm for the bipartite b-matching prob-

lem consists of two stages.

First one corresponds to setting up a primal-dual frame-

work for solving the near-perfect b-matching problem. This

framework is directly inspired by the principles underlying

path-following interior-point methods and, in some sense,

is equivalent to them. In it, we start with some initial sub-

optimal solution (that is encoded as a minimum-cost flow

problem instance) and gradually improve its quality up to

near-optimality. These gradual improvements are guided by

certain electrical flow computations – the flows are used to

update the primal solution and the corresponding voltages

update the dual one – and our solution ends up following

a special trajectory in the feasible space: so-called central

path.

We analyze the performance of this optimization process

by establishing a formal connection that ties the size of each

improvement step to a certain characteristic of the corre-

sponding electrical flow. Very roughly speaking, this size

(and thus the resulting rate of convergence) is directly related

to how much the electrical flow we compute resembles the

current primal solution (which is also a flow). Once this

connection is established, a simple energy-based argument

immediately recovers the generic O(m
1
2 ) iterations bound

known for interior-point methods. So, as each electrical flow

computation can be performed in Õ(m) time, this gives an

overall Õ(m
3
2 )-time algorithm.

Finally, to improve upon the above O(m
1
2 ) iterations

bound and deliver the desired O(m
10
7 )-time procedure, we

devise two techniques: perturbation of arcs – that can be seen

as a refinement of the edge removal technique of Christiano

et al. [9]; and solution preconditioning – a way of adding

auxiliary arcs to the solution to improve its conductance

properties. We show that by a careful composition of these

techniques, one is able to ensure that the guiding electrical

flows align better with the primal solution – thus allowing

taking larger progress steps and guaranteeing faster con-

255



vergence – while keeping the unwanted impact of these

modifications on the quality of final solution minimal. The

analysis of this process constitutes the technical core of

our result and is based on understanding of the interplay

between the interior-point method and both the primal and

dual structure of electrical flows.

We believe that this approach of understanding interior-

point methods through the lens of electrical flows is a

promising direction and our result is just a first step towards

realizing its full potential.

II. PRELIMINARIES

In this section, we introduce some basic notation and

definitions we will need later.

A. σ-Flows and the Maximum s-t Flow Problem

Throughout this paper, we denote by G = (V,E,u) a

directed graph with vertex set V , arc set E (we allow parallel

arcs), and (non-negative) integer capacities ue, for each arc

e ∈ E. We usually define m = |E| to be the number of arcs

of the graph in question and n = |V | to be the number of

its vertices. Each arc e of G is an ordered pair (u, v), where

u is its tail and v is its head.

The basic notion of this paper is the notion of a σ-flow in

G, where σ ∈ R
n, with

∑
v σv = 0, is the demand vector.

By a σ-flow in G we understand any vector f ∈ R
m that

assigns values to arcs G and satisfies the flow conservation
constraints:∑

e∈E+(v)

fe −
∑

e∈E−(v)

fe = σv, for each vertex v ∈ V .

(1)

Here, E+(v) (resp. E−(v)) is the set of arcs of G that are

leaving (resp. entering) vertex v. Intuitively, these constraints

enforce that the net balance of the total in-flow into vertex

v and the total out-flow out of that vertex is equal to σv , for

every v ∈ V .

Furthermore, we say that a σ-flow f is feasible in G iff

f obeys the non-negativity and capacity constraints:

0 ≤ fe ≤ ue, for each arc e ∈ E. (2)

One type of σ-flows that will be of special interest to us

are s-t flows, where s (the source) and t (the sink) are two

distinguish vertices of G. Formally, a σ-flow f is an s-t
flow iff its demand vector σ is equal to F · χs,t for some

F ≥ 0 – we call F the value of f – and the demand vector

χs,t that has −1 (resp. 1) at the coordinate corresponding

to s (resp. t) and zeros everywhere else.

Now, the maximum s-t flow problem corresponds to a task

of finding for a given graph G = (V,E,u), a source s, and

a sink t, a feasible s-t flow f ∗ in G of maximum value F .

We call such a flow f ∗ that maximizes F the maximum s-t
flow of G and denote its value by F ∗.

Sometimes, we will be also interested in (uncapacitated)

minimum-cost σ-flow problem (with non-negative costs). In

this problem, we have a directed graph G with infinite

capacities on arcs (i.e., ue = +∞, for all e) and certain

(non-negative) length (or cost) le assigned to each arc e.

Our goal is to find a feasible σ-flow f in G whose cost
l(f ) :=

∑
e lefe is minimal. (Note that as we have infinite

capacities here, the feasibility constraint (2) just requires that

fe ≥ 0 for all arcs e.)
Finally, one more problem that will be relevant in this

context is the minimum s-t cut problem. In this problem,

we are given a directed graph G = (V,E,u) with integer

capacities, as well as, a source s and sink t, and our task

is to find an s-t cut C ⊆ V in G minimizes the capacity
u(C) :=

∑
E−(C) ue among all s-t cuts. Here, a cut C ⊆ V

is an s-t cut iff s ∈ C and t /∈ C, and E−(C) is the set of

all arcs (u, v) with u ∈ C and v /∈ C. It is well-known [15],

[18] that the minimum s-t cut problem is the dual of the

maximum s-t problem and, in particular, that the capacity

of the minimum s-t cut is equal to the value of the maximum

s-t flow, as well as, that given a maximum s-t flow one can

easily obtain the corresponding minimum s-t cut.

B. Undirected Graphs
Although the focus of our results is on directed graphs,

it will be crucial for us to consider undirected graphs too.

To this end, we view an undirected graph G = (V,E,u)
as a directed one in which the ordered pair (u, v) ∈ E
does not denote an arc anymore, but an (undirected) edge
(u, v) and the order just specifies an orientation of that edge

from u to v. (Even though we use the same notation for

these two different types of graphs, we will always make

sure that it is clear from the context whether we deal with

directed graph that has arcs, or with undirected graph that

has edges.) From this perspective, the definitions of σ-flow

f that we introduced above for directed graphs transfer over

to undirected setting almost immediately. The only (but very

crucial) difference is that in undirected graphs a feasible flow

can have some of fes being negative - this corresponds to

the flow flowing in the direction that is opposite to the edge

orientation. As a result, the feasibility condition (2) becomes

|fe| ≤ ue, for each arc e ∈ E. (3)

Also, the set E+(v) (resp. E−(v)) denotes now the set of

incident edges that are oriented towards (resp. away) from

v, and E(v) := E+(v) ∪ E−(v) is just the set of all edges

incident to v, regardless of their orientation.
Finally, given a directed graph G = (V,E,u), by its pro-

jection Ḡ we understand an undirected graph that arises from

treating each arc of G as an edge with the corresponding

orientation. Note that if G had two arcs (u, v) and (v, u)
then Ḡ will have two parallel edges (u, v) and (v, u) that

have opposite orientation and, possibly, different capacities.

C. Electrical Flows and Potentials
A notion that will play a fundamental role in this paper

is the notion of electrical flows. Here, we just briefly review
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some of the key properties that we will need later. For an

in-depth treatment we refer the reader to [6].

Consider an undirected graph G and some vector of

resistances r ∈ R
m that assigns to each edge e its resistance

re > 0. For a given σ-flow f in G, let us define its energy
(with respect to r ) Er (f ) to be

Er (f ) :=
∑
e

ref
2
e = f TRf , (4)

where R is an m×m diagonal matrix with Re,e = re, for

each edge e.

For a given undirected graph G, a demand vector σ, and

a vector of resistances r , we define an electrical σ-flow in

G (that is determined by resistances r ) to be the σ-flow

that minimizes the energy Er (f ) among all σ-flows in G.

As energy is a strictly convex function, one can easily see

that such a flow is unique. Also, we emphasize that we do

not require here that this flow is feasible with respect to

capacities of G (cf. (3)). Furthermore, whenever we consider

electrical flows in the context of a directed graph G, we

will mean an electrical flow – as defined above – in the

(undirected) projection Ḡ of G.

One of very useful properties of electrical flows is that it

can be characterized in terms of vertex potentials inducing it.

Namely, one can show that a σ-flow f in G is an electrical

σ-flow determined by resistances r iff there exist vertex
potentials φv (that we collect into a vector φ ∈ R

n) such

that, for any edge e = (u, v) in G that is oriented from u to

v,

fe =
φv − φu

re
. (5)

In other words, a σ-flow f is an electrical σ-flow iff it

is induced via (5) by some vertex potential φ. (Note that

orientation of edges matters in this definition.)

Using vertex potentials, we are able to express the energy

Er (f ) (see (4)) of an electrical σ-flow f in terms of the

potentials φ inducing it as

Er (f ) =
∑

e=(u,v)

(φv − φu)
2

re
. (6)

One of the consequences of this characterization of electri-

cal flows via vertex potentials is that one can view the energy

of an electrical σ-flow as being a result of optimization not

over all the σ-flows but rather over certain set of vertex

potentials. Namely, we have the following lemma that, for

completeness, we prove in the full version of the paper [39].

Lemma II.1. For any graph G = (V,E), any vector of
resistances r , and any demand vector σ,

1

Er (f ∗) = min
φ|σTφ=1

∑
e=(u,v)∈E

(φv − φu)
2

re
,

where f ∗ is the electrical σ-flow determined by r in G.
Furthermore, if φ∗ are the vertex potentials corresponding

to f ∗ then the minimum is attained by taking φ to be equal
to φ̃ := φ∗/Er (f ∗).

Note that the above lemma provides a convenient way of

lowerbounding the energy of an electrical σ-flow. One just

needs to expose any vertex potentials φ such that σTφ = 1
and this will immediately constitute an energy lowerbound.

Also, another basic but useful property of electrical σ-flows

is captured by the following fact.

Fact II.2 (Rayleigh Monotonicity). For any graph G =
(V,E), demand vector σ and any two vectors of resistances
r and r ′ such that re ≥ r′e, for all e ∈ E, we have that if
f (resp. f ′) is the electrical σ-flow determined by r (resp.
r ′) then

Er (f ) ≥ Er ′(f ′).
D. Laplacian Solvers

A very important algorithmic property of electrical flows

is that one can compute very good approximations of them

in nearly-linear time. Below, we briefly describe the tools

enabling that.

To this end, let us recall that electrical σ-flow is the

(unique) σ-flow induced by vertex potentials via (5). So,

finding such a flow boils down to computing the correspond-

ing vertex potentials φ. It turns out that computing these

potentials can be cast as a task of solving certain type of

linear system called Laplacian systems. To see that, let us

define the edge-vertex incidence matrix B being an n×m
matrix with rows indexed by vertices and columns indexed

by edges such that

Bv,e =

⎧⎪⎨
⎪⎩
1 if e ∈ E+(v),

−1 if e ∈ E−(v),
0 otherwise.

Now, we can compactly express the flow conservation

constraints (1) of a σ-flow f (that we view as a vector in

R
m) as

Bf = σ.

On the other hand, if φ are some vertex potentials, the

corresponding flow f induced by φ via (5) (with respect to

resistances r ) can be written as

f = R−1BTφ,

where again R is a diagonal m×m matrix with Re,e := re,

for each edge e.

Putting the two above equations together, we get that

the vertex potentials φ that induce the electrical σ-flow

determined by resistances r are given by a solution to the

following linear system

BR−1BTφ = Lφ = σ, (7)

where L := BR−1BT is the (weighted) Laplacian L of G
(with respect to the resistances r ). One can easily check that
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L is an n× n matrix indexed by vertices of G with entries

given by

Lu,v =

⎧⎪⎨
⎪⎩
∑

e∈E(v) 1/re if u = v,

−1/re if e = (u, v) ∈ E, and

0 otherwise.

(8)

One can see that the Laplacian L is not invertible, but

– as long as, the underlying graph is connected – it’s null-

space is one-dimensional and spanned by all-ones vector.

As we require our demand vectors σ to have its entries sum

up to zero (otherwise, no σ-flow can exist), this means that

they are always orthogonal to that null-space. Therefore, the

linear system (7) has always a solution φ and one of these

solutions5 is given by

φ = L†σ,

where L† is the Moore-Penrose pseudo-inverse of L.

Now, from the algorithmic point of view, the crucial

property of the Laplacian L is that it is symmetric and diag-
onally dominant, i.e., for any v ∈ V ,

∑
u �=v |Lu,v| ≤ Lv,v .

This enables us to use fast approximate solvers for sym-

metric and diagonally dominant linear systems to compute

an approximate electrical σ-flow. Namely, building on the

work of Spielman and Teng [48], [49], Koutis et al. [31],

[32] designed an SDD linear system solver that implies

the following theorem. (See also recent work of Kelner

et al. [27] that presents an even simpler nearly-linear-time

Laplacian solver.)

Theorem II.3. For any ε > 0, any graph G with n vertices
and m edges, any demand vector σ, and any resistances
r , one can compute in Õ(m logm log ε−1) time vertex
potentials φ̃ such that ‖φ̃ − φ∗‖L ≤ ε‖φ∗‖L, where L is
the Laplacian of G, φ∗ are potentials inducing the electrical

σ-flow determined by resistances r , and ‖φ‖L :=

√
φTLφ.

To understand the type of approximation offered by the

above theorem, observe that ‖φ‖2L = φTLφ is just the

energy of the flow induced by vertex potentials φ. Therefore,

‖φ̃− φ∗‖L is the energy of the electrical flow f̄ that “cor-

rects” the vertex demands of the electrical σ̃-flow induced by

potentials φ̃, to the ones that are dictated by σ. So, in other

words, the above theorem tells us that we can quickly find an

electrical σ̃-flow f̃ in G such that σ̃ is a slightly perturbed

version of σ and f̃ can be corrected to the electrical σ-

flow f ∗ that we are seeking, by adding to it some electrical

flow f̄ whose energy is at most ε fraction of the energy

of the flow f ∗. (Note that electrical flows are linear, so we

indeed have that f ∗ = f̃ + f̄ .) As we will see, this kind of

approximation is completely sufficient for our purposes.

5Note that the linear system (7) will have many solutions, but each two of
them are equivalent up to a translation. So, as the formula (5) is translation-
invariant, each of these solutions will yield the same unique electrical σ-
flow.

E. Bipartite b-Matchings

A fundamental graph problem that constitutes both an

application of our results, as well as, one of the tools we

use to establish them, is the (maximum-cardinality) bipartite
b-matching problem. In this problem, we are given an

undirected bipartite graph G = (V,E) with V = P ∪ Q –

where P and Q are the two sets of bipartition – as well as,

a demand vector b that assigns to every vertex v an integral

and positive demand bv . Our goal is to find a maximum

cardinality multiset M of the edges of G that forms a b-
matching. That is, we want to find a multi-set M of edges

of G that is of maximum cardinality subject to a constraint

that, for each vertex v ∈ V , the number of edges of M that

are incident to v is at most bv . (When bv = 1 for every

vertex v, we will simply call such M a matching.)

We say that a b-matching M is perfect iff every vertex

in V has exactly bv edges incident to it in M . Note that a

perfect b-matching - if it exists in G - has to necessarily be

of maximum cardinality. Also, if a graph has a perfect b-

matching then it must be that
∑

v∈P bv =
∑

v∈Q bv . Now,

by the perfect bipartite b-matching problem we mean a task

in which we need to either find the perfect b-matching in

G or conclude that it does not exist.

Finally, by a fractional solution to a b-matching problem,

we understand an |E|-dimensional vector x that allocates

non-negative value of xe to each edge e and is such that

for every vertex v of G, the sum
∑

e∈E(v) xe of (fractional)

incident edges in x is at most bv . Also, we define the size
of a fractional b-matching x to be |x |1.

An interesting class of graphs that is guaranteed to always

have a perfect matching are bipartite graphs that are d-
regular, i.e., that have the degree of each vertex equal to

d. A remarkable algorithm of Goel et al. [20] shows that

one can find a perfect matching in such graphs in time that

is proportional only to number of its vertices and not edges.

(Note that a d-regular bipartite graph has exactly dn
2 edges

and thus this number can be much higher than n when d is

large.) In particular, they prove the following theorem that

we will use later.

Theorem II.4 (see Theorem 4 in [20]). Given an n × n
doubly-stochastic matrix M with m non-zero entries, one
can find a perfect matching in the support of M in
O(n log2 n) expected time with O(m) preprocessing time.

III. FROM FLOWS TO MATCHINGS, AND BACK

As we already mentioned, our results stem from exploiting

the interplay between the maximum s-t flow and bipartite

b-matching problem, as well as, from understanding the

performance of interior-point methods – when applied to

these two problems – via the structure of corresponding

electrical flows. To highlight these elements, we decompose

the proof of our main theorem (Theorem I.1) into three

natural parts.
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Reducing Maximum Flow to b-Matching: First, we focus

on analyzing the relationship between the maximum s-t
flow and the (maximum-cardinality) bipartite b-matching

problem. It is well-known that the latter can be reduced to

the former in a simple way. As it turns out, however, one

can also go the other way – there is a simple, combinatorial

reduction from the maximum flow problem to the task of

finding a perfect bipartite b-matching.6

Before making this precise, let us introduce one definition.

Consider a b-matching problem instance corresponding to a

bipartite graph G = (V,E) with P and Q (V = P∪Q) being

two sides of the bipartition. For any edge e = (p, q) ∈ E,

let us define the thickness d(e) of that edge to be d(e) :=
min{bp, bq}. (So, d(e) is an upper bound on the value of xe

in any feasible b-matching x .) We say that a b-matching

instance is balanced iff∑
e∈E

d(e) ≤ 4|b|1. (9)

Now, in the full version of the paper [39], we establish

the following result.

Theorem III.1. If one can solve a balanced instance of a
perfect bipartite b-matching problem in a (bipartite) graph
with n̄ vertices and m̄ edges in T (n̄, m̄, |b|1) time, then one
can solve the maximum s-t flow problem in a graph G =
(V,E,u) with m arcs and capacity vector u in Õ((m +
T (Θ(m), 4m, 4|u |1)) log |u |1) time.

This connection between maximum flows and bipartite

matchings is useful in two ways. Firstly, it enables us to

reduce the main problem we want to solve – the maximum s-

t flow problem with unit capacities – to a seemingly simpler

one: the perfect bipartite b-matching problem. Secondly, the

fact that this reduction works also for fractional instances

provides us with an ability to lift our b-matching rounding

procedure that we develop later (see Theorem III.3) to the

maximum flow setting (see Corollary III.4).

The Algorithm for Near-Perfect b-Matching Problem:
Once the above reduction is established, we can proceed

to designing an improved algorithm for the perfect bipartite

b-matching problem. This algorithm consists of two parts.

The first one – constituting the technical core of our

paper – is related to the (fractional) near-perfect bipartite

b-matching problem, a certain relaxation of the perfect

bipartite b-matching problem. To describe this task formally,

let us call a b-matching x near-perfect if its size |x |1 is at

least
|b|1
2 − Õ(m

3
7 ), i.e., it is within Õ(m

3
7 ) additive factor

of the size of a perfect b-matching. Now, given a bipartite

graph G = (P∪Q,E) and demand vector b , the near-perfect
b-matching problem is a task of either finding a near-perfect

6One can view this as one possible explanation of why the techniques
used in the context of bipartite matchings and maximum flows are so
similar.

b-matching in G or concluding that no perfect b-matching

exists in that graph.

Our goal is to design an algorithm that solves this near-

perfect b-matching problem in Õ(m
10
7 ) time. To this end,

in the full version of the paper [39], we prove the following

theorem.

Theorem III.2. Let G = (V,E) with V = P ∪ Q be an
undirected bipartite graph with n vertices and m edges and
let b be a demand vector that corresponds to a balanced
b-matching instance with |b|1 = O(m). In Õ(m

10
7 ) time,

one can either find a fractional near-perfect b-matching x
or conclude that no perfect b-matching exists in G.

(Observe that whenever we have an instance of maximum

s-t flow problem that has m̄ arcs and unit capacities, |u |1
is exactly m̄. So, if we apply the reduction from Theorem

III.1 to that instance then the resulting b-matching problem

instance will be balanced, have m ≤ 4m̄ edges, as well as,

|b|1 ≤ 4|u |1 = 4m̄ ≤ 2m. Therefore, we will be able to

apply the above Theorem III.2 to it.)

At a very high level, our algorithm for the near-perfect

b-matching problem is inspired by the way the existing

interior-point method path-following algorithms (see, e.g.,

[54], [53], [7]) can be used to solve it. Basically, our

algorithm is an iterative method that starts with some initial,

far-from-optimal solution and then gradually improves this

maintained solution to near-optimality (pushing it along so-

called central path) using appropriate electrical flows as a

guidance. We then show how to tie the convergence rate

of this process to the structure of the guiding electrical

flows. At that point, one can use a simple energy-bounding

argument to establish a generic convergence bound that

yields an (unsatisfactory) Õ(m
3
2 )-time algorithm.

To improve upon this bound and deliver the desired

Õ(m
10
7 )-time algorithm, we show how one can appropriately

“shape” these guiding electrical flows to make their guidance

more effective and thus guarantee faster convergence. Very

roughly speaking, it turns out there is a way of changing the

maintained solution to make it essentially the same from the

point of view of our b-matching instance, while dramatically

improving the quality of corresponding electrical flows that

guide it.

Our way of executing this idea is based on a careful

composition of two techniques. One of them corresponds

to perturbing, in a certain way, the arcs that are most

significantly distorting the structure of electrical flow – this

technique can be viewed as a refinement of edge removal

technique of Christiano et al. [9]. The other technique

corresponds to preconditioning the whole solution by adding

additional, auxiliary, arcs to it. These arcs are chosen so

to significantly improve the conductance properties of the

solution (when viewed as a graph with resistances) while not

leading to too significant deformation of the final obtained

solution.
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Rounding Near-Perfect b-Matchings: Finally, our final

step on our way towards solving the perfect b-matching

problem (and thus the maximum s-t flow problem) is related

to turning the approximate and fractional answer returned

by the algorithm from Theorem III.2 into an exact and

integral one. To this end, note that if that algorithm returned

a near-perfect b-matching that was integral, there would be

a standard way to either turn it into a perfect b-matching

or conclude that no such perfect b-matching exists. Namely,

one could just use repeated augmenting path computations.

It is well-known that given an integral b-matching, one can

perform, in O(m) time, an augmenting path computation

that either results in increasing the size of our b-matching by

one, or concludes that no further augmentation is possible

(and thus no perfect b-matching exists). So, as our initial

near-perfect b-matching has size at least
|b|1
2 −Õ(m

3
7 ), after

at most Õ(m
3
7 ) iterations, i.e., in time Õ(m

10
7 ), we would

get the desired answer.
Unfortunately, the above approach can fail completely

once our near-perfect b-matching is fractional. This is so,

as in this case we do not have any meaningful lowerbound

on the progress on the size of the b-matching brought by

the augmenting path computation.
Therefore, to deal with this issue, we develop the last

ingredient of our algorithm: a nearly-linear time procedure

that allows one to round fractional b-matchings. More

precisely, in the full version of the paper [39], building on

the work of Goel et al. [20], we establish the following

theorem.

Theorem III.3. Let G = (V,E) be an undirected bipartite
graph with m edges and let b be a demand vector, if x is
a fractional b-matching in G of size k = |x |1 then one can
find in Õ(m) time an integral b-matching in G of size 
k�.

Clearly, if we apply the above rounding method to the

fractional near-perfect matching x computed by the algo-

rithm from Theorem III.2, it will give us an integral b-

matching x ∗ whose size is still at least
|b|1
2 − Õ(m

3
7 ). So,

the augmenting path-based approach we outlined above will

let us obtain the desired integral and exact answer to the

perfect b-matching problem within the desired time bound.
In the light of all the above, we see that combining all

the above pieces indeed yields an Õ(m
10
7 )-time algorithm

for the perfect bipartite b-matching problem in graphs with

|b|1 = O(m). Now, using the reduction from Theorem III.1,

this gives us the analogous algorithm for the maximum s-t
flow problem in unit-capacity graphs and that, in turn, results

in an algorithm for the bipartite matching problem. So, both

Theorem I.1 and Theorem I.2 hold.
Rounding s-t Flows: Finally, we mention the other

byproduct of our techniques – the fast rounding procedure

for flows. Namely, using the reduction described in Theorem

III.1 and the rounding from Theorem III.3 we can obtain a

fast rounding procedure not only for fractional b-matchings

but also for fractional s-t flows. Specifically, the proof of the

following corollary appears in the full version of the paper

[39].

Corollary III.4. Let G = (V,E,u) be a directed graph
with capacities and let f be some feasible fractional s-t
flow in G of value F . In Õ(m) time, we can obtain out of
f an integral s-t flow f ∗ of value 
F � that is feasible in G.

Again, we note that a very similar rounding result was

independently obtained by Khanna et al. [28].
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