
Quasipolynomial-time Identity Testing of Non-Commutative and Read-Once
Oblivious Algebraic Branching Programs

Michael A. Forbes†

Department of EECS
MIT CSAIL

32 Vassar St.
Cambridge, MA 02139
miforbes@mit.edu

Amir Shpilka‡

Faculty of Computer Science
Technion — Israel Institute of Technology

Haifa, Israel
shpilka@cs.technion.ac.il

Abstract—1 We study the problem of obtaining efficient,
deterministic, black-box polynomial identity testing algorithms
(PIT) for algebraic branching programs (ABPs) that are read-
once and oblivious. This class has an efficient, deterministic,
white-box polynomial identity testing algorithm (due to Raz
and Shpilka [1]), but prior to this work there was no known
such black-box algorithm.

The main result of this work gives the first quasi-polynomial
sized hitting sets for size S circuits from this class, when
the order of the variables is known. As our hitting set is
of size exp(lg2 S), this is analogous (in the terminology of
boolean pseudorandomness) to a seed-length of lg2 S, which
is the seed length of the pseudorandom generators of Nisan [2]
and Impagliazzo-Nisan-Wigderson [3] for read-once oblivious
boolean branching programs. Thus our work can be seen as
an algebraic analogue of these foundational results in boolean
pseudorandomness.

Our results are stronger for branching programs of bounded
width, where we give a hitting set of size exp(lg2 S/ lg lgS),
corresponding to a seed length of lg2 S/ lg lgS. This is in
stark contrast to the known results for read-once oblivious
boolean branching programs of bounded width, where no
pseudorandom generator (or hitting set) with seed length
o(lg2 S) is known. Thus, while our work is in some sense an
algebraic analogue of existing boolean results, the two regimes
seem to have non-trivial differences.

In follow up work ( [4]), we strengthened a result of
Mulmuley [5], and showed that derandomizing a particular
case of the Noether Normalization Lemma is reducible to
black-box PIT of read-once oblivious ABPs. Using the results
of the present work, this gives a derandomization of Noether
Normalization in that case, which Mulmuley conjectured would
difficult due to its relations to problems in algebraic geometry.

We also show that several other circuit classes can be
black-box reduced to read-once oblivious ABPs, includ-
ing set-multilinear ABPs (a generalization of depth-3 set-
multilinear formulas), non-commutative ABPs (generalizing
non-commutative formulas), and (semi-)diagonal depth-4 cir-
cuits (as introduced by Saxena [6]). For set-multilinear ABPs

†This work supported by the Center for Science of Information (CSoI), an
NSF Science and Technology Center, under grant agreement CCF-0939370.

‡The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement number 257575.

1A full version of this work can be found at http://arxiv.org/abs/1209.
2408.

and non-commutative ABPs, we give quasi-polynomial-time
black-box PIT algorithms, where the latter case involves
evaluations over the algebra of (D + 1) × (D + 1) matrices,
where D is the depth of the ABP. For (semi-)diagonal depth-
4 circuits, we obtain a black-box PIT algorithm (over any
characteristic) whose run-time is quasi-polynomial in the run-
time of Saxena’s white-box algorithm, matching the concurrent
work of Agrawal, Saha, and Saxena [7]. Finally, by combining
our results with the reconstruction algorithm of Klivans and
Shpilka [8], we obtain deterministic reconstruction algorithms
for the above circuit classes.

Keywords-branching programs, derandomization, non-
commutative polynomials, polynomial identity testing

I. INTRODUCTION

Let C be an algebraic circuit in the input variables

x1, . . . , xn, over a field F. The output C(x1, . . . , xn) is

a polynomial f in the ring F[x1, . . . , xn]. The polynomial

identity testing (PIT) problem is to efficiently determine

“f ≡ 0?”. In particular, we are asking if the formal expres-

sion f , as a polynomial in F[x1, . . . , xn], is zero. Schwartz

and Zippel [9], [10] showed that if 0 �= f ∈ F[x1, . . . , xn]
is a polynomial of degree ≤ d, and α1, . . . , αn ∈ S ⊆ F

are chosen uniformly at random, then f(α1, . . . , αn) = 0
with probability at most ≤ d/|S|. Thus, given the circuit

C, we can perform these evaluations efficiently, giving an

efficient randomized procedure for answering “f ≡ 0?”. An

important open problem is to find a derandomization of this

algorithm, that is, to find a deterministic procedure for PIT

that runs in polynomial time (in the size of the circuit C).

One interesting property of the above randomized algo-

rithm of Schwartz-Zippel is that the algorithm does not need

to “see” the circuit C. Namely, the algorithm only uses the

circuit to compute the evaluations f(α1, . . . , αn). Such an

algorithm is called a black-box algorithm. In contrast, an

algorithm that can access the internal structure of the circuit

C is called a white-box algorithm. Clearly, the designer of

the algorithm has more resources in the white-box model

and so one can expect that solving PIT in this model should

be a simpler task than in the black-box model.

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.34

243



The problem of derandomizing PIT has received a lot of

attention in the past few years. In particular, many works

examine a particular class of circuits C, and design PIT

algorithms only for circuits in that class. One reason for

this attention is the strong connection between deterministic

PIT algorithms for a class C and lower bounds for C. This

connection was first observed by Heintz and Schnorr [11]

(and also by Agrawal [12]) for the black-box model and

by Kabanets and Impagliazzo [13] for the white-box model

(see also Dvir, Shpilka and Yehudayoff [14]). Another moti-

vation for studying the problem is its relation to algorithmic

questions. Indeed, the famous deterministic primality testing

algorithm of Agrawal, Kayal and Saxena [15] is based on

derandomizing a specific polynomial identity. Finally, the

PIT problem is, in some sense, the most general problem

that we know today for which we have randomized coRP

algorithms but no polynomial time algorithms, thus studying

it is a natural step towards a better understanding of the

relation between RP and P. For more on the PIT problem

we refer to the survey by Shpilka and Yehudayoff [16].

Although the white-box model seems to be simpler than

the black-box model, for most models for which a white-

box PIT algorithm is known, a black-box PIT algorithm is

also known, albeit sometimes with worse parameters. Such

examples include depth-2 circuits (also known as sparse

polynomials) [17], [18], depth-3 ΣΠΣ(k) circuits [19],

Read-k formulas [20] and depth-3 tensors (also known as

depth-3 set-multilinear circuits) [1], [21]. While the running

time of the algorithms for depth-2 circuits and ΣΠΣ(k)
circuits are essentially the same in the white-box and black-

box models, for Read-k formulas and set-multilinear depth-

3 circuits we encounter some loss that results in a quasi-

polynomial running time in the black-box model compared

to a polynomial time algorithm in the white-box model.

Until this work, the only model for which an efficient

white-box algorithm was known without a (sub-exponential)

black-box counterpart was the model of non-commutative

algebraic formulas, or, more generally, the models of non-

commutative algebraic branching programs (ABPs) and set-

multilinear algebraic branching programs [1] (see Subsec-

tion I-A for definitions).

The main result in this paper is a quasi-polynomial

time PIT algorithm in the black-box model for read-once

oblivious algebraic branching programs. Equivalently, we

give a hitting set of size 2O(lg2 S) for size S circuits from

this model. By tuning parameters in our recursion, we

obtain hitting sets of size 2O(lg2 S/ lg lg S) when the branching

programs are also of bounded width. Using our main result

we obtain black-box algorithms of similar running times

for the models of set-multilinear ABPs, non-commutative

ABPs, as well as for diagonal circuits as defined by Sax-

ena [6]. Although exponential lower bounds are known for

these models, we note that the algebraic hardness-versus-

randomness result of Kabanets and Impagliazzo [13] (as

well as the extension of this result by Dvir, Shpilka and

Yehudayoff [14] to low-depth circuits) does not imply a

black-box PIT algorithm for the model, since their technique

does not work for the restricted models studied here.

The algebraic circuit models considered in this work,

though restricted, have received significant attention in ex-

isting work on lower bounds and pseudorandomness, and

are strong enough to capture non-trivial derandomization

questions arising elsewhere. In Subsection I-A we define

these models, and state our results in Subsection I-B. In Sub-

section I-C we discuss various work concerning these mod-

els, and explain relations to other areas such as (boolean)

space-bounded derandomization, the Noether Normalization

Lemma from algebraic geometry, and an algebraic analogue

of the natural proofs barrier in boolean lower bounds. In

Subsection I-D, we outline the main proof ideas of the hitting

set for read-once ABPs.

A. The model

The model that we consider in this paper is that of

set-multilinear algebraic branching programs. In fact, we

will work with a slightly more general model, but we first

describe the model of set-multilinear ABPs.

Algebraic branching programs were first defined in the

work of Nisan [22] who proved exponential lower bounds

on the size of non-commutative ABPs computing the deter-

minant or permanent polynomials.

Definition I.1 (Nisan). An algebraic branching program
(ABP) is a directed acyclic graph with one vertex of in-
degree zero, which is called the source, and one vertex of
out-degree zero, which is called the sink. The vertices of the
graph are partitioned into levels numbered 0, . . . , D. Edges
may only go from level i − 1 to level i for i = 1, . . . , D.
The source is the only vertex at level 0 and the sink is the
only vertex at level D. Each edge is labeled with a affine
function in the input variables. The width of an ABP is the
maximum number of nodes in any layer, and the size of the
ABP is the number of vertices.

Each directed source-sink path in the ABP computes

a polynomial, which is a product of the labels on the

edges in that path. As this work concerns non-commutative

computation, we specify that the product of the labels is in

the order of the path, from source to sink. The ABP itself

computes the sum of all such polynomials.

We consider a slight variation of this model which we

call set-multilinear ABP, in line with the term coined by

Nisan and Wigderson [23]. In the set-multilinear scenario

the variables are partitioned into sets

X = X1 �X2 � · · · �XD,

where

Xi = {xi,1, . . . , xi,n}.

244



A set-multilinear monomial is a monomial of the form

m = x1,i1 · x2,i2 · · ·xD,iD .

In words, a set-multilinear monomial is a multilinear mono-

mial that contains exactly one variable from each Xi. A

set-multilinear polynomial is a polynomial consisting of set-

multilinear monomials. In other words, the coefficients of a

set-multilinear polynomial can be viewed as map from [n]D

to the field F, and thus is an D-dimensional tensor.

Definition I.2 (Set-multilinear ABP). A set-multilinear
algebraic branching program (ABP) in the variable set
X = X1 � X2 � · · · � XD is an ABP of depth D, such
that each edge between layer i − 1 and layer i is labeled
with a (homogeneous) linear function in the variable set Xi.

It is clear from the definition that a set-multilinear ABP

computes a set-multilinear polynomial. It is also not hard to

see that any set-multilinear polynomial can be computed by

a set-multilinear ABP.

In fact, our result holds for the following model, that we

call read-once oblivious ABPs, as well.

Definition I.3 (Read-Once Oblivious ABP). A read-once
oblivious ABP in the variable set X = {x1, . . . , xD} is an
ABP of depth D, such that each edge between layer i − 1
and layer i is labeled with a univariate polynomial in xi of
degree < n.

Note that unlike previous definitions, in read-once obliv-

ious ABPs we allow edges to be labeled with arbitrary

univariate polynomials (with a bound of n on the degree)

and not just with linear forms. Observe that the mapping

xi,j ↔ xj
i transforms any set-multilinear ABP into a read-

once oblivious ABP and vice versa (when we index j starting

at zero).

B. Our results

A black-box PIT algorithm is also known as an explicit

hitting set, which we now define. We phrase the definition

in generality to capture the notion of hitting sets for non-

commutative polynomials, generalizing the usual notion.

Definition I.4 (Hitting Set). Let C be a class of non-
commutative n-variate polynomials, with coefficients in F.
Let R be a non-commutative ring with a (commutative) ring
homomorphism F→ R, so that polynomials in C are defined
over R. A set H ⊆ Rn is a hitting set for C if for all f ∈ C,
f ≡ 0 iff f |H ≡ 0.

The hitting set H is t(n)-explicit if given an index into H,
the corresponding element of H can be computed in t(n)-
time.

When C is commutative, we will always use R = F, and

when C is non-commutative, we will take R = Fm×m for

some appropriate m.

Our main result is a quasi-polynomial time black-box PIT

algorithm for read-once oblivious ABPs.

Theorem I.5 (PIT for read-once oblivious ABPs). Let C
be the set of D-variate polynomials computable by width r,
depth D, individual degree < n read-once oblivious ABPs.
If |F| ≥ poly(D,n, r), then C has a poly(D,n, r)-explicit
hitting set, of size ≤ poly(D,n, r)O(lgD).

This theorem plays a crucial role in future work by the

authors ( [4]), were we give a derandomization of Noether’s

Normalization Lemma in a certain case. In Subsection I-D

we explain our proof technique and give an overview of the

proof. Our technique also yields an improved derandomiza-

tion when the branching program has small width, which

we now state.

Theorem I.6 (PIT for small width read-once oblivious

ABPs). Let C be the set of D-variate polynomials com-
putable by width r ≤ O(1), depth D, individual degree
< n read-once oblivious ABPs. If |F| ≥ poly(D,n),
then C has a poly(D,n)-explicit hitting set, of size ≤
poly(D,n)O(lgD/ lg lgD).

Using Theorem I.5 we obtain black-box PIT algorithms

for several related models. We first observe that PIT for set-

multilinear ABPs is an immediate corollary of Theorem I.5.

As with read-once oblivious ABPs, we assume that we know

the partition of the variables into the D sets, and our results

do not hold under permutation of the variables.

Theorem I.7 (PIT for set-multilinear ABPs). Let X =
X1 � X2 � · · · � XD, where Xi = {xi,1, . . . , xi,n}, be a
known partition. Let C be the set of set-multilinear polyno-
mials f(X1, . . . , XD) : FnD → F computable by a width
r, depth D, set-multilinear ABP. If |F| ≥ poly(D,n, r),
then C has a poly(D,n, r)-explicit hitting set, of size ≤
poly(D,n, r)O(lgD).

Next, we consider the model of non-commutative ABPs.

Raz and Shpilka [1] gave a polynomial time white-box PIT

algorithm for this model and we obtain a quasi-polynomial

time black-box PIT algorithm. The evaluation points in our

hitting set are vectors of (D+1)×(D+1) matrices for ABPs

of depth D. In contrast to the above two results, this result

for non-commutative ABPs makes no assumption about the

variable ordering, and thus still holds under permutation of

the variables.

Theorem I.8 (Black-box PIT for non-commutative ABPs).
Let NC be the set of n-variate non-commutative polyno-
mials computable by width r, depth D ABPs. If |F| ≥
poly(D,n, r), then NC has a poly(D,n, r)-explicit hit-
ting set over (D + 1) × (D + 1) matrices, of size ≤
poly(D,n, r)O(lgD).

Saxena [6] defined the model of diagonal circuits (see

the full paper for a definition) in an attempt to capture

245



some of the complexity of depth-4 circuits. Relying on the

algorithm of [1], Saxena obtained a polynomial time white-

box PIT algorithm for this model (for a certain setting of

the parameters). Saha, Saptharishi and Saxena [24], with

the essentially same techniques, later extended Saxena’s

white-box results to the so-called semi-diagonal model.

Simultaneously and independently of our work, Agrawal,

Saha and Saxena [7] gave a black-box PIT algorithm for

semi-diagonal depth-4 circuits that runs in quasi-polynomial

time in the runtime of the known white-box algorithm, and

works over fields of large characteristic.

Using our main theorem and a new reduction from di-

agonal circuits to read-once oblivious ABPs we obtain a

PIT algorithm for diagonal circuits that runs in time quasi-

polynomial in the white-box algorithm given by Saxena.

Further, we do so over any characteristic in a unified way.

As with our result on non-commutative ABPs, this result

makes no assumptions about variable order. With essentially

no modification, we obtain similar results for semi-diagonal

circuits.

Theorem I.9 (Black-box PIT for semi-diagonal circuits).
Let F be a field of arbitrary characteristic. Let SDC be the
set of n-variate polynomials computable by semi-diagonal
depth-4 circuits, that is, of the form Φ =

∑
i∈[k] mi(�x) ·

P
ei,1
i,1 · · ·P ei,ri

i,ri
, where mi(�x) is a monomial of degree ≤ d,∏ri

j=1(1 + ei,j) ≤ e and Pi,j is a sum of univariate
polynomials of degree ≤ d. Then if |F| ≥ poly(n, k, d, e)
then SDC has a poly(n, k, e, d)-explicit hitting set of size
≤ poly(n, d, k, e)O(lgn).

Ramprasad Saptharishi [25] showed that a new notion

called evaluation dimension extends the partial derivative

technique as used in [6] and that our hitting set holds for

this model as well, thus obtaining an alternate proof of

Theorem I.9. We discuss this in the full paper.

Klivans and Shpilka [8] gave a polynomial-time learning

algorithm for read-once oblivious ABPs2, given membership

and equivalence queries. That is, they give a deterministic

algorithm that can learn an unknown f computed be a small

read-once oblivious ABP, given a oracle that evaluates f
(“membership query”), as well an oracle such that for any

hypothesis h computed by a small read-once oblivious ABP

with h �= f , the oracle returns an evaluation point �x such that

h(�x) �= f(�x) (“equivalence query”). Membership queries

can be implemented deterministically given black-box access

to f , and equivalence queries can be implemented using

random queries. That is, by appealing to the Schwartz-Zippel

algorithm, distinguishing h �= f can be done using random

evaluations.

2The terminology used in [8] is that of learning by multiplicity automata,
but these are completely equivalent to read-once oblivious ABPs, as shown
in [8].

Our above results construct hitting sets for read-once

oblivious ABPs, and as these are closed under subtraction

(that is, for equivalence queries, h− f is also a small read-

once oblivious ABP), our hitting set will always contain a

distinguishing evaluation for h and f , if h �= f . Thus, we can

derandomize the equivalence queries needed for [8]. Further,

our results on set-multilinear ABPs, non-commutative ABPs

and semi-diagonal depth-4 circuits, all rely on reductions to

read-once oblivious ABPs, and these reductions also hold in

the learning setting. We omit further details, and state the

following result.

Theorem I.10 (Extension and Derandomization of [8]).
There is a deterministic polynomial-time learning algorithm
from membership and equivalence queries that can learn
each of the following models: read-once oblivious ABPs,
set-multilinear ABPs, non-commutative ABPs and semi-
diagonal depth-4 circuits. In the first three models the
algorithm outputs an hypothesis from the same class as
the unknown function, but in the case of semi-diagonal
depth-4 circuits the outputted hypothesis is a read-once
oblivious ABP. Given such query access, the running time
of the algorithm is polynomial in the size3 of the underlying
branching program or circuit.

Furthermore, such membership and equivalence queries
can be implemented in randomized-polynomial time, or in
deterministic quasi-polynomial time, for any of the classes
mentioned above.

C. Related work

Boolean Pseudorandomness: This work fits into the

research program of derandomizing PIT, in particular de-

randomizing black-box PIT. However, for many of the

models of algebraic circuits studied, there are corresponding

boolean circuit models for which derandomization questions

can also be asked. In particular, for a class C of boolean

circuits, we can seek to construct a pseudorandom gen-
erator G : {0, 1}s → {0, 1}n for C, such that for any

circuit C ∈ C on n inputs, we have the ε-closeness of

distributions C(G(Us)) ≈ε C(Un), where Uk denotes the

uniform distribution on {0, 1}k. Nisan [2] studied pseu-

dorandom generators for space-bounded computation, and

for space S computation gave a generator with seed length

s = O(lg2 S). Impagliazzo, Nisan and Wigderson [3] later

gave a different construction with the same seed length.

Randomized space-bounded computation can be modeled

with read-once oblivious (boolean) branching programs, and

these generators apply to this model of computation as well.

Our work, at its core, studies read-once oblivious (al-

gebraic) branching programs, and we achieve a quasi-

polynomial-sized hitting set, corresponding to a seed length

3For convenience here, we define the “size” of a semi-diagonal depth-4
circuit to be some poly(n, k, e, d), using the notation of Theorem I.9, even
though the actual circuit could be much smaller.

246



of O(lg2 S) for ABPs of size S. Aside from the similarities

in the statements of these results, there are some similarities

in the high-level techniques as well. Indeed, an interpretation

by Raz and Reingold [26] argues that the [3] generator for

space-bounded computation can be seen as recursively parti-

tioning the branching program, using an (boolean) extractor

to recycle random bits between the partitions. Similarly, in

our work, we use an (algebraic rank) extractor between the

partitions.
However, despite the similarities to the boolean regime,

our results improve when the branching programs have

bounded width. Specifically, our hitting sets (Theorem I.6)

achieve a seed length of O(lg2 S/ lg lgS), and it has been

a long-standing open problem (see [27, Open Problem 8.6])

to achieve a seed length (for pseudorandom generators, or

even hitting sets) of o(lg2 S) for boolean read-once oblivious

branching programs of constant width. Despite much recent

work (see [28]–[35]), such seed-lengths are only known for

branching programs that are restricted even further, such

as regular or permutation branching programs. It is an

interesting question as to whether any insights of this paper

can achieve a similar seed length in the boolean regime,

or in general whether there are any formal connections

between algebraic and boolean pseudorandomness for read-

once oblivious branching programs.
Derandomizing Noether Normalization: Mulmuley [5]

(see the full version [36]) recently showed that the Noether

Normalization Lemma (of commutative algebra and al-

gebraic geometry) can in a sense be made constructive,

assuming that PIT can be derandomized. This lemma shows,

roughly, that in any commutative ring R, there is a smaller

subring S ⊆ R that captures many of the interesting

properties of R. The usual proof of this lemma is to take

the subring S to be generated by a sufficiently large set

of “random” elements from R. Thus, one can hope to

get a constructive version of this lemma by invoking the

appropriate derandomization hypothesis from complexity

theory, and Mulmuley shows that derandomization of PIT

suffices.
A particular focus of Mulmuley’s work is when R is the

ring of polynomials, whose variables are the n2r variables

in r symbolic n × n matrices, such that these polynomials

are invariant under the simultaneous conjugation of the r
matrices by any scalar matrix. This ring of invariants has

an explicit set T of generators, of size exp(r, n). Noether

Normalization shows that there exists a set T ′ of size

poly(r, n), such that T ′ generates a subring S ⊆ R, and

R is integral4 over S. Mulmuley shows that derandomizing

black-box PIT would yield an explicit such set T ′, and

because of the relations with algebraic geometry, conjectures

that finding such a set T ′ is hard. Mulmuley also derives

4A ring R is integral over a subring S, if for every r ∈ R, there is
some monic polynomial p(x) ∈ S[x] such that p(r) = 0. For example,
the algebraic integers are integral over Z, but Q is not integral over Z.

weaker results, for other rings, just from the assumption that

black-box PIT can be derandomized for diagonal circuits.

In this work, we give a quasi-polynomial hitting sets for

diagonal circuits (Theorem I.9), making some of Mulmuley’s

weaker results unconditional. More interestingly, in follow-

up work ( [4]), we improved Mulmuley’s reduction from

Noether Normalization to PIT in the case of the above ring R
of invariants, and showed that derandomizing PIT for read-

once oblivious ABPs is sufficient for finding any explicit set

T ′ of invariants generating the desired subring S. By using

the results of this paper (Theorem I.5), one can construct an

explicit set T ′ of size poly(n, r)log r, despite the conjectured

hardness of this problem.

Algebraically Natural Proofs: Razborov and

Rudich [37] defined the notion of a natural proof,
and showed that no natural proof can yield strong lower

bounds for many interesting boolean models of computation,

assuming widely believed conjectures in cryptography about

the existence of pseudorandom functions. Further, they

showed that this barrier explains the lack of progress in

obtaining such lower bounds, as essentially all of the lower

bound techniques known are natural in their sense.

In algebraic complexity, there is also a notion of an

algebraically natural proof, and essentially all known lower

bounds are natural in this sense (see [38] and [16, §3.9]).

However, there is no formal evidence to date that alge-

braically natural proofs cannot prove strong lower bounds,

as there are no candidate constructions for (algebraic) pseu-

dorandom functions. The main known boolean construction,

by Goldreich, Goldwasser and Micali [39], does not work

in the algebraic regime as the construction uses repeated

function composition, which results in a polynomial of ex-

ponential degree and as such does not fit in the framework of

algebraic complexity theory, which only studies polynomials

of polynomial degree.

In this work, we give limited informal evidence that some

variant of the GGM construction could yield an algebraically

natural proofs barrier. That is, Naor (see [40]) observed that

the GGM construction is superficially similar to Nisan’s [2]

pseudorandom generator, in that they both use recursive

trees of function composition. In this work, we give an

algebraic analogue of Nisan’s [2] boolean pseudorandom

generator, and as such use repeated function composition.

As in the naive algebraization of the GGM construction, a

naive implementation of our proof strategy would incur a

degree blow-up. While the blow-up would only be quasi-

polynomial, it would ultimately result in a hitting set of size

exp(lg3 S) for read-once oblivious ABPs of size S, instead

of the exp(lg2 S) that we achieve. To obtain this better

result, we introduce an interpolation trick that allows us to

control the degree blow-up, even though we use repeated

function composition. While this trick alone does not yield

the desired algebraic analogue of the GGM construction, it

potentially removes the primary obstacle to constructing an

247



algebraic analogue of GGM.

The Partial Derivative Method: Besides the natural

goal of obtaining the most general possible PIT result, the

problem of obtaining a black-box version of the algorithm of

Raz and Shpilka [1] is interesting because of the technique

used there. Roughly, the PIT algorithm of [1] works for any

model of computation that outputs polynomials whose space

of partial derivatives is (relatively) low-dimensional. Set-

multilinear ABPs, non-commutative ABPs, low-rank tensors,

and so called pure algebraic circuits (defined in Nisan

and Wigderson [23]) are all examples of algebraic models

that compute polynomials with that property, and so the

algorithm of [1] works for them. In some sense using

information on the dimension of partial derivatives of a given

polynomial is the most applicable technique when trying to

prove lower bounds for algebraic circuits (see e.g., [22],

[23], [41]–[44]) and so it was an interesting problem to

understand whether this powerful technique could be carried

over to the black-box setting. Prior to this work it was not

known how to use this low-dimensional property in order to

obtain a small hitting set, and this paper achieves this goal.

Earlier, in [21], we obtained a black-box algorithm for the

model of low-rank tensors, but could not prove that it also

works for the more general case of set-multilinear ABPs

(we still we do not know whether this is the case or not —

we discuss the similarities and differences between this and

our new algorithm below), so this work closes a gap in our

understanding of such low-dimensional models.

Non-commutative ABPs: While the primary focus of

algebraic complexity are polynomials over commutative

rings, it has proved challenging to prove lower bounds

in sufficiently powerful circuit models because any lower

bound would have to exclude any possible “massive cancel-

lation”. Thus, in recent years, attention has turned to non-

commutative computation, in the hopes that strong lower

bounds would be easier to obtain (see [22], [45]–[51]).

Similarly, the PIT problem has also been studied in

the non-commutative model. While the work of Raz and

Shpilka [1] establishes a white-box PIT algorithm for non-

commutative ABPs, the black-box PIT question for this

model is more intricate since one cannot immediately apply

the usual Schwartz-Zippel algorithm over non-commutative

domains. However, Bogdanov and Wee [52] showed how,

leveraging the ideas in the Amitsur-Levitzki theorem [53],

one can reduce non-commutative black-box PIT questions

to commutative black-box PIT questions. By then appealing

to Schwartz-Zippel, they give the first randomized algorithm

for non-commutative PIT. They also discussed the possibility

of derandomizing their result and raise a conjecture that if

true would lead to a hitting set of size ≈ slg
2 s for non-

commutative ABPs of size s. Our Theorem I.8 gives a

hitting set of size ≈ slg s and does not require unproven

assumptions.

In particular, their conjecture asked about the minimal size

of an ABP required to computed a polynomial identity of

n×n matrices. Recall that a polynomial identity of matrices

is a non-zero polynomial f(�x) such that no matter which

n×n matrices we substitute for the variables xi, f evaluates

to the zero matrix. Our work bypasses this conjecture, as we

instead give an improved reduction from non-commutative to

commutative computation, such that for ABPs the resulting

computation is set-multilinear. Our construction consists of

(D+1)×(D+1) strictly-upper-triangular matrices for depth

D non-commutative ABPs. It is also not hard to see that

there is a non-commutative formula of depth D + 1 which

is a polynomial identity for the space of (D+1)× (D+1)
strictly-upper-triangular matrices. Thus, our result is tight

in that it also illustrates that if we go just one dimension

up above what is obviously necessary then we can already

construct a hitting set.

In [54], Arvind, Mukhopadhyay and Srinivasan gave a

deterministic black-box algorithm for identity testing of

sparse non-commutative polynomials. The algorithm runs

in time polynomial in the number of variables, degree and

sparsity of the unknown polynomial. This is similar to the

running time achieved in the commutative setting for sparse

polynomials (see e.g., [17], [18]) and in particular it is better

than our quasi-polynomial time algorithm. On the other

hand our algorithm is more general and works for any non-

commutative polynomial that is computed by a small ABP.

We note that in the aforementioned [54], the au-

thors showed how to deterministically learn sparse non-

commutative polynomials in time polynomial in the number

of variables, degree and sparsity. In contrast, for such

polynomials our deterministic algorithm requires quasi-

polynomial time. For general non-commutative ABPs [54]

also obtained a deterministic polynomial time learning al-

gorithm, but here they need to have the ability to query

the ABP also at internal nodes and not just at the output

node. Our deterministic algorithm runs in quasi-polynomial

time but it does not need to query the ABP at intermediate

computations.
Previous Work: In a previous paper [21] we gave a

hitting set of quasi-polynomial size for the class of depth-3
set-multilinear polynomials. That result is mostly subsumed

by the generality of Theorem I.7, but the previous work

has a better dependence on some of the parameters. More

importantly, it is interesting to note that the proof in [21]

is also based on the same intuitive idea of preserving

dimension of linear spaces while reducing the number of

variables, but in order to prove the results in this paper

we had to take a different approach. At a high level the

difference can be described as follows. We now summarize

the algorithm of [21]. First the case of degree 2 is solved. In

this case the tensor is simply a bilinear map. For larger D,

the algorithm works by first reducing to the bivariate case

using the Kronecker substitution xi ← xni

for i ≤ D/2
and xi+D/2 ← yn

i

for 1 ≤ i ≤ D/2. Appealing now to the

248



bivariate case, we can take y to be some multiple of x, and

then undo the Kronecker substitution (and applying some

degree reduction) to recover a tensor on D/2 variables.

If we try to implement this approach with ABPs then

we immediately run into problems, as the previous work

requires that the layers of the ABP are commutative, in that

we can re-order the layers. While this is true for depth-3

set-multilinear computation, it is not true for general ABPs.

To generalize the ideas to general ABPs, this work respects

the ordering of the layers in the ABP. In particular, while

the previous work had a top-down recursion, this work

follows a bottom-up recursion. We merge variables in

adjacent levels of the ABP and then reduce the degree of

the resulting polynomial using an (algebraic rank) extractor.

We do this iteratively until we are left with a univariate

polynomial. Perhaps surprisingly, this gives a set that is

simpler to describe as compared to the hitting set in [21].

On the other hand, if we restrict ourselves to set-multilinear

depth-3 circuits then the hitting set of [21] is polynomially

smaller than the set that we construct here.

Independently and simultaneously with this work,

Agrawal, Saha and Saxena [7] obtained results on

black-box derandomization of PIT for small-depth set-

multilinear formulas, when the partition of the variables

into sets is unknown. They obtained a hitting set of size

exp((2h2 lg(s))h+1), for size s formulas of multiplicative-

depth h. We note that their model is both stronger and

weaker compared to the models that we consider here. On

the one hand, this model does not assume knowledge of

the partition of the variables, whereas our model assumes

this knowledge. On the other hand, they only handle small-

depth formulas, and indeed, the size of their hitting grows

doubly-exponentially in the depth, whereas our results

handle arbitrary set-multilinear formulas, according to their

definition, if we know the partition, and the size of the

hitting set grows quasi-polynomially with the depth5. Using

their results for set-multilinear formulas, Agrawal, Saha and

Saxena [7] also give a quasipolynomial-sized hitting set for

semi-diagonal circuits over large characteristic fields. Our

results, in particular our extension of Saxena’s [6] duality

to all fields, can help extend the results of [7] to small

characteristics as well.

We also mention that in [55], [56] Jansen, Qiao and

Sarma studied black-box PIT in various models related to

algebraic branching programs. Essentially, all these models

can be cast as a problem of obtaining black-box PIT for

read-once oblivious branching programs where each variable

5Their definition of set-multilinear formulas is actually that of a pure
formula (see [23]). It is not hard to see that pure formulas form a sub-
model of the set-multilinear ABPs we examine in this paper. That is, the
usual transformation from formulas to ABPs can be done preserving set-
multilinearity.

appears on a small number of edges. Their result gives a

hitting set of size (roughly) nO(k lg(k) lg(n)) when k is an

upper bound on the number of edges that a variable can

label and the ABP is of polynomial size. In comparison,

our Theorem I.5 gives a hitting set of size nO(lg(n)) and

works for k = poly(n) (as long as the size of the ABP is

polynomial in n). Our techniques are very different from

those of [55], which follows the proof technique of [57].

The later paper [56] use an algebraic analogue of the

Impagliazzo-Nisan-Wigderson [3] generator, as we do, but

the details are different.

D. Proof overview
The first step in our proof is to work with a normal form

for read-once oblivious ABPs. Specifically, an easy lemma

shows that any polynomial f computed in this model can

be written as6 f(�x) = (
∏

i∈�D� Mi(xi))(0,0), where each

Mi is a matrix whose entries are univariate polynomials in

the variable xi. Next, we observe that for purposes of a

stronger inductive hypothesis, we work with matrix-valued

polynomials computed as f(�x) =
∏

i∈�D� Mi(xi). With this

view in mind, we can now consider the recursion scheme.
At a high level, our hitting set can be viewed as a repeated

application (in parallel) of a “derandomized Kronecker prod-

uct”. That is, the usual Kronecker product allows us to merge

two variables (that is, we merge x and y by taking y ← xm

for large enough m) of a polynomial without losing any

information. Once a single variable remains, one can resort

to full-interpolation of this univariate polynomial. However,

this generic transformation rapidly increases the degree of

the polynomial and thus the final interpolation step requires

too many evaluations to yield a good hitting set.
For our hitting set, we first observe that in a read-once

oblivious ABP each layer has its own variable, so merging

two variables in adjacent layers results in the merging of

the two layers in the ABP. We then give a degree-reduction

procedure for the results of such merges. That is, given two

adjacent layers of our ABP, M(x) ∈ F[x]�r�×�r� and N(y) ∈
F[y]�r�×�r�, we first set y ← xn (where degM,N < n)

to obtain M(x)N(y) ≈ M(x)N(xn), where the right-hand

term is of degree ≈ n2. We then construct f, g ∈ F[z] of

degree < r2 such that M(x)N(xn) ≈ M(f(z))N(g(z)),
where the degree of the right-hand term is now ≈ nr2. Thus

we have that M(x)N(y) ≈M(f(z))N(g(z)), and we have

only increased the degree by ≈ r2. As r, the dimension

of the matrices (and the width of the ABP), stays constant

throughout this merging process, one can repeat this merging

process and have the degree of the polynomial scale linearly

with the number of mergings. To then fully leverage this

idea, we show that pairs of variables can be merged in

parallel.
To discuss our degree-reduction process, we first need to

state what it means for “M(x)N(xn) ≈M(f(z))N(g(z))”.

6We use �n� to denote {0, . . . , n− 1}.

249



In the Kronecker substitution, this equivalence typically

means that there is a bijection between monomials. We

will not use that notion, and instead will use a problem-

specific notion, related to linear algebra. Specifically, for

each α, β ∈ F, the matrix M(α)N(β) is some linear

transformation F�r� → F�r�. Ranging over all α and β,

we get a space of such transformations, which we extend

by linearity to a vector space of transformations. Crucially,

the polynomial M(x)N(y) is zero iff this vector space is

zero. More generally, we will show that this linear space

of transformations captures essentially all we need to know

about the polynomial M(x)N(y). Our degree reduction

lemma (using the Kronecker substitution, and then doing

the degree reduction) finds two curves f, g ∈ F[z] of degree

< r2 such that the space of linear transformations induced by

M(x)N(y) is the same as the space of linear transformations

induced by M(f(z))N(g(z)). Namely, the space spanned by

M(x)N(y), where we range over all assignments to (x, y) is

the same as the spaces spanned by M(f(z))N(g(z)), where

we range over all assignments to z. It follows then that

M(x)N(y) ≈ M(f(z))N(g(z)), and so we have merged

two variables without increasing the degree too much.

To find such curves, we use a (seeded) rank extractor.

That is, the n2 matrices defined by the coefficients of

M(x)N(y) live in an r2-dimensional space, so we seek to

map these n2 vectors to a smaller space while preserving

rank. Gabizon and Raz [58] established such a lemma, and

our prior work [21] improved the parameters in their lemma.

Crucially, these rank extractors have the form such that

the maps they define correspond to polynomial evaluations.

Thus, these extractors establish (for most values of the seed)

an explicit small set of evaluation points where the span of

M(x)N(y) is preserved.

While the strategy above will succeed, it will be deficient

as the resulting hitting set will be quasi-polynomially larger

than desired, and each point in the hitting set will be

quasi-polynomially explicit, instead of being polynomially

explicit. This deficiency arises from repeated function com-

position, as we now explain by example. Consider a depth

4, read-once oblivious ABP, written as M(x, y, z, w) :=
A(x)B(y)C(z)D(w), where A,B,C,D are r × r matri-

ces with entries that are univariate polynomials degree

< n. After the first step we have A(x)B(y)C(z)D(w) ≈
A(f(x′))B(g(x′))C(f(y′))D(g(y′)) for two new variables

x′ and y′. Viewing this matrix product as a read once

oblivious ABP in the two variables x′ and y′, we can repeat

the variable merging procedure, to obtain

A(x)B(y)C(z)D(w) ≈ A(f(x′))B(g(x′))C(f(y′))D(g(y′))
≈ A((f ◦ f)(x′′))B((g ◦ f)(x′′))

C((f ◦ g)(x′′))D((g ◦ g)(x′′)),

for a new variable x′′. While this reduction is desirable, as

we can now fully interpolate the single final variable x′′

to obtain a hitting set, the degree in the final x′′ is r2 ·
r2 = r4, instead of remaining r2. That is, to reduce from

D variables to a single variable, we will use at least lgD
compositions of the f, g polynomials, yielding a degree of at

least rΩ(lgD). As there are lgD levels of recursion, and each

requires a seed matching the degree of the ABPs, this will

imply that the resulting hitting set is of size rΩ(lg2 D), which

is larger than what we achieve in this work. Further, this

hitting set is not even polynomially explicit, as computing it

requires evaluating polynomials of quasipolynomial degree,

which potentially requires quasipolynomial bit-length when

computing over the rationals.
Such degree blow-up seems inherent in this naive compo-

sition method, so the “extract and recurse” paradigm by itself

is insufficient for an algebraic analogue of boolean results in

space-bounded derandomization. To overcome this, we avoid

treating M ′(x′, y′) := A(f(x′))B(g(x′))C(f(y′))D(g(y′))
as a entirely generic ABP, and recognize that function

composition has occurred, and that we know precisely what

those functions are. That is, the extractor will give a seed β,

and a poly(r) set of points P ′
β ⊆ F2 such that the span of

M ′(x′, y′) is equal to the span of M ′|P ′
β

, for most values of

β. However, realizing that x′, y′ define values of x, y, z, w
via the known curves f, g, we can use the points P ′

β to

construct a new set of points Pβ ⊆ F4 such that the span

of M(x, y, z, w) is equal to the span of M |Pβ
for most

values of β. Finally, we can then interpolate curves in a new

variable x′′ to pass through the points Pβ , and these curves

will be of degree |Pβ |. Noting that |Pβ | = |P ′
β | = poly(r),

and that this poly(r) is the number of samples of the

extractor, which only depends on the width of the ABPs

considered, and this width never changes, we see that there

is no degree blow-up throughout the recursion.
To achieve better results when the width r of the ABP

is small, we keep the paradigm from above, but change the

branching factor of the recursion. That is, in the above recur-

sion we merged pairs of variables at each level, so that if we

start with D variables we need lgD levels of recursion, and

the curves involved will have poly(r) degree. By changing to

a branching factor of B, we use logB D levels of recursion,

and the curves involved will have ≈ poly(r)B degree. As

the number of levels in the recursion equals the number

of seeds we use, and the degree of the curves (along with

the degree n of the ABP) governs the number of values to

try for each seed, we can see that choosing B = logr D
yields lgD/ lg lgD · lg r seeds, and each seed will take

poly(n,D) values. For r = O(1), this yields a hitting set of

size poly(n,D)O(lgD/ lg lgD).
In the boolean regime, changing the branching factor of

recursion in the pseudorandom generators of Nisan [2] or

Impagliazzo-Nisan-Wigderson [3] is not known to achieve

such savings. This seems to be because each application of

the extractor (viewed as an averaging sampler) has a sample

complexity that depends on the total number of variables in

250



the branching program, which is needed so the error does not

become too large. It follows that increasing the branching

factor simply multiples the seed length by B/ lgB, which

only becomes worse as B increases. In contrast, the rank

extractor used here has a sample complexity that depends

only on the width of the ABP, and the number of total

variables only affects the extractor in the number of seeds

needed. Thus, the seed-length grows as (B lg r + lg n +
lgD) lgD/ lgB, which allows us to balance parameters by

taking B lg r ≈ lgD.

II. ACKNOWLEDGMENTS

Much of this work was done when the first author was

visiting the second author at the Technion, some while the

first author was an intern at Microsoft Research Silicon Val-

ley. We would like to thank Andy Drucker, Omer Reingold,

Ramprasad Saptharishi, Ilya Volkovich and Sergey Yekhanin

for some helpful conversations. We thank Ketan Mulmuley

for sharing [5] with us. We thank Ramprasad for allowing us

to include his result on evaluation dimension here. We also

thank Avi Wigderson for raising the question of whether our

technique could yield better results for the bounded width

case.

REFERENCES

[1] R. Raz and A. Shpilka, “Deterministic polynomial iden-
tity testing in non-commutative models,” Computational
Complexity, vol. 14, no. 1, pp. 1–19, 2005.

[2] N. Nisan, “Pseudorandom generators for space-bounded com-
putation,” Combinatorica, vol. 12, no. 4, pp. 449–461, 1992.

[3] R. Impagliazzo, N. Nisan, and A. Wigderson, “Pseudoran-
domness for network algorithms,” in Proceedings of the 26th
annual STOC, 1994, pp. 356–364.

[4] M. A. Forbes and A. Shpilka, “Explicit noether normalization
for simultaneous conjugation via polynomial identity test-
ing,” Electronic Colloquium on Computational Complexity
(ECCC), vol. 20, p. 33, 2013.

[5] K. Mulmuley, “Geometric complexity theory V: Equiva-
lence between blackbox derandomization of polynomial iden-
tity testing and derandomization of Noether’s normalization
lemma,” in FOCS, 2012, pp. 629–638.

[6] N. Saxena, “Diagonal circuit identity testing and lower
bounds,” in ICALP (1), 2008, pp. 60–71.

[7] M. Agrawal, C. Saha, and N. Saxena, “Quasi-polynomial
hitting-set for set-depth-Δ formulas,” Electronic Colloquium
on Computational Complexity (ECCC), vol. 19, no. 113,
2012.

[8] A. Klivans and A. Shpilka, “Learning restricted models of
arithmetic circuits.” Theory of computing, vol. 2, no. 10, pp.
185–206, 2006.

[9] R. Zippel, “Probabilistic algorithms for sparse polynomials,”
in EUROSAM, 1979, pp. 216–226.

[10] J. T. Schwartz, “Fast probabilistic algorithms for verification
of polynomial identities,” J. ACM, vol. 27, no. 4, pp. 701–
717, 1980.

[11] J. Heintz and C. P. Schnorr, “Testing polynomials which are
easy to compute (extended abstract),” in Proceedings of the
12th annual STOC, 1980, pp. 262–272.

[12] M. Agrawal, “Proving lower bounds via pseudo-random gen-
erators,” in Proceedings of the 25th FSTTCS, ser. LNCS, vol.
3821, 2005, pp. 92–105.

[13] V. Kabanets and R. Impagliazzo, “Derandomizing polyno-
mial identity tests means proving circuit lower bounds,”
Computational Complexity, vol. 13, no. 1-2, pp. 1–46, 2004.

[14] Z. Dvir, A. Shpilka, and A. Yehudayoff, “Hardness-
randomness tradeoffs for bounded depth arithmetic circuits,”
SIAM J. on Computing, vol. 39, no. 4, pp. 1279–1293, 2009.

[15] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in P,”
Annals of Mathematics, vol. 160, no. 2, pp. 781–793, 2004.

[16] A. Shpilka and A. Yehudayoff, “Arithmetic circuits: A survey
of recent results and open questions,” Foundations and Trends
in Theoretical Computer Science, vol. 5, no. 3-4, pp. 207–388,
2010.

[17] M. Ben-Or and P. Tiwari, “A deterministic algorithm
for sparse multivariate polynominal interpolation,” in
Proceedings of the 20th Annual STOC, 1988, pp. 301–309.

[18] A. Klivans and D. Spielman, “Randomness efficient identity
testing of multivariate polynomials,” in Proceedings of the
33rd Annual STOC, 2001, pp. 216–223.

[19] N. Saxena and C. Seshadhri, “Blackbox identity testing for
bounded top fanin depth-3 circuits: the field doesn’t matter,”
in Proceedings of the 43rd Annual STOC, 2011, pp. 431–440.

[20] M. Anderson, D. van Melkebeek, and I. Volkovich, “Deran-
domizing polynomial identity testing for multilinear constant-
read formulae,” in Proceedings of the 26th Annual CCC,
2011, pp. 273–282.

[21] M. A. Forbes and A. Shpilka, “On identity testing of tensors,
low-rank recovery and compressed sensing,” in Proceedings
of the 44th annual STOC, 2012, pp. 163–172.

[22] N. Nisan, “Lower bounds for non-commutative computation,”
in Proceedings of the 23rd Annual STOC, 1991, pp. 410–418.

[23] N. Nisan and A. Wigderson, “Lower bound on arithmetic
circuits via partial derivatives,” Computational Complexity,
vol. 6, pp. 217–234, 1996.

[24] C. Saha, R. Saptharishi, and N. Saxena, “A case of depth-3
identity testing, sparse factorization and duality,” Electronic
Colloquium on Computational Complexity (ECCC), vol. 18,
p. 21, 2011.

[25] R. Saptharishi, 2012, private communication.

[26] R. Raz and O. Reingold, “On recycling the randomness of
states in space bounded computation,” in Proceedings of the
31st annual STOC, 1999, pp. 159–168.

251



[27] S. P. Vadhan, “Pseudorandomness,” Foundations and Trends
in Theoretical Computer Science, vol. 7, no. 1-3, pp. 1–336,
2012.

[28] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayoff, “Pseu-
dorandomness for width-2 branching programs,” Theory of
Computing, vol. 9, pp. 283–293, 2013.

[29] J. Sı́ma and S. Zák, “Almost k-wise independent sets establish
hitting sets for width-3 1-branching programs,” in CSR, 2011,
pp. 120–133.

[30] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. P.
Vadhan, “Better pseudorandom generators from milder pseu-
dorandom restrictions,” in FOCS, 2012, pp. 120–129.

[31] M. Braverman, A. Rao, R. Raz, and A. Yehudayoff, “Pseu-
dorandom generators for regular branching programs,” in
Proceedings of the 51st annual FOCS, 2010, pp. 40–47.

[32] J. Brody and E. Verbin, “The coin problem and pseudoran-
domness for branching programs,” in Proceedings of the 51st
annual FOCS, 2010, pp. 30–39.

[33] M. Koucký, P. Nimbhorkar, and P. Pudlák, “Pseudorandom
generators for group products: extended abstract,” in STOC,
2011, pp. 263–272.

[34] A. De, “Pseudorandomness for permutation and regular
branching programs,” in IEEE Conference on Computational
Complexity, 2011, pp. 221–231.

[35] T. Steinke, “Pseudorandomness for permutation branching
programs without the group theory,” Electronic Colloquium
on Computational Complexity (ECCC), vol. 19, p. 83, 2012.

[36] K. Mulmuley, “Geometric complexity theory V: Equiva-
lence between blackbox derandomization of polynomial iden-
tity testing and derandomization of Noether’s normalization
lemma,” arXiv, vol. abs/1209.5993, 2012, full version of the
FOCS 2012 paper.

[37] A. A. Razboeov and S. Rudich, “Natural proofs,” J. of
Computer and System Sciences, vol. 55, no. 1, pp. 24–35,
1997.

[38] S. Aaronson, “Arithmetic natural proofs theory
is sought,” 2008, http://scottaaronson.com/blog/?p=336.
[Online]. Available: http://scottaaronson.com/blog/?p=336

[39] O. Goldreich, S. Goldwasser, and S. Micali, “How to con-
struct random functions,” J. ACM, vol. 33, no. 4, pp. 792–
807, 1986.

[40] O. Reingold. (2013) Research-life stories — Omer Reingold.
http://windowsontheory.org/2013/02/13/research-life-stories-
omer-reingold/. [Online]. Available: http://windowsontheory.
org/2013/02/13/research-life-stories-omer-reingold/

[41] R. Raz, “Separation of multilinear circuit and formula size,”
Theory of Computing, vol. 2, no. 1, pp. 121–135, 2006.

[42] ——, “Multi-linear formulas for permanent and determinant
are of super-polynomial size,” J. ACM, vol. 56, no. 2, 2009.

[43] R. Raz, A. Shpilka, and A. Yehudayoff, “A lower bound for
the size of syntactically multilinear arithmetic circuits,” SIAM
J. on Computing, vol. 38, no. 4, pp. 1624–1647, 2008.

[44] R. Raz and A. Yehudayoff, “Lower bounds and separa-
tions for constant depth multilinear circuits,” Computational
Complexity, vol. 18, no. 2, pp. 171–207, 2009.

[45] S. Chien and A. Sinclair, “Algebras with polynomial identities
and computing the determinant,” SIAM J. on Computing,
vol. 37, pp. 252–266, 2007.

[46] V. Arvind, P. S. Joglekar, and S. Srinivasan, “Arithmetic Cir-
cuits and the Hadamard Product of Polynomials,” in FSTTCS,
2009, pp. 25–36.

[47] V. Arvind and S. Srinivasan, “On the hardness of the noncom-
mutative determinant,” in Proceedings of the 42nd Annual
STOC, 2010, pp. 677–686.

[48] P. Hrubeš, A. Wigderson, and A. Yehudayoff, “Non-
commutative circuits and the sum-of-squares problem,” in
Proceedings of the 42nd Annual ACM Symposium on Theory
of Computing (STOC), 2010, pp. 667–676.

[49] S. Chien, P. Harsha, A. Sinclair, and S. Srinivasan, “Almost
settling the hardness of noncommutative determinant,” in
Proceedings of the 43rd annual STOC, 2011, pp. 499–508.

[50] P. Hrubeš, A. Wigderson, and A. Yehudayoff, “Relationless
completeness and separations,” in Proceedings of the 25th
Conference on Computational Complexity, 2010, pp. 280–
290.

[51] P. Hrubeš and A. Yehudayoff, “Formulas are exponentially
stronger than monotone circuits in non-commutative set-
ting,” Electronic Colloquium on Computational Complexity
(ECCC), vol. 19, p. 61, 2012.

[52] A. Bogdanov and H. Wee, “More on noncommutative poly-
nomial identity testing,” in Proceedings of the 20th Annual
IEEE Conference on Computational Complexity, 2005, pp.
92–99.

[53] S. A. Amitsur and J. Levitzki, “Minimal identities for al-
gebras,” Proceedings of the of the American Mathematical
Society, vol. 1, pp. 449–463, 1950.

[54] V. Arvind, P. Mukhopadhyay, and S. Srinivasan, “New results
on noncommutative and commutative polynomial identity
testing,” Computational Complexity, vol. 19, no. 4, pp. 521–
558, 2010.

[55] M. Jansen, Y. Qiao, and J. Sarma, “Deterministic identity
testing of read-once algebraic branching programs,” CoRR,
vol. abs/0912.2565, 2009.

[56] M. J. Jansen, Y. Qiao, and J. M. N. Sarma, “Deterministic
black-box identity testing π-ordered algebraic branching pro-
grams,” in Proceedinds of FSTTCS, 2010, pp. 296–307.

[57] A. Shpilka and I. Volkovich, “Improved polynomial iden-
tity testing for read-once formulas,” in APPROX-RANDOM,
2009, pp. 700–713.

[58] A. Gabizon and R. Raz, “Deterministic extractors for affine
sources over large fields,” Combinatorica, vol. 28, no. 4, pp.
415–440, 2008.

252


