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Abstract—Let P be an affine invariant property of
multivariate functions over a constant size finite field. We
show that if P is locally testable with a constant number of
queries, then one can estimate the distance of a function
f from P with a constant number of queries. This was
previously unknown even for simple properties such as
cubic polynomials over the binary field.

Our test is simple: take a restriction of f to a constant
dimensional affine subspace, and measure its distance from
P. We show that by choosing the dimension large enough,
this approximates with high probability the global distance
of f from P. The analysis combines the approach of Fischer
and Newman [SIAM J. Comp 2007] who established a
similar result for graph properties, with recently developed
tools in higher order Fourier analysis, in particular those
developed in Bhattacharyya et al. [STOC 2013].
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I. INTRODUCTION

Blum, Luby, and Rubinfeld [1] observed that given

a function f : Fn
p → Fp, it is possible to inquire the

value of f on a few random points, and accordingly

probabilistically distinguish between the case that f is

a linear function and the case that f has to be modified

on at least ε > 0 fraction of points to become a linear

function. Inspired by this observation, Rubinfeld and

Sudan [2] defined the concept of property testing which

is now a major area of research in theoretical computer

science. Roughly speaking, to test a function for a

property means to examine the value of the function on

a few random points, and accordingly (probabilistically)

distinguish between the case that the function has the

property and the case that it is not too close to any

function with that property.

The focus of our work is on testing properties of mul-

tivariate functions over finite fields. Fix a prime p � 2
and an integer R � 2 throughout. Let F = Fp be a prime

field and [R] = {0, . . . , R− 1}. We consider properties

of functions f : Fn → [R]. We are interested in testing

the distance of a function f : Fn → [R] to a property.

Here the distance corresponds to the minimum fraction

of the points on which the function can be modified in

order to satisfy the property. Fischer and Newman [3]

showed that it is possible to estimate the distance from

a graph to any given testable graph property. In this

article we extend this result to the algebraic setting of

affine-invariant properties on functions f : Fn → [R].
Furthermore we show that the Fischer-Newman test can

be replaced by a more natural one: pick a sufficiently

large subgraph H randomly and estimate the distance of

H to the property. Analogously, in our setting, we pick

a sufficiently large affine subspace of Fn randomly, and

measure the distance of the restriction of the function

to this subspace from the property.

A. Testability
Given a property P of functions in {Fn → [R] | n ∈

N}, we say that f : Fn → [R] is ε-far from P if

min
g∈P

Pr
x∈Fn

[f(x) �= g(x)] > ε,

and we say that it is ε-close otherwise. We assume

throughout the paper that the field F and range R
are fixed, and n is going to infinity. In particular,

any quantities (for example q(ε) defined below) may

implicitly depend on F, R.

Definition I.1 (Testability). A property P is said to
be testable (with two-sided error) if there is a function
q : (0, 1)→ N and an algorithm T that, given as input
a parameter ε > 0 and oracle access to a function
f : Fn → [R], makes at most q(ε) queries to the oracle
for f , accepts with probability at least 2/3 if f ∈ P
and rejects with probability at least 2/3 if f is ε-far
from P .

Note that if we do not require any restrictions on P ,

then the algebraic structure of F
n becomes irrelevant,

and F
n would be treated as a generic set of size |F|n.

To take the algebraic structure into account, we have to

require certain “invariance” conditions.
We say that a property P ⊆ {Fn → [R] | n ∈ N}

is affine-invariant if for any f ∈ P and any affine
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transformation A : Fn → F
n, we have Af := f ◦A ∈ P

(an affine transformation A is of the form L+ c where

L is linear and c is a constant vector in F
n). Some well-

studied examples of affine-invariant properties include

Reed-Muller codes (in other words, bounded degree

polynomials) [4], [5], [6], [7], [8] and Fourier sparsity

[9]. In fact, affine invariance seems to be a common

feature of most interesting properties that one would

classify as “algebraic”. Kaufman and Sudan in [10]

made explicit note of this phenomenon and initiated

a general study of the testability of affine-invariant

properties (see also [11]). In particular, they asked for

necessary and sufficient conditions for the testability

of affine-invariant properties. This question initiated

an active line of research, which have led to a near

complete characterization of testable affine invariant

properties over constant-sized fields, at least in the

regime of one-sided error [12], [13], [14], [15], [16],

[17].
It is not difficult to see that for affine-invariant proper-

ties testability has an equivalent “non-algorithmic” def-

inition through the distribution of restrictions to affine

subspaces. We will describe a restriction of F
n to an

affine subspace of dimension k by an affine embedding

A : Fk → F
n (an affine embedding is an injective affine

transformation). The restriction of f : Fn → [R] to the

subspace is then given by Af : Fk → [R].

Proposition I.2. An affine-invariant property P is
testable if and only if for every ε > 0, there exist a
constant k and a set H ⊆ {Fk → [R]}, such that for a
function f : Fn → [R] and a random affine embedding
A : Fk → F

n the following holds. If f ∈ P , then

Pr[Af ∈ H] > 2/3,

and if f is ε-far from P , then

Pr[Af �∈ H] > 2/3.

B. Our contribution
For a property P and a positive real δ, let Pδ denote

the set of all functions that are δ-close to the property.

Our main result is the following theorem.

Theorem I.3. For every testable affine-invariant prop-
erty P and every δ > 0, the property Pδ is testable.

Theorem I.3 says that for every ε, δ > 0 one can

probabilistically distinguish between functions that are

δ-close to the property and the functions that are (δ+ε)-
far from the property using only a constant number

of queries (the constant is allowed to depend on the

property P and on ε, δ). In fact the test is very natu-

ral. We show that there exists a constant kε,δ,P such

that for a random affine embedding A : F
k → F

n,

with probability at least 2/3, dist(Af,P) provides

a sufficiently accurate estimate of dist(f,P). Hence

our test will be the following: Pick a random affine

embedding A : F
k → F

n. If dist(Af,P) < δ + ε
2

accept, otherwise reject. This corresponds to taking

H =
{
h : Fk → [R] | dist(h,P) � δ + ε

2

}
in Propo-

sition I.2.

We note that previously it was unknown if one can

test distance to even simple properties, such as cubic

polynomials over F2. The reason was that one specific

natural test (the Gowers norm, or derivatives test) was

shown not to perform well for such properties. Our work

shows that a natural test indeed works, albeit the number

of queries have to grow as a function of ε (a stronger

possibility is to have a constant number of queries, and

acceptance probability which depends on ε). We do not

know if this is necessary for simple properties, such as

cubic polynomials over F2, and leave this as an open

problem.

On a technical level, our work combines two tech-

nologies developed in previous works. The first is the

work of Fischer and Newman [3] which obtained similar

results for graph properties. The second is higher order

Fourier analysis, in particular a recent strong equidistri-

bution theorem established in Bhattacharyya et al. [17].

From a high level, the approach for the graph case

and the affine-invariant case are similar. One applies

a regularization process, which allows to represent a

graph (or a function) by a small structure. Then, one

argues that a large enough random sample of the graph

or function should have a similar small structure repre-

senting it. Hence, properties of the main object can be

approximated by properties of a large enough sample

of it. Fischer and Newman [3] implemented this idea

in the graph case. We follow a similar approach in the

algebraic case, which inevitably introduces some new

challenges. One may see this result as an outcome of

the large body of work on higher-order Fourier analysis

developed in recent years. Once the machinery was

developed, we can now apply it in various frameworks

which were not accessible previously.

II. PROOF OVERVIEW

For lack of space, we only give a high level proof

overview in this extended abstract. The full paper is

available online [18].

Let R = 2 for the simplicity of exposition, e.g. we

consider functions f : Fn → {0, 1}. Let P be an affine

invariant property of functions {Fn → {0, 1} : n ∈ N}
which is locally testable, and fix ε, δ > 0. We want to

show that there exists an m (which depends only on
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P, ε, δ) such that the following holds. Let f : Fn →
{0, 1} be a function, and let f̃ be the restriction of the

function to a random m-dimensional affine subspace of

F
n. Then

• Completeness: If f is δ-close to P then, with high

probability, f̃ is (δ + ε/2)-close to P .

• Soundness: If f is (δ + ε)-far from P then, with

high probability, f̃ is (δ + ε/2)-far from P .

Once we show that we are done, as the local test

computes the distance of f̃ from P . If it is below δ+ε/2
we declare that f is δ-close to P; otherwise we declare

it is (δ + ε)-far from P . The test correctness follows

immediately from the completeness and soundness. We

next argue why these hold.

Let us first fix notations. Let A : Fm → F
n be a

random full rank affine transformation. Then, a restric-

tion of f to a random m-dimensional affine subspace

can be equivalently described by f̃ = Af . The proof of

the completeness is simple. If f is δ-close to a function

g : Fn → {0, 1} which is in P , then with high probabil-

ity over a random restriction, the distance of Af and Ag
is also at most δ+om(1). This is true because a random

affine subspace is pairwise independent with regards to

whether an element is contained in it. This, combined

with Chebyshev’s inequality implies the result. Then, by

choosing m large enough we get the error term down

to ε/2.

The main work (as in nearly all works in property

testing) is to establish soundness. That is, we wish to

show that if a function f is far from P then, with high

probability, a random restriction of it is also from from

the property. The main idea is to show that if for a

typical restriction Af is δ-close to a function h : Fm →
{0, 1} which is in P , then h can be “pulled back” to

a function g : Fn → {0, 1} which is both roughly δ-

close to f and also very close to P . This will contradict

our initial assumption that f is (δ + ε)-far from P . In

order to do so we apply the machinery of higher order

Fourier analysis. The first description will hide various

“cheats” but will present the correct general outline. We

then note which steps need to be fixed to make this

argument actually work.

First, we apply the assumption that P is locally

testable to derive there exist a constant dimension

k = k(P, ε) so that a random restriction to a k-

dimensional subspace can distinguish functions in P
from functions which are ε/4-far from P . We want to

decompose f to “structured” parts which we will study,

and “pseudo-random” parts which do not affect the

distribution of restrictions to k-dimensional subspaces.

In order to do so, for a function f : F
n → {0, 1}

define by μf,k the distribution of its restriction to k-

dimensional subspaces. That is, for v : Fk → {0, 1}
let

μf,k[v] = Pr
A
[Af = v].

We need to slightly generalize this definition to func-

tions where the output f(x) can be random. In our

context, a randomized function is a function f : Fn →
[0, 1], which describes a distribution over functions

f ′ : F
n → {0, 1}, where for all x independently

Pr[f ′(x) = 1] = f(x). We extend the definition of μf,k

to randomized functions by μf,k[v] = EA,f ′ μf ′,k[v].
By our definition, if two functions f, g : Fn → [0, 1]
have distributions μf,k and μg,k close in statistical dis-

tance, then random restrictions to k-dimensional affine

subspaces cannot distinguish f from g. This will be

useful in the analysis of the soundness.

We next decompose our function f based on the

above intuition. The formal notion of pseud-randomness

we use is that of Gowers uniformity. Informally, the d-

th Gowers uniformity norm (denoted ‖·‖Ud ) measures

correlation with polynomials of degree less than d.

However, it turns to capture much more than that. For

example, one can show that by choosing d large enough

(d = pk suffices) then for any functions f, g : Fn →
[0, 1], if ‖f − g‖Ud is small enough then μf,k and μg,k

are close in statistical distance. Thus, it makes sense to

approximate f as

f = f1 + f2

where f1 is structured (to be explained soon) and

‖f2‖Ud is small enough. This will allow us to replace f
with f1 for the purposes of analyzing its restrictions to

k-dimensional subspaces. The structure of f1 is as fol-

lows: it is a function of a constant number C = C(P, ε)
of polynomials of degree less than d. That is,

f1(x) = Γ(P1(x), . . . , PC(x)),

where P1, . . . , PC are polynomials and Γ : FC → {0, 1}
is some function (not necessarily a low degree polyno-

mial). The benefit of this decomposition is that f1 is

“dimension-less” in the sense that Γ does not depend

on n; however, the polynomials P1, . . . , PC do depend

on n. One can however “regularize” these polynomials

in order to obtain “random-looking” (or high rank) poly-

nomials. It can be shown that all properties of high rank

polynomials are governed just by their degree (which is

at most d), hence essentially the entire description of f1
does not depend on n.

The next step is to show that the same type of

decomposition can be applied to the restriction Af of
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f . Clearly, Af = Af1 + Af2. We show that with high

probability over the choice of A,

• Af1 = Γ(Q1(x), . . . , QC(x)) where Qi = APi

are the restrictions of P1, . . . , PC ; and Q1, . . . , QC

are still of “high enough rank” to behave like

random polynomials.

• ‖Af2‖Ud≈ ‖f2‖Ud so we can still approximate

Af ≈ Af1 with respect to the distribution of their

restrictions to random k-dimensional subspaces.

We next apply the same decomposition process to

h, which we recall is the assumed function (in m
variables) which is (δ+ ε/2)-close to Af . By choosing

the conditions of regularity of h slightly weaker than

those of f (but still strong enough), we get that we can

decompose

h = h1 + h2

where

h1(x) = Γ′(Q1(x), . . . , QC′(x))

for some C ′ > C and ‖h2‖Ud is very small. The

important aspect here is that, we can approximate h
by the structured function h1, and moreover that the

polynomials Q1, . . . , QC which compose Af1 are part

of the description of h1. That is, both Af1 and h1 can

be defined in terms of the same basic building blocks

(high rank polynomials Q1, . . . , QC).

The next step is to “pull back” h to a function

defined on F
n. An easy first step is to pull back h1. We

need to define for C < i � C ′ pullback polynomials

Pi : F
n → {0, 1} of Qi : F

n → {0, 1} such that both

Qi = APi; and such that P1, . . . , PC′ are of high rank.

This can be done for example by letting Pi = DQi for

any affine map D : Fn → F
m for which AD is the

identity map on F
m. This provides a pull-back φ of the

“coarse” description of f1 of h1, but does not in general

generate a function close to f (it makes sense, since we

still haven’t used the finer “pseudo-random” structure

of f ). Formally, we set φ(x) = Γ′(P1(x), . . . , PC′(x)).
However, we can already show something about φ: it is

very close to P . More concretely, its distribution over

restrictions to d-dimensional subspaces is very close to

that of h. Hence, the tester which distinguishes function

in P from those (ε/4)-far from P cannot distinguish φ
from functions in P , hence φ must be (ε/4)-close to P .

The next step is to define a more refined pull-back of

f . Define an atom as a subset {x ∈ F
n : P1(x) =

a1, . . . , PC′(x) = aC′} for values a1, . . . , aC′ ∈ F.

Note that the functions f1, h1 are constant over atoms.

We next define ψ : Fn → [0, 1] by redefining φ inside

each atom, so that the average over the atoms of φ, ψ
is the same, but such that ψ is as close as possible to

f given this constraint. For example, if in an atom the

average of f is higher than the value φ assigns to this

atom (and so it needs to be reduced to match φ), we

set for all x in this atom ψ(x) = 0 if φ(x) = 0 and

ψ(x) = α if f(x) = 1, where α is appropriately chosen

so that the averages match. We then show that ψ is a

proper pull-back of h in the sense that

• The distance between f, ψ is very close to the

distance between Af, h, which we recall is at most

δ + ε/2.

• ψ is nearly ε + 4 close to P in the distributional

sense.

To finalize, we show that sampling a function g : Fn →
{0, 1} based on ψ has the same properties, which shows

that f is not (δ + ε)-far from P .
Let us remark on a few technical points overlooked in

the above description. First, there are the exact notions

of “high rank polynomials”. It turns that in order to

make this entire argument work, one needs to consider

more general objects, called non-classical polynomials.

We rely on a series of results on the distributional

properties of high-rank non-classical polynomials, in

particular these recently established in [17]. Also, the

decomposition theorems are actually to three parts,

f = f1 + f2 + f3,

where f1 is structured as before, ‖f2‖2 is somewhat

small (but not very small) and ‖f3‖Ud is very small.

This requires a somewhat more refined analysis to make

the argument work, but does not create any significant

change in the proof outline as described above.

III. COMPARISON WITH GRAPH PROPERTY TESTING

The main outline of our proof follows closely that

of Fischer and Newman [3]. They study graph proper-

ties, where decompositions are given by the Szemerédi

regularity lemma. Their test, in the notation above, can

be described as measuring the distance between Γ and

all potential Γ′ which can be achieved from graphs

that have the property. Our argument (when applied to

graph properties instead of affine invariant properties)

shows that a much more natural test achieves the

same behaviour: choose a random small subgraph and

measure its distance from the property. In quantitative

terms it is hard to compare the two results, as both

get outrageous bounds coming from the bounds in the

regularity lemma. So, we view this part of our work as

having contribution in the simplicity of the test, and not

in terms of the simplicity of the proof or the quantitative

bounds (which are both very similar).
The more challenging aspect of our work is to take

this approach and carry it out in the affine invariant
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settings. The main reason is that in the affine invariant

setup the structural parts have more structure in them

than in the graph setting. In the graph setup, the struc-

ture of a graph can be represented by a constant size

graph with weighted edges. In the affine invariant case,

the structured part is a constant size function applied to

polynomials. However there will be no constant bound
on the number of variables, and they can grow as n
grows. So, at first glance, these “compact descriptions”

have sizes which grow with the input size; this is

very different from the graph case. The reason these

compact descriptions are useful is because, as long

as the polynomials participating in them are “random

enough”, then their exact definitions do not matter,

just a few simple properties of them (their degree, and

“depth” for non-classical polynomials). This is fueled

by the recent advances on higher-order Fourier analysis.

In essence, the state of the art has reached a stage

where these tools are powerful enough to simulate the

counterpart arguments which were initially developed

in the context of graph properties.

IV. OPEN PROBLEMS

As we mentioned, the ultimate goal of this line

of work is to achieve a complete understanding of

algebraic property testing, analogously to the complete

understanding we have for (dense) graph property test-

ing, at least in qualitative terms. Still, the affine invariant

case is more complex, and there are some problems

which we do not know yet how to handle. For example,

• A complete classification of one-sided testable

properties (e.g. can properties of “infinite complex-

ity” be locally testable?); See [17]

• A complete classification of two-sided testable

properties.

• Properties where any non-trivial distance from

them can be witnessed by a constant number of

queries (also called correlation testing [19]). For

example, can one test correlation to cubics over

F2 using a constant number of queries?
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