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Abstract—Multi-armed bandit problems are the predomi-
nant theoretical model of exploration-exploitation tradeoffs in
learning, and they have countless applications ranging from
medical trials, to communication networks, to Web search
and advertising. In many of these application domains the
learner may be constrained by one or more supply (or budget)
limits, in addition to the customary limitation on the time
horizon. The literature lacks a general model encompassing
these sorts of problems. We introduce such a model, called
“bandits with knapsacks”, that combines aspects of stochas-
tic integer programming with online learning. A distinctive
feature of our problem, in comparison to the existing regret-
minimization literature, is that the optimal policy for a given
latent distribution may significantly outperform the policy that
plays the optimal fixed arm. Consequently, achieving sublinear
regret in the bandits-with-knapsacks problem is significantly
more challenging than in conventional bandit problems.

We present two algorithms whose reward is close to the
information-theoretic optimum: one is based on a novel “bal-
anced exploration” paradigm, while the other is a primal-
dual algorithm that uses multiplicative updates. Further, we
prove that the regret achieved by both algorithms is optimal
up to polylogarithmic factors. We illustrate the generality
of the problem by presenting applications in a number of
different domains including electronic commerce, routing, and
scheduling. As one example of a concrete application, we
consider the problem of dynamic posted pricing with limited
supply and obtain the first algorithm whose regret, with respect
to the optimal dynamic policy, is sublinear in the supply.

Keywords-Multi-armed bandits, exploration-exploitation
tradeoff, regret, stochastic packing, dynamic pricing, dynamic
procurement, dynamic ad allocation.

I. INTRODUCTION

For more than fifty years, the multi-armed bandit problem

(henceforth, MAB) has been the predominant theoretical

model for sequential decision problems that embody the

tension between exploration and exploitation, “the conflict

between taking actions which yield immediate reward and
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taking actions whose benefit (e.g. acquiring information

or preparing the ground) will come only later,” to quote

Whittle’s apt summary [1]. Owing to the universal nature of

this conflict, it is not surprising that MAB algorithms have

found diverse applications ranging from medical trials, to

communication networks, to Web search and advertising.

A common feature in many of these application domains

is the presence of one or more limited-supply resources that

are consumed during the decision process. For example,

scientists experimenting with alternative medical treatments

may be limited not only by the number of patients partic-

ipating in the study but also by the cost of materials used

in the treatments. A website experimenting with displaying

advertisements is constrained not only by the number of

users who visit the site but by the advertisers’ budgets. A

retailer engaging in price experimentation faces inventory

limits along with a limited number of consumers. The

literature on MAB problems lacks a general model that

encompasses these sorts of decision problems with supply

limits. Our paper contributes such a model, and it presents

algorithms whose regret (normalized by the payoff of the

optimal policy) converges to zero as the resource budget

and the optimal payoff tend to infinity. In fact, we prove that

this convergence takes place at the information-theoretically

optimal rate.

Problem description: bandits with knapsacks. Our prob-

lem formulation, which we call the bandits with knapsacks
problem (henceforth, BwK), is easy to state. A learner has

a fixed set of potential actions, denoted by X and known

as arms. (In our main results, X will be finite, but we will

also consider extensions with an infinite set of arms, see Sec-

tions V and VI.) Over a sequence of time steps, the learner

chooses an arm and observes two things: a reward and

a resource consumption vector. Rewards are scalar-valued

whereas resource consumption vectors are d-dimensional.

For each resource there is a pre-specified budget representing

the maximum amount that may be consumed, in total. At the

first time τ when the total consumption of some resource

exceeds its budget, the process stops. 1 The objective is to

maximize the total reward received before time τ .

1More generally we could model the budget constraint as a downward-
closed polytope rather than a box constraint, see the full version.
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The conventional MAB problem, with a finite time hori-

zon T , naturally fits into this framework. There is a single

resource called “time”, one unit of which is deterministically

consumed in each decision period, and the budget is T . A

more interesting example is the dynamic pricing problem

faced by a retailer selling k items to a population of T unit-

demand consumers who arrive sequentially. Modeling this as

a BwK problem, the arms correspond to the possible prices

which may be offered to a consumer. Resource consumption

vectors express the number of items sold and consumers

seen. Thus, if a price p is offered and accepted, the reward is

p and the resource consumption is
[
1
1

]
. If the offer is declined,

the reward is 0 and the resource consumption is
[
0
1

]
.

Benchmark and regret. We will assume that the data

for a fixed arm x in each time step (i.e. the reward and

resource consumption vector) are i.i.d. samples from a

fixed joint distribution on [0, 1] × [0, 1]d, called the latent
distribution for arm x. The performance of an algorithm will

be measured by its regret: the worst case, over all possible

tuples of latent distributions, of the difference between the

algorithm’s expected reward and the expected reward of

the benchmark: an optimal policy given foreknowledge of

the latent distribution. In a conventional MAB problem, the

optimal policy given foreknowledge of the latent distribution

is to play a fixed arm, namely the one with the highest

expected reward. In the BwK problem, the optimal policy for

a given distribution is more complex: the choice of optimal

arm depends on the remaining supply of each resource.

In fact, we doubt there is a polynomial-time algorithm to

compute the optimal policy; similar problems in optimal

control have long been known to be PSPACE-hard [2].

Nevertheless we are able to bound the regret of our

algorithms with respect to the optimal policy, by showing

that the reward of the optimal policy is closely approximated

by that of the best time-invariant mixture of arms, i.e. a

policy that samples in each period from a fixed probability

distribution over arms regardless of the remaining resource

supplies, and that maximizes expected reward subject to this

constraint. The fact that a mixture of arms may be strictly

superior to any fixed arm (see the full version for examples)

highlights a qualitative difference between the BwK problem

and conventional MAB problems,2 and it is one reason why

the former problem is significantly more difficult to solve.

Our results and techniques. In analyzing MAB algorithms

one typically expresses the regret as a function of the time

horizon, T . The regret guarantee is considered nontrivial if

this function grows sublinearly as T → ∞. In the BwK
problem a regret guarantee of the form o(T ) may be

unacceptably weak because supply limits prevent the optimal

policy from achieving a reward close to T . An illustrative

2Algorithms for explore-exploit learning problems do not typically
improve over the performance of the best fixed action, with a few notable
exceptions in [3], [4], [5], [6].

example is the dynamic pricing problem with supply k � T :

the seller can only sell k items, each at a price of at most

1, so a regret bound greater than k is worthless.
We instead seek regret bounds that are sublinear in OPT,

the expected reward of the optimal policy, or (at least) sub-

linear in MLP, the maximal possible value of OPT given the

budget constraints. To achieve sublinear regret, the algorithm

must be able to explore each arm a significant number of

times without exhausting its resource budget. Accordingly

we also assume, for some B ≥ 1, that the amount of any

resource consumed in a single round is guaranteed to be

no more than 1/B fraction of that resource’s budget, and

we parameterize our regret bound by B. We present an

algorithm (called PD-BwK) whose regret is sublinear in OPT

as both OPT and B tend to infinity. More precisely, denoting

the number of arms by m, our algorithm’s regret is

Õ
(√

m OPT+ OPT
√

m/B
)
. (1)

In particular, if all budget constraints (including the time

horizon) are scaled up by the factor of α > 1, regret

scales as
√
α. The algorithm is computationally efficient,

in a strong sense: the per-round running time is polynomial

in the number of arms and the number of resources. We

also present another algorithm (called BalanceBwK) whose

regret bound is qualitatively similar; instead of depending

on OPT it depends on MLP. The two algorithms use quite

different techniques.
Algorithm BalanceBwK explicitly optimizes over mix-

tures of arms, based on a very simple idea: balanced

exploration inside confidence bounds. The design principle

underlying confidence-bound based algorithms for stochas-

tic MAB (including the famous UCB1 algorithm [7] and

our algorithm PD-BwK) is generally, “Exploit as much as

possible, but use confidence bounds that are wide enough

to encourage some exploration.” Our algorithm’s design

principle, in contrast, could be summarized as, “Explore as

much as possible, but use confidence bounds that are narrow

enough to eliminate obviously suboptimal alternatives.” In

fact, BalanceBwK balances its exploration across arms, so

that (essentially) each arm is explored as much as possible.

More precisely, for each arm, there are designated rounds

when, once the obviously suboptimal mixtures of arms are

eliminated, the algorithm picks a mixture that approximately

maximizes the probability of choosing this arm. Intriguingly,

the algorithm matches the logarithmic regret bound of UCB1
for stochastic MAB (up to constant factors) and achieves

qualitatively similar bounds to PD-BwK for BwK, despite

being based on a design principle that is the polar opposite of

those algorithms. We believe that the “balanced exploration”

principle underlying BalanceBwK is a novel and important

conceptual contribution to the theory of MAB algorithms

that is likely to find other applications.
Algorithm PD-BwK is a primal-dual algorithm based on

the multiplicative weights update method. It maintains a vec-
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tor of “resource costs” that is adjusted using multiplicative

updates. In every period it estimates each arm’s expected

reward and expected resource consumption, using upper con-

fidence bounds for the former and lower confidence bounds

for the latter; then it plays the most “cost-effective” arm,

namely the one with the highest ratio of estimated resource

consumption to estimated resource cost, using the current

cost vector. Although confidence bounds and multiplicative

updates are the bread and butter of online learning theory,

we consider this way of combining the two techniques to

be quite novel. In particular, previous multiplicative-update

algorithms in online learning theory — such as the Exp3
algorithm for MAB [3] or the weighted majority [8] and

Hedge [9] algorithms for learning from expert advice — ap-

plied multiplicative updates to the probabilities of choosing

different arms (or experts). Our application of multiplicative

updates to the dual variables of the LP relaxation of BwK is

conceptually quite a different usage of this technique.

Further, we provide a matching lower bound: we prove

that regret (1) is optimal up to polylog factors. Specifically,

we show that any algorithm for BwK must incur regret

Ω
(
min

(
OPT, OPT

√
m/B +

√
m OPT

))
, (2)

in the worst-case over all instances of BwK with given

(m,B, OPT). We derive this lower bound using a simple

example in which all arms have reward 1 and 0-1 consump-

tion of a single resource, and one arm has slightly smaller

expected resource consumption than the rest. To analyze this

example, we apply the KL-divergence technique from the

MAB lower bound in [3]. Some technical difficulties arise

(compared to the derivation in [3]) because the arms are

different in terms of the expected consumption rather than

expected reward, and because we need to match the desired

value for OPT.

Applications and special cases. Due to its generality, the

BwK problem admits applications in diverse domains such

as dynamic pricing, dynamic procurement, ad allocation,

repeated auctions, network routing, and scheduling. These

applications are discussed in Section VI; below we provide

some highlights.

The BwK setting subsumes dynamic pricing with limited

supply, as studied in [10], [11], [4] (and [12], [13] for the

special case of unlimited supply). Specializing our regret

bounds to this setting, we obtain the optimal regret Õ(k2/3)
with respect to the optimal policy, where k is the number of

items. The prior work [11] achieved the same regret bound

with respect to the best fixed price, which is a much weaker

benchmark, and proved a matching lower bound. Further,

our setting allows to incorporate a number of generalizations

such as selling multiple products (with a limited supply

of each), volume pricing, pricing bundles of goods, and

profiling of buyers according to their types. In particular,

we improve over the result in [4] for multiple products.

A “dual” problem to dynamic pricing is dynamic procure-
ment [5], [14], where the algorithm is “dynamically buying”

rather than “dynamically selling”. (The budget constraint

now applies to the amount spent rather than the quantity

of items sold, which is why the problems are not merely

identical up to sign reversal.) This problem is particularly

relevant to the emerging domain of crowdsourcing: the

items “bought” then correspond to microtasks ordered on

a crowdsourcing platform such as Amazon Turk. We obtain

significant improvements for the basic version of dynamic

procurement studied in [5], [14]. In particular, [5] achieves

a constant-factor approximation to the optimum with a pro-

hibitively large constant (at least in the tens of thousands),

whereas our approximation factor 1+ Õ((T/OPT)B−1/4) is

typically much smaller. The regret bound in [14] is against

the best-fixed-price benchmark, which may be much smaller

than OPT (the actual regret bounds are incomparable).

Furthermore, the generality of BwK allows to incorporate

generalizations such as multiple types of items/microtasks,

and the presence of competing algorithms.

Further, BwK applies to the problem of dynamic ad

allocation, in the context of pay-per-click advertising with

unknown click probabilities. It allows to extend a standard

(albeit idealized) model of ad allocation to incorporate

advertisers’ budgets. In fact, advertisers can specify multiple

budget constraints on possibly overlapping subsets of ads.

Discussion. If the BwK instance includes multiple, different

budget constraints, our regret bounds are with respect to the

smallest of these constraints. This, however, is inevitable for

the worst-case regret bounds.

Algorithm BalanceBwK is domain-aware, in the sense

that it explicitly optimizes over all latent distributions that

are feasible for a given BwK domain (such as dynamic

pricing with limited supply). We do not provide a compu-

tationally efficient implementation for this optimization. In

fact, it is not clear what model of computation would be

appropriate to characterize access to the domain knowledge.

Efficient implementation of BalanceBwK may be possible

for some specific BwK domains, although we do not pursue

that direction in this paper. (Recall that PD-BwK, on the

other hand, is very computationally efficient.)

It is worth noting that our regret bounds for

BalanceBwK and PD-BwK are incomparable: while

PD-BwK achieves a stronger general bound, BalanceBwK
performs better on some important special cases by virtue

of being domain-aware. Specifically, it leads to a stronger

regret bound of Õ(
√
k) for dynamic pricing with supply k

under a monotone hazard rate assumption.

Open questions. While our regret bound for PD-BwK is

optimal up to logarithmic factors, improved results may be

possible for various special cases, especially ones involving

discretization over a multi-dimensional action space.

The study of multi-armed bandit problems with large
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strategy sets has been a very fruitful line of investigation.

It seems likely that some of the techniques introduced here

could be wedded with the techniques from that literature.

In particular, it would be intriguing to try combining our

primal-dual algorithm PD-BwK with confidence-ellipsoid

algorithms for stochastic linear optimization (e.g. see [15]),

or enhancing the BalanceBwK algorithm with the tech-

nique of adaptively refined discretization, as in the zooming

algortihm of [16].

It is tempting to ask about the adversarial version of BwK.

However, achieving sublinear regret bounds for such version

appears hopeless even for fixed-arm benchmark. In order to

make progress in the positive direction, one may require a

more subtle notion of benchmark, and perhaps also some

restrictions on the power of the adversary.

Related work. The study of prior-free algorithms for

stochastic MAB problems was initiated by [17], [7]. Sub-

sequent work supplied algorithms for stochastic MAB prob-

lems in which the set of arms can be infinite and the payoff

function is linear, concave, or Lipschitz-continuous; see a

recent survey [18] for more background. Confidence bound

techniques have been an integral part of this line of work,

and they remain integral to ours.

As explained earlier, stochastic MAB problems constitute

a very special case of bandits with knapsacks, in which

there is only one type of resource and it is consumed

deterministically at rate 1. Several papers have considered

the natural generalization in which there is a single resource,

with deterministic consumption, but different arms consume

the resource at different rates. Guha and Munagala [19] gave

a constant-factor approximation algorithm for the Bayesian

case of this problem, which was later generalized by Gupta

et al. [20] to settings in which the arms’ reward processes

need not be martingales. Tran-Thanh et al. [21], [22], [23]

presented prior-free algorithms for this problem; the best

such algorithm achieves a regret guarantee qualitatively

similar to that of the UCB1 algorithm.

As discussed above, several recent papers studied dynamic

pricing with limited supply [10], [11], [4] and dynamic

procurement on a budget [5], [14] which, in hindsight, can

be cast as special cases of BwK featuring a two-dimensional

resource constraint. Another special case of BwK (discussed

in more detail in the full version) has been studied in [24].

While BwK is primarily an online learning problem, it also

has elements of a stochastic packing problem. The literature

on prior-free algorithms for stochastic packing has flourished

in recent years, starting with prior-free algorithms for the

stochastic AdWords problem [25], and continuing with a

series of papers extending these results from AdWords to

more general stochastic packing integer programs while also

achieving stronger performance guarantees [26], [27], [28],

[29]. A running theme of these papers (and also of the

primal-dual algorithm in this paper) is the idea of estimating

of an optimal dual vector from samples, then using this dual

to guide subsequent primal decisions. Particularly relevant to

our work is the algorithm of [27], in which the dual vector

is adjusted using multiplicative updates, as we do in our

algorithm. However, unlike the BwK problem, the stochastic

packing problems considered in prior work are not learning

problems: they are full information problems in which the

costs and rewards of decisions in the past and present are

fully known. (The only uncertainty is about the future.) As

such, designing algorithms for BwK requires a substantial

departure from past work on stochastic packing. Our primal-

dual algorithm depends upon a hybrid of confidence-bound

techniques from online learning and primal-dual techniques

from the literature on solving packing LPs; combining them

requires entirely new techniques for bounding the magnitude

of the error terms that arise in the analysis. Moreover, our

BalanceBwK algorithm manages to achieve strong regret

guarantees without even computing a dual solution.

Map of the paper. This extended abstract focuses on stating

the algorithms and the main results, with a necessary amount

of preliminaries. Also, we discuss the main applications of

BwK. The full version, available on arxiv.org, contains

a lot of additional material, including all proofs, a section

on the lower bound, a section on discretization of the action

space, and a more detailed discussion of the applications.

II. PRELIMINARIES

BwK: problem formulation. There is a fixed and known,

finite set of m arms (possible actions), denoted X . There are

d resources being consumed. In each round t, an algorithm

picks an arm xt ∈ X , receives reward rt ∈ [0, 1], and

consumes some amount ct,i ∈ [0, 1] of each resource i.
The values rt and ct,i are revealed to the algorithm after

the round. There is a hard constraint Bi ∈ R+ on the

consumption of each resource i; we call it a budget for

resource i. The algorithm stops at the earliest time τ when

one or more budget constraint is violated; its total reward

is equal to the sum of the rewards in all rounds strictly

preceding τ . The goal of the algorithm is to maximize the

expected total reward.

The vector (rt; ct,1, ct,2 , . . . , ct,d) ∈ [0, 1]d+1 is called

the outcome vector for round t. We assume stochastic
outcomes: if an algorithm picks arm x, the outcome vector

is chosen independently from some fixed distribution πx

over [0, 1]d+1. The distributions πx, x ∈ X are latent. The

tuple (πx : x ∈ X) comprises all latent information in

the problem instance. A particular BwK setting (such as

“dynamic pricing with limited supply”) is defined by the

set of all feasible tuples (πx : x ∈ X). This set, called the

BwK domain, is known to the algorithm.

We will assume that there is a fixed time horizon T ,

known in advance to the algorithm, such that the process

is guaranteed to stop after at most T rounds. One way of
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assuring this is to assume that there is a specific resource, say

resource 1, such that every arm deterministically consumes

B1/T units whenever it is picked. We make this assumption

henceforth. Without loss of generality, Bi ≤ T for every

resource i. For technical convenience, we assume there exists

a null arm: an arm with 0 reward and 0 consumption.

Equivalently, an algorithm is allowed to spend a unit of time

without doing anything.

Benchmark. We compare the performance of our algorithms

to the expected total reward of the optimal dynamic policy

given all the latent information, which we denote by OPT.

Note that OPT depends on the latent structure μ, and there-

fore is a latent quantity itself. Time-invariant policies —

those which use the same distribution D over arms in all

rounds — will also be relevant to the analysis of one of our

algorithms. Let REW(D, μ) denote the expected total reward

of the time-invariant policy that uses distribution D.

Uniform budgets. We say that the budgets are uniform
if Bi = B for each resource i. Any BwK instance can

be reduced to one with uniform budgets by dividing all

consumption values for every resource i by Bi/B, where

B = mini Bi. (That is tantamount to changing the units in

which we measure consumption of resource i.) Our technical

results are for BwK with uniform budgets. We will assume

uniform budgets B from here on.

Useful notation. Let μx = E[πx] ∈ [0, 1]d+1 be the expected

outcome vector for each arm x, and denote μ = (μx : x ∈
X). We call μ the latent structure of a problem instance.

The BwK domain induces a set of feasible latent struc-

tures, which we denote Mfeas. For notational convenience,

we will write μx = ( r(x, μ); c1(x, μ) , . . . , cd(x, μ) ).
Also, we will write the expected consumption as a vector

c(x, μ) = ( c1(x, μ) , . . . , cd(x, μ) ). If D is a distribution

over arms, let r(D, μ) = ∑
x∈X D(x) r(x, μ) and c(D, μ) =∑

x∈X D(x) c(x, μ) be, respectively, the expected reward

and expected resource consumption in a single round if an

arm is sampled from distribution D.

High-probability events. We will use the following expres-

sion, which we call the confidence radius.

rad(ν,N) =
√

Crad ν/N + Crad/N. (3)

Here Crad = Θ(log(d T |X|)) is a parameter which we fix

later; we will keep it implicit in the notation. The meaning

of Equation (3) and Crad is explained by the following tail

inequality from [16], [11].

Theorem II.1 ([16], [11]). Consider some distribution with
values in [0, 1] and expectation ν. Let ν̂ be the average of
N independent samples from this distribution. Then

Pr [ |ν − ν̂| ≤ rad(ν̂, N) ≤ 3 rad(ν,N) ]

≥ 1− e−Ω(Crad), for each Crad > 0. (4)

If the expectation ν is a latent quantity, Equation (4)

allows us to estimate ν with a high-confidence interval

[ν̂ − rad(ν̂, N), ν̂ + rad(ν̂, N)], whose endpoints are

observable (known to the algorithm). Note that our estimate

becomes sharper for small ν. In the full version, we use a

stronger (martingale) version of Theorem II.1.

III. LP-RELAXATION

The expected reward of the optimal policy, given fore-

knowledge of the distribution of outcome vectors, is typi-

cally difficult to characterize exactly. In fact, even for a time-

invariant policy, it is difficult to give an exact expression for

the expected reward due to the dependence of the reward on

the random stopping time, τ , when the resource budget is

exhausted. To approximate these quantities, we consider the

fractional relaxation of BwK in which the stopping time (i.e.,

the total number of rounds) can be fractional, and the reward

and resource consumption per unit time are deterministically

equal to the corresponding expected values in the original

instance of BwK.

The following LP (shown here along with its dual) con-

stitutes our fractional relaxation of the optimal policy.

max rᵀξ

s.t. Cξ 	 B1

ξ 
 0
(P)

min B1ᵀη

s.t. Cᵀη 
 r

η 
 0
(D)

We denote by OPTLP the value of the linear program (P).

Lemma III.1. OPTLP is an upper bound on the value of the
optimal dynamic policy.

In a similar way, the expected total reward of time-

invariant policy D is bounded above by the solution to the

following linear program in which t is the only LP variable:

Maximise t r(D, μ) in t ∈ R

subject to t ci(D, μ) ≤ B for each i
t ≥ 0.

(5)

The solution to (5), which we call the LP-value, is

LP(D, μ) = r(D, μ) mini B/ci(D, μ). (6)

Observe that t is feasible for LP(D, μ) if and only if ξ = tD
is feasible for (P), and therefore OPTLP = supD LP(D, μ).
A distribution D∗ ∈ argmaxD LP(D, μ) is called LP-
optimal for latent structure μ. Any optimal solution ξ to (P)

corresponds to an LP-optimal distribution D∗ = ξ/ ‖ξ‖1.

Claim III.2. For any latent structure μ, there exists a
distribution D over arms which is LP-optimal for μ and
moreover satisfies the following three properties:

(a) ci(D, μ) ≤ B/T for each resource i.
(b) D has a support of size at most d+ 1.

211



(c) If D has a support of size at least 2 then for some
resource i we have ci(D, μ) = B/T .

(Such distribution D will be called LP-perfect for μ.)

IV. MAIN CONTRIBUTIONS

Our main contribution is a pair of algorithms for solv-

ing the BwK problem: a “balanced exploration” algorithm

(BalanceBwK) that prioritizes information acquisition, ex-

ploring each arm as frequently as possible given current

confidence intervals, and a primal-dual algorithm (PD-BwK)

that chooses arms to greedily maximize the estimated reward

per unit of resource cost. The two algorithms are comple-

mentary. While their regret guarantees have the same worst-

case dependence on the budget parameter B, the primal-

dual algorithm achieves better worst-case dependence on d
and OPT. On the other hand, the balanced exploration algo-

rithm, being more flexible, is better able to take advantage

of domain-specific side information to improve its regret

guarantee in favorable instances. For example, when applied

to the dynamic pricing problem with supply k and with

monotone hazard rate distributions, BalanceBwK achieves

Õ(k1/2) regret whereas the primal-dual approach achieves

Õ(k2/3) regret, just as it does for worst-case distributions.

A. Balanced exploration: algorithm BalanceBwK

The design principle behind BalanceBwK is to explore

as much as possible while avoiding obviously suboptimal

strategies. On a high level, the algorithm is very simple. The

goal is to converge on an LP-perfect distribution. The time

is divided in phases of |X| rounds each. In the beginning

of each phase p, the algorithm prunes away all distributions

D over arms that with high confidence are not LP-perfect

given the observations so far. The remaining distributions

over arms are called potentially perfect. Throughout the

phase, the algorithm chooses among the potentially perfect

distributions. Specifically, for each arm x, the algorithm

chooses a potentially perfect distribution Dp,x which approx-

imately maximizes Dp,x(x), and “pulls” an arm sampled

independently from this distribution. This choice of Dp,x is

crucial; we call it the balancing step. The algorithm halts as

soon as the time horizon is met, or any of the constraints is

exhausted. See Algorithm 1 for the pseudocode.

Algorithm 1 BalanceBwK

1: For each phase p = 0, 1, 2, . . . do
2: Recompute the set Δp of potentially perfect

distributions D over arms.

3: Over the next |X| rounds, for each x ∈ X:

4: pick any distribution D = Dp,x ∈Δp such that

D(x) ≥ 1
2 maxD∈Δp D(x).

5: choose an arm as an independent sample from D.

6: halt if time horizon is met or one of the resources

is exhausted.

We believe that BalanceBwK, like UCB1 [7], is a very

general design principle and has the potential to be a meta-

algorithm for solving stochastic online learning problems.

Theorem IV.1. Consider an instance of BwK with d re-
sources, m = |X| arms, and the smallest budget B =
mini Bi. Let MLP be the maximum of OPTLP, for given
time horizon and budgets, over all problem instances in a
given BwK domain. For algorithm BalanceBwK, the total
expected regret OPT− REW is at most

O(log(dmT ) log(T/m))(√
dmMLP +MLP

(√
dm/B + dm/B

)
+ dm

)
. (7)

Let us fill in the details in the specification of

BalanceBwK. In the beginning of each phase p, the al-

gorithm recomputes a “confidence interval” Ip for the latent

structure μ, so that (informally) μ ∈ Ip with high probability.

Then the algorithm determines which distributions D over

arms can potentially be LP-perfect given that μ ∈ Ip.

Specifically, let Δp be set of all distributions D that are LP-

perfect for some latent structure μ′ ∈ Ip; such distributions

are called potentially perfect (for phase p).

It remains to define the confidence intervals Ip. For phase

p = 0, the confidence interval I0 is simply Mfeas, the set of

all feasible latent structures. For each subsequent phase p ≥
1, the confidence interval Ip is defined as follows. For each

arm x, consider all rounds before phase p in which this arm

has been chosen. Let Np(x) be the number of such rounds,

let r̂p(x) be the time-averaged reward in these rounds, and

let ĉp,i(x) be the time-averaged consumption of resource i
in these rounds. We use these averages to estimate r(x, μ)
and ci(x, μ) as follows:

|r(x, μ)− r̂p(x)| ≤ rad ( r̂p(x), Np(x) ) (8)

|ci(x, μ)− ĉp,i(x)| ≤ rad ( ĉp,i(x), Np(x) ) (∀ i) (9)

The confidence interval Ip is the set of all latent structures

μ′ ∈ Ip−1 that are consistent with these estimates. This

completes the specification of BalanceBwK.

For each phase of BalanceBwK, the round in which

an arm is sampled from distribution Dp,x will be called

designated to arm x. We need to use approximate (rather

than exact) maximization to choose Dp,x because an exact

maximizer argmaxD∈Δp
D(x) is not guaranteed to exist.

B. A primal-dual algorithm for BwK

This section develops an algorithm that solves the BwK
problem using a very natural and intuitive idea: greedily

select arms with the greatest estimated “bang per buck,”

i.e. reward per unit of resource consumption. One of the

main difficulties with this idea is that there is no such thing

as a “unit of resource consumption”: there are d different

resources, and it is unclear how to trade off consumption of

one resource versus another. To give some insight into how
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to quantify this trade-off: an optimal dual solution η∗ can be

interpreted as a vector of unit costs for resources, such that

for every arm the expected reward is less than or equal to

the expected cost of resources consumed. Since our goal is

to match the optimum value of the LP as closely as possible,

we must minimize the shortfall between the expected reward

of the arms we pull and their expected resource cost as

measured by η∗. Thus, our algorithm will try to learn an

optimal dual vector η∗ in tandem with learning the latent

structure μ.
Borrowing an idea from [30], [31], [32], we will use the

multiplicatives weights update method to learn the optimal

dual vector. This method raises the cost of a resource

exponentially as it is consumed, which ensures that heavily

demanded resources become costly, and thereby promotes

balanced resource consumption. Meanwhile, we still have

to ensure (as in any multi-armed bandit problem) that our

algorithm explores the different arms frequently enough to

gain adequately accurate estimates of the latent structure. We

do this by estimating rewards and resource consumption as

optimistically as possible, i.e. using upper confidence bound

(UCB) estimates for rewards and lower confidence bound

(LCB) estimates for resource consumption. Although both

of these techniques — multiplicative weights and confidence

bounds — have both successfully applied in previous online

learning algorithms, it is far from obvious that this particular

hybrid of the two methods should be effective. In particular,

the use of multiplicative updates on dual variables, rather

than primal ones, distinguishes our algorithm from other

bandit algorithms that use multiplicative weights (e.g. the

Exp3 algorithm [3]) and brings it closer in spirit to the

literature on stochastic packing algorithms (especially [27]).

Algorithm 2 Algorithm PD-BwK

1: Set ε =
√
ln(d)/B.

2: In the first m rounds, pull each arm once.

3: v1 = 1
4: for t = m+ 1, . . . , τ (i.e., until budget exhausted) do
5: Compute UCB estimate for reward vector, ut.

6: Compute LCB estimate for resource consumption

matrix, Lt.

7: yt = vt/(1
ᵀvt).

8: Pull arm xj such that point-mass distribution zt = ej
belongs to argminz∈Δ[X]{y

ᵀ
t Ltz

uᵀ
t z
}.

9: vt+1 = Diag{(1 + ε)e
ᵀ
j Ltzt}vt.

The pseudocode for the algorithm is presented as Algo-

rithm 2, which we call PD-BwK. In the pseudocode, we

represent the latent values and the algorithm’s decisions as

matrices and vectors. For this purpose, we will number the

arms as x1, . . . , xm and let r ∈ R
m denote the vector whose

jth component is r(xj , μ). Similarly we will let C ∈ R
d×m

denote the matrix whose (i, j)th entry is ci(xj , μ).

When we refer to the UCB or LCB for a latent parameter

(the reward of an arm, or the amount of some resource that

it utilizes), these are computed as follows. Letting ν̂ denote

the empirical average of the observations of that random

variable and letting N denote the number of times the

random variable has been observed, the lower confidence

bound (LCB) and upper confidence bound (UCB) are the left

and right endpoints, respectively, of the confidence interval
[0, 1] ∩ [ν̂ − rad(ν̂, N), ν̂ + rad(ν̂, N)]. The UCB or LCB

for a vector or matrix are defined componentwise.

In step 8, the pseudocode asserts that the set

argminz∈Δ[X]{y
ᵀ
t Ltz

uᵀ
t z
} contains at least one of the point-

mass distributions {e1, . . . , em}. This is true, because if

ρ = minz∈Δ[X]{(yᵀt Ltz)/(u
ᵀ
t z)} then the linear inequality

yᵀt Ltz ≤ ρuᵀ
tD holds at some point z ∈ Δ[X], and hence

it holds at some extreme point, i.e. one of the point-mass

distributions.

Another feature of our algorithm that deserves mention

is a variant of the Garg-Könemann width reduction tech-

nique [31]. The ratio (yᵀt Ltzt)/(u
ᵀ
t zt) that we optimize in

step 8 may be unboundedly large, so in the multiplicative

update in step 9 we rescale this value to yᵀt Ltzt, which is

guaranteed to be at most 1. This rescaling is mirrored in the

analysis of the algorithm, when we define the dual vector ȳ
by averaging the vectors yt using the aforementioned scale

factors. (Interestingly, unlike the Garg-Könemann algorithm

which applies multiplicative updates to the dual vectors and

weighted averaging to the primal ones, in our algorithm

the multiplicative updates and weighted averaging are both
applied to the dual vectors.)

Theorem IV.2. For any instance of the BwK problem,
Algorithm PD-BwK satisfies

OPT− REW ≤ O
(√

log(dmT )
)

(√
m OPT+ OPT

√
m/B +m

√
log(dmT )

)
. (10)

Comparing this bound to Theorem IV.1, when d = O(1)
and MLP = O(OPT) the two guarantees are the same up to

logarithmic factors. The regret guarantee for the primal-dual

algorithm scales better with the number of resources, d, and

it can be vastly superior in cases where OPT�MLP.

V. BWK WITH DISCRETIZATION

In many applications of BwK the action space X is

very large or infinite, so the algorithms developed in the

previous sections are not immediately applicable. However,

in these applications the action space has some structure

that our algorithms can leverage. For example, in dynamic

pricing (with one type of good) every possible action (arm)

corresponds to a price – i.e., a number in some fixed interval.

To handle such applications, we use a simple approach

called uniform discretization: we select a subset S ⊂ X of

arms which are, in some sense, uniformly spaced in X , and
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apply a BwK algorithm for this subset. In the dynamic pricing

application, S can consist of all prices in the allowed interval

that are of the form 
ε, 
 ∈ N, for some fixed discretization

parameter ε > 0. We call this subset the additive ε-mesh. The

granularity of discretization (i.e., the value of ε) is adjusted

in advance so as to minimize regret.

This generic approach has been successfully used in past

work on dynamic pricing (e.g., [13], [12], [10], [11]) to pro-

vide worst-case optimal regret bounds. To carry it through

to the setting of BwK, we need to define an appropriate

notion of discretization (which would generalize the additive

ε-mesh for dynamic pricing), and argue that it does not cause

too much damage. Compared to the usage of discretization

in prior work, we need to deal with two technicalities.

First, we need to argue about distributions over arms rather

than individual arms. Second, in order to compare an arm

with its “image” in the discretization, we need to consider

the difference in the ratio of expected reward to expected

consumption, rather than the difference in rewards. We flesh

out the details in the full version.

For dynamic pricing, we show that if we use the additive

ε-mesh Sε, and R(Sε) is the regret on the problem instance

restricted to Sε, then regret on the original problem instance

is at most ε dB + R(Sε), where d is the number of con-

straints. More generally, we prove this for any BwK domain,

and any subset Sε ⊂ X which satisfies some axioms for

a given parameter ε; we call such Sε an ε-discretization.

Once we define an ε-discretization Sε for every ε > 0, then

in order to optimize the regret bound ε dB + R(Sε) up to

constant factors it suffices to pick ε such that ε dB = R(Sε).
We need to consider regret bounds R(Sε) that are in terms

of the maximal possible expected total reward MLP rather

than the (possibly smaller) OPT, since the value of OPT is

not initially known to the algorithm.

VI. APPLICATIONS

Owing to its generality, the BwK problem admits applica-

tions in many different domains. Below we describe three

applications: to dynamic pricing, dynamic procurement and

crowdsourcing, and dynamic ad allocation. More applica-

tions (to repeated auctions, network routing, and dynamic

scheduling) are discussed in the full version.

A. Dynamic pricing with limited supply

In the basic version, the algorithm is a seller which has k
identical items for sale and is facing n agents (potential buy-

ers) that are arriving sequentially. Each agent is interested

in buying one item. The algorithm offers a take-it-or-leave-it

price pt to each arriving agent t. The agent has a fixed value

vt ∈ [0, 1] for an item, which is private: not known to the

algorithm. The agent buys an item if and only if pt ≥ vt.
We assume that each vt is an independent sample from some

fixed (but unknown) distribution, called the buyers’ demand

distribution. The goal of the algorithm is to maximize his

expected revenue.

This problem has been studied in [13], [12], [10], [11].

The best result is an algorithm that achieves regret Õ(k2/3)
compared to the best fixed price [11] (the Õ(·) notation hides

poly-log factors). This regret rate is proved to be worst-case

optimal. For demand distributions that satisfy a standard (but

limiting) assumption of regularity, the best fixed price is

essentially as good as the best dynamic policy.

Dynamic pricing is naturally interpreted as a BwK do-

main: arms correspond to prices, rounds correspond to

arriving agents (so there is a time horizon of n), and there

is a single type of resource: the k items. One can think of

the agents as simply units of time, so that n is the time

horizon. Let S(p) be the probability of a sale at price p.

The latent structure μ is determined by the function S(·): the

expected reward is r(p, μ) = pS(p), and expected resource

consumption is simply c(x, μ) = S(p). Since there are only

k items for sale, it follows that OPT ≤ k. (To analyze

BalanceBwK, note that the LP-values are bounded above

by k, so we can take MLP = k.) Prices can be discretized

using the ε-uniform mesh over [0, 1], resulting in 1
ε arms.

We recover the optimal Õ(k2/3) regret result from [11]

with respect to offering the same price to each buyer, and

moreover extend this result to regret with respect to the op-

timal dynamic policy. We observe that the expected revenue

of the optimal dynamic policy can be twice the expected

revenue of the best fixed price (see the full version). The

crucial technical advance compared to the prior work is that

our algorithms strive to converge to an optimal distribution
over prices, whereas the algorithms in prior work target the

best fixed price. Technically, the result follows by applying

the “quality guarantee” for the additive ε-mesh (fleshed out

in the full version), in conjunction with either of the two

main algorithms, and optimizing the ε.

B. Dynamic procurement on a budget

A “dual” problem to dynamic pricing is dynamic procure-
ment, where the algorithm is buying rather than selling. The

algorithm has a budget B to spend, and is facing n agents

(potential sellers) that are arriving sequentially. Each seller is

interested in selling one item. Each seller’s value for an item

is an independent sample from some fixed (but unknown)

distribution with support [0, 1]. The algorithm offers a take-

it-or-leave-it price to each arriving agent. The goal is to

maximize the number of items bought. As discussed in the

introduction, this problem has been studied in [5], [14].

Application to crowdsourcing. The problem is particularly

relevant to the emerging domain of crowdsourcing, where

agents correspond to the (relatively inexpensive) workers

on a crowdsourcing platform such as Amazon Mechanical

Turk, and “items” bought/sold correspond to simple jobs

(“microtasks”) that can be performed by these workers.
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The algorithm corresponds to the “requester”: an entity that

submits jobs and benefits from them being completed. The

(basic) dynamic procurement model captures an important

issue in crowdsourcing that a requester interacts with multi-

ple users with unknown values-per-item, and can adjust its

behavior (such as the posted price) over time as it learns the

distribution of users. While this basic model ignores some

realistic features of crowdsourcing environments, some of

these limitations are addressed by the extensions.

Dynamic procurement via BwK. Let us cast dynamic

procurement as a BwK domain. As in dynamic pricing,

agents correspond to time rounds, and n is the time horizon.

The only resource is money. Arms correspond to prices:

X = [0, 1]. Letting S(p) be the probability of a sale at price

p, the expected reward (items bought) is r(p, μ) = S(p),
and the expected resource consumption is c(p, μ) = pS(p).
The best a-priori upper bound on the LP-value is MLP = n.

We find that arbitrarily small prices are not amenable to

discretization. Instead, we focus on prices p ≥ p0, where

p0 ∈ (0, 1) is a parameter to be adjusted, and construct an

ε-discretization on the set [p0, 1]. We find that an additive

δ-mesh is not the most efficient way to construct an ε-
discretization in this domain. Instead, we use a mesh of the

form { 1
1+jε : j ∈ N} (we call it the hyperbolic ε-mesh).

Then we obtain an ε-discretization with significantly fewer

arms. Optimizing the parameters p0 and ε, we obtain regret

Õ
(
n/B1/4

)
; see the full version for details.

Our result is meaningful, and improves over the constant-

factor approximation in [5], as long as OPT is not too small

compared to n/B1/4. Recall that our result is with respect to

the optimal dynamic policy. We observe that in this domain

the optimal dynamic policy can be vastly superior compared

to the best fixed price (see the full version for an example).

C. Extensions for dynamic pricing/procurement

In the full version we discuss several extensions of the

basic dynamic pricing/procurement models outlined above,

including: non-unit demands/supplies, multiple products to

sell/buy, bundling and volume pricing, and competitive en-

vironment. As an example, we outline a specific setting:

dynamic pricing with multiple products.

The algorithm has d products for sale, with a limited in-

ventory of each. In each round t, an agent arrives. The agent

is characterized by the vector of values (vt,1 , . . . , vt,d) ∈
[0, 1]d, one for each product i. This vector is private: not

known to the algorithm. We assume that it is an independent

sample from a fixed but unknown distribution over [0, 1]d;

note that arbitrary correlations between values of different

products are allowed. The algorithm offers a vector of prices

(pt,1 , . . . , pt,d) ∈ [0, 1]d, one for each product i. The agent

buys one unit of each product i such that pt,i ≥ vt,i.

D. Dynamic ad allocation with unknown click probabilities

Consider pay-per-click (PPC) advertising on the web (in

particular, this is a prevalent model in sponsored search

auctions). The central premise in PPC advertising is that

an advertiser derives value from her ad only when the user

clicks on this ad. The ad platform allocates ads to users that

arrive over time.

Consider the following simple (albeit highly idealized)

model for PPC ad allocation. Users arrive over time, and

the ad platform needs to allocate an ad to each arriving user.

There is a set X of available ads. Each ad x is characterized

by the payment-per-click πx and click probability μx; the

former quantity is known to the algorithm, whereas the latter

is not. If an ad x is chosen, it is clicked on with probability

μx, in which case payment πx is received. The goal is

to maximize the total payment. This setting, and various

extensions thereof that incorporate user/webpage context,

has received a considerable attention in the past several

years (starting with [33]). In fact, the connection to PPC

advertising has been one of the main motivations for the

recent surge of interest in MAB.

We enrich the above setting by incorporating advertisers’

budgets. In the most basic version, for each ad x there is

a budget Bx — the maximal amount of money that can be

spent on this ad. More generally, an advertiser can have an ad

campaign which consists of a subset S of ads, so that there is

a per-campaign budget S. Even more generally, an advertiser

can have a more complicated budget structure: a family of

overlapping subsets S ⊂ X and a separate budget BS for

each S. For example, BestBuy can have a total budget for

the ad campaign, and also separate budgets for ads about

TVs and ads about computers. Finally, in addition to budgets

(i.e., constraints on the number of times ads are clicked),

an advertiser may wish to have similar constraints on the

number of times ads are shown. BwK allows us to express

all these constraints.
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