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Abstract—The planar embedding conjecture asserts that any
planar metric admits an embedding into L1 with constant
distortion. This is a well-known open problem with important
algorithmic implications, and has received a lot of attention
over the past two decades. Despite significant efforts, it has
been verified only for some very restricted cases, while the
general problem remains elusive.

In this paper we make progress towards resolving this
conjecture. We show that every planar metric of non-positive
curvature admits a constant-distortion embedding into L1. This
confirms the planar embedding conjecture for the case of non-
positively curved metrics.

I. INTRODUCTION

If (X, dX), (Y, dY ) are metric spaces, and f : X → Y is

injective, the distortion of f is defined to be distortion(f) =
‖f‖Lip · ‖f−1‖Lip, where ‖f‖Lip = supx �=y∈X

dY (f(x),f(y))
dX(x,y) .

For any metric space (X, d), we use c1(X, d) to denote

the L1 distortion of (X, d), i.e. the infimum over all

numbers D such that X admits an embedding into L1

with distortion D. For a graph G = (V,E) we write

c1(G) = sup c1(V, d) where d ranges over all shortest-path

metrics supported on G, and for a family F of graphs, we

write c1(F) = supG∈F c1(G). Thus for a family F of finite

graphs, c1(F) ≤ D if and only if every geometry supported

on a graph in F embeds into L1 with distortion at most D.

In the seminal works of Linial-London-Rabinovich

[20], and later Aumann-Rabani [2] and Gupta-Newman-

Rabinovich-Sinclair [13], the geometry of graphs is related

to the classical study of the relationship between flows and

cuts.

A multi-commodity flow instance in G is specified by

a pair of non-negative mappings cap : E → R and

dem : V × V → R. We write maxflow(G; cap, dem) for

the value of the maximum concurrent flow in this instance,

which is the maximal value ε such that ε · dem(u, v) can be

simultaneously routed between every pair u, v ∈ V while

not violating the given edge capacities.

A natural upper bound on maxflow(G; cap, dem) is given
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by the sparsity of any cut S ⊆ V :∑
uv∈E cap(u, v)|1S(u)− 1S(v)|∑
u,v∈V dem(u, v)|1S(u)− 1S(v)| , (1)

where 1S : V → {0, 1} is the indicator function for

membership in S. We write gap(G) for the maximum gap

between the value of the flow and the upper bounds given

by (1), over all multi-commodity flow instances on G. This

is the multi-commodity max-flow/min-cut gap for G. The

fundamental connection between embeddings into L1 and

multi-commodity flows is captured in the following result.

Theorem I.1 ( [13], [20]). For every graph G, c1(G) =
gap(G).

In particular, combined with the techniques of [19], [20],

this implies that for any graph G, there exists a c1(G)-
approximation for the general Sparsest Cut problem.

A. The planar embedding conjecture

It has been shown by [19], [20] that for general graphs,

c1(G) = Ω(logn), and there has since been a lot of

effort in trying to prove that c1(G) is bounded by some

universal constant for interesting classes of graphs. The most

well-known open case is the so-called planar embedding
conjecture, summarized in the following:

Conjecture 1 (Planar embedding conjecture). For every
planar graph G, c1(G) = O(1).

Despite several attempts on resolving this question, there

has only been very little progress. More specifically, the

work of Okamura & Seymour [21] implies that the met-

ric induced on a single face of a planar graph embeds

with constant distortion into L1. In [13] it is shown that

c1(G) = O(1) for any series-parallel, or outerplanar graph

G. This result was extended to O(1)-outerplanar graphs

in [7]. Chakrabarti et al. [6] obtained constant distortion

embeddings of graphs that exclude a (K5 \ e)-minor. Note

that even the case of planar graphs of treewidth 3 remains

open. We remark that the best-known upper bound on c1(G)
for planar graphs is O(

√
log n), due to Rao [23], while the

best-known lower bound is 2, due to Lee & Raghavendra

[17].

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.27

177



B. Generalizations: The GNRS conjecture

Gupta, Newman, Rabinovich, and Sinclair [13] posed the

following generalization of the planar embedding conjecture,

which seeks to characterize the graph families F such that

c1(F) = O(1), which by Theorem I.1 also characterizes

all graphs with multi-commodity gap bounded by some

universal constant:

Conjecture 2 (GNRS conjecture [13]). For every family of
finite graphs F , one has c1(F) = O(1) if and only if F
forbids some minor.

We note that a strengthening of the GNRS conjecture for

integral multi-commodity flows has also been considered

[8]. This is a seemingly harder problem, and progress has

been even more limited in this case.

At first glance, it might appear that the GNRS conjecture

is a vast generalization of the planar embedding conjecture,

since planar graphs exclude K5 as a minor. Despite this, Lee

& Sidiropoulos [18] have shown that the GNRS conjecture

is equivalent to the conjunction of the planar embedding

conjecture, with the manifestly simpler k-sum embedding
conjecture summarized bellow. For a graph family F , let

⊕kF denote the closure of F under k-clique sums (see [18]

for a more detailed exposition). We note that the case k = 1
is folklore, while recently progress has been reported for the

case k = 2 by Lee and Poore [16]; even for k = 2 however,

the problem remains open.

Conjecture 3 (k-sum conjecture [18]). For any family of
graphs F , we have c1(F) = O(1) if and only if c1(⊕kF) =
O(1) for every k ∈ N.

It is therefore apparent that the planar embedding con-

jecture is a major step towards determining the multi-

commodity gap in arbitrary graphs.

C. Our results

All previous attempts on the planar embedding conjecture

have been topological in nature, meaning that they seek

to obtain constant-distortion embeddings by restricting the

topology of the planar graph. As a consequence, all known

methods are insufficient even for planar graphs of treewidth

3.

We depart from this paradigm by instead restricting the

geometry of the planar metric. For any metric (X, d), we

have that (X, d) is the shortest-path metric of a planar graph

if and only if it can be realized as a set of points in a simply-

connected (i.e. planar) surface. We say that a planar metric

is non-positively curved if it can be realized as a set of

points in a surface of non-positive curvature (see Section

I-D for the definition of non-positively curved space). This

leads to a natural, and very rich class of planar metrics.

For instance, non-positively curved planar metrics include

all trees, all regular grids (up to constant distortion), and

arbitrary subsets of the hyperbolic plane H
2.

Our main result is as follows.

Theorem I.2 (Main). There exists a universal constant γ >
1, such that every non-positively curved planar metric admits
an embedding into L1 with distortion at most γ.

Since we are motivated by the applications of metric em-

beddings in computer science, we will restrict our discussion

to finite metrics. We remark however that our result can

be extended to obtain constant-distortion embeddings of ar-

bitrary simply-connected surfaces of non-positive curvature

into L1.1

We note that embeddings of various hyperbolic spaces

have been previously considered. We refer to [1], [3]–

[5], [15]. However, none of the previous results captures

L1 embeddings of arbitrary non-positively curved planar

metrics. In fact, it was conjectured by Chepoi [9] that

any non-positively curved planar metric admits a constant-

distortion embedding into L1. Theorem I.2 resolves precisely

this conjecture. Prior to our work, this was known only for

some very special cases [1].

D. Preliminaries
We now review some basic definitions and notions which

appear throughout the paper.
Graphs: Let G, and let S ⊆ V (G). We denote by

G[S] the subgraphs of G induced by S, i.e. G[S] =(
S,E(G) ∩ (

S
2

))
. We will consider graphs with every

edge having a non-negative length. We say that a graph

is unweighted if all of its edges have unit length. Let

diam(G) denote the diameter of G, i.e. diam(G) =
maxx,y∈V (G) dG(x, y). We refer to a path between two

vertices x, y ∈ V (G) as a x-y path.
Cuts and L1 embeddings: A cut of a graph G is a

partition of V (G) into (S, S̄)—we sometimes refer to a

subset S ⊆ V as a cut as well. A cut gives rise to a

pseudometric; using indicator functions, we can write the

cut pseudometric as ρS(x, y) = |1S(x)− 1S(y)|. A central

fact is that embeddings of finite metric spaces into L1 are

equivalent to sums of positively weighted cut metrics over

that set (for a simple proof of this see [11]).
A cut measure on G is a function μ : 2V → R+ for which

μ(S) = μ(S̄) for every S ⊆ V . Every cut measure gives rise

to an embedding f : V → L1 for which

‖f(u)− f(v)‖1 =
∫
|1S(u)− 1S(v)| dμ(S), (2)

1This connection was pointed out by James R. Lee.
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where the integral is over all cuts (S, S̄). Conversely, to

every embedding f : V → L1, we can associate a cut

measure μ such that (2) holds.

Non-positively curved spaces: We will describe our

proof using the definition of non-positive curvature in the

sense of Busemann. We give here a brief overview of some

of the relevant terminology, and we refer the reader to

[22], [24] for a more detailed exposition. A metric space

(X, d) is called geodesic if for every pair of points there

exists a geodesic joining them. We say that (X, d) is non-

positively curved, if for any pair of affinely parameterized

geodesics γ : [a, b] → X , γ′ : [a′, b′] → X , the map

Dγ,γ′ : [a, b]× [a′, b′]→ R defined by

Dγ,γ′(t, t′) = d(γ(t), γ′(t))

is convex.2 As we show, this property is sufficient to

obtain constant-distortion embeddings of simply-connected

surfaces into L1.

Lipschitz partitions: Let (X, d) be a metric space. A

distribution F over partitions of X is called (β,Δ)-Lipschitz
if every partition in the support of F has only clusters of

diameter at most Δ, and for every x, y ∈ X ,

Pr
C∈F

[C(x) 
= C(y)] ≤ β · d(x, y)
Δ

.

We denote by β(X,d) the infimum β such that for any

Δ > 0, the metric (X, d) admits a (Δ, β)-Lipschitz random

partition, and we refer to β(X,d) as the modulus of decom-
posability of (X, d). The following theorem is due to Rao

[23] (see also Klein, Plotkin, and Rao [14]).

Theorem I.3 ( [23]). For any planar graph G, we have
β(V (G),dG) = O(1).

Stochastic embeddings: A mapping f : X → Y
between two metric spaces (X, d) and (Y, d′) is non-
contracting if d′(f(x), f(y)) ≥ d(x, y) for all x, y ∈ X .

If (X, d) is any finite metric space, and Y is a family of

finite metric spaces, we say that (X, d) admits a stochas-
tic D-embedding into Y if there exists a random metric

space (Y, d′) ∈ Y and a random non-contracting mapping

f : X → Y such that for every x, y ∈ X ,

E

[
d′(f(x), f(y))

]
≤ D · d(x, y). (3)

2We note that this notion of non-positively curved planar metrics is
equivalent up to constant distortion to slightly different definitions used
elsewhere. In [1], [10] an unweighted planar graph G with a fixed drawing
into the plane is considered to be non-positively curved if the following
holds: Assign to each inner face of G having k edges the geometry of
the regular Euclidean k-gon. Then, the resulting 2-dimensional piecewise
Euclidean complex is a CAT (0) space (see [12]). This realization of G
as a simlpy-connected surface is a constant-distortion embedding of its
shortest-path metric into a planar metric which is non-positively in our
sense. Conversely, every planar metric M , which is non-positively curved
in our sense, embeds with constant distortion into an unweighted planar
graph G satisfying the above condition.

The infimal D such that (3) holds is the distortion of the
stochastic embedding. For a graph G and a graph family F
we write G

D� F to denote the fact that G stochastically

embeds into a distribution over graphs in F , with distortion

D. We also use the notation G� F to denote the fact that

G
D� F , for some universal constant D ≥ 1. We will use

the following fact.

Lemma I.4. Let F be a family of graphs, such that every
H ∈ F admits an embedding into L1 with distortion at
most α ≥ 1. Let G be a graph, such that G

β� F , for some
β ≥ 1. Then, G admits an embedding into L1 with distortion
at most αβ.

Let G be a graph, and let A ⊆ V (G). The dilation of A is

defined to be dilG(A) = maxu,v∈V (G) dG[A](u, v)/dG(u, v).
For two graphs G,G′, a 1-sum of G with G′ is a graph

obtained by taking two disjoint copies of G and G′, and

identifying a vertex v ∈ V (G) with a vertex v′ ∈ V (G′).
For a graph family X , we denote by ⊕1X the closure of X
under 1-sums.

Lemma I.5 (Peeling lemma [18]). Let G be a graph, and
A ⊆ V (G). Let G′ = (V (G), E′) be a graph with E′ =
E(G)\E(G[A]), and let β = β(V,dG′ ) be the corresponding
modulus of decomposability. Then, there exists a graph
family F such that G

D� F , where D = O(β · dilG(A)),
and every graph in F is a 1-sum of isometric copies of the
graphs G[A] and {G[V \A ∪ {a}]}a∈A.

E. Organization

The rest of the paper is organized as follows. In Section

II we show how to embed an arbitrary non-positively curved

planar metric into an unweighted graph of special structure,

called a funnel. In Section III we show how to stochastically

embed a funnel into a distribution over simpler graphs, called

pyramids. In Section IV we introduce some of the machinery

that we will use when defining our embedding into L1. More

specifically, we describe the basic operation that will allow

to gradually modify a cut when computing our embedding.

Using this machinery, we describe our embedding in Section

V. Finally, in Section VI we prove that the constructed

embedding has constant distortion.

Due to lack of space, some proofs are omitted from the

present extended abstract. A full version is available on

ArXiv: http://arxiv.org/abs/1304.7512.

II. A CANONICAL REPRESENTATION OF NON-POSITIVELY

CURVED PLANAR METRICS

In this section we show that non-positively curved planar

metrics can be embedded with constant-distortion into a cer-

tain type of unweighted planar graphs that we call funnels.

Intuitively, a funnel is obtained by taking the union of a tree

having all its leaves at the same level, with a collection of
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Figure 1. A funnel.

cycles, where every cycle spans all the vertices in a single

layer of the tree.

Definition II.1 (Funnel). Let G be an unweighted planar
graph, and let v ∈ V (G). We say that G is a funnel with
basepoint v if the following conditions are satisfied:

(1) There exists a collection of pairwise vertex-disjoint cy-
cles C1, . . . , CΔ ⊂ G, such that V (G) =

⋃Δ
i=1 V (Ci).

For notational convenience, we allow a cycle Ci to
consist of a single vertex, in which case it has no edges.
Moreover, we have V (C1) = {v}. We refer to each Ci

as a layer of G.
(2) For every i ∈ {2, . . . ,Δ − 1}, the graph G \ V (Ci)

has exactly two connected components, one with ver-
tex set

⋃i−1
j=1 V (Cj), and another with vertex set⋃Δ

j=i+1 V (Cj).
(3) For every i ∈ {2, . . . ,Δ}, every u ∈ V (Ci) has exactly

one neighbor u′ ∈ V (Ci−1). We refer to u′ as the
parent of u. In particular, v is the parent of all vertices
in V (C2).

(4) For every i ∈ {1, . . . ,Δ − 1}, every w ∈ V (Ci) has
at least one neighbor w′ ∈ V (Ci+1). We refer to every
such w′ as a child of w.

Let R be a path in G between v, and a vertex u ∈ V (CΔ).
We say that R is a ray. We denote by Funnels the family of
all funnel graphs. Figure 1 depicts an example of a funnel.

We will use the following two facts about metric spaces

of non-positive curvature (see e.g. [22]).

Lemma II.2. Let (S, d) be a geodesic metric space of
non-positive curvature. Let x∗, x, y ∈ S , and let γ :
[0, d(x, y)]→ S be a geodesic between x, and y. Then, the
function f : [0, 1]→ R, with f(t) = d(x∗, γ(t)) is convex.

Lemma II.3. Let (S, d) be a geodesic metric space of
non-positive curvature, and let x∗, x, y ∈ S . Let γx :
[0, d(x∗, x)] → S be a geodesic between x∗, and x, and
let γy : [0, d(x∗, y)] → S be a geodesic between x∗,
and y. Then, the function f : [0, 1] → R, with f(t) =
d(γx(t), γy(t)) is non-decreasing.

Recall that for a metric space (X, d), and some r > 0, an

r-net in (X, d) is a maximal subset X ′ ⊆ X such that for

any x, y ∈ X ′, we have d(x, y) ≥ r.

Lemma II.4 (Funnel representation). Let S be a simply-
connected surface, and let d be a non-positively curved
metric on S . Let X ⊂ S be a finite set of points. Then, (X, d)
admits an embedding into a funnel with constant distortion.

Proof: By scaling d, we may assume w.l.o.g. that the

minimum distance in (X, d) is at least 1 (note that scaling d
results into a metric which is still of non-positive curvature).

Let x∗ ∈ S be an arbitrary point. For any x ∈ S , let γ(x)
denote the unique geodesic between x, and x∗. Let r = 1/8.

For any integer i ≥ 0, let Di = {x ∈ S : d(x∗, x) ≤ ir}.
Since d is non-positively curved, we have that for every i,
the set Di is a disk (see e.g. [22]). Let Γi be the cycle in

S bounding Di. Let Δ = min{i ∈ N : X ⊂ Di}. Let NΔ

be an r-net in ΓΔ. Note that since (S, d) is non-positively

curved, there exists a unique geodesic between any pair of

points. This implies that the subspace

T =
⋃

x∈Nδ

γ(x)

is a (simplicial) tree. For every i ∈ {0, . . . ,Δ−1}, we define

an r-net Ni of Γi as follows. Suppose that Ni+1 is already

defined. Let Y ′i be the set of points p ∈ NΔ such that γ(p)
intersects Ni+1. Let N ′

i = Γi ∩ (
⋃

p∈Y ′
i
γ(p)). Note that for

any x ∈ Γi, there exists y ∈ N ′
i such that d(x, y) < r.

Therefore, we can set to be a maximal subset Ni ⊆ N ′
i ,

such that Ni is an r-net. This concludes the definition of

the sequence of subsets N0, . . . , NΔ. Note that N0 = {x∗}.
We define a graph G, with V (G) =

⋃Δ
i=0 Ni. The set of

edges E(G) is defined as follows. For every i ∈ {1, . . . ,Δ},
we add a unit-length edge {x, y} ∈ E(G) for any two points

x, y ∈ Ni, such that x, and y appear consecutively in a

clockwise traversal of Γi. Moreover, for every z ∈ Ni, let

z′ ∈ NΔ be such that z ∈ γ(z′). Let z′′ be the point in the

intersection of γ(z′) with Γi−1. If z′′ ∈ Ni−1, then we add

the unit-length edge {z, z′′}. Otherwise, let w be the first

point in Ni−1 that we visit in a clockwise traversal of Γi−1

starting from z′′. We add the unit-length edge edge {z, w}.
This concludes the definition of the graph G. One can check

that G is a funnel with basepoint x∗.
We can now define an embedding f : X → V (G), by

mapping every points x ∈ X to its nearest neighbor in

V (G). It remains to verify that f has constant distortion.

Observe that the set V (G) contains a 2r-net in DΔ, and

therefore for any x ∈ X , we have d(x, f(x)) < 2r. Since

the minimum distance in X is at least 1, this implies

that f is an injection, and for any x, y ∈ X , we have

d(x, y) = Θ(d(f(x), f(y))). It therefore suffices to show

that for any x, y ∈ V (G), we have dG(x, y) = Θ(d(x, y)).
We first show that for any x, y ∈ V (G), we have

dG(x, y) = Ω(d(x, y)). To that end, it suffices to show

that for any edge {x, y} ∈ E(G), we have d(x, y) =
O(dG(x, y)) = O(1).

We consider first case where there exists i ∈ {1, . . . ,Δ}

180



such that x, y ∈ Ni, and x, y are consecutive in Γi. Let α
be the arc of Γi between x, and y, that does not contain any

other points in Ni. By the triangle inequality, there exists z ∈
α, such that d(x, z) ≥ d(x, y) ≥ 2, and d(y, z) ≥ d(x, y) ≥
2. Since Ni is an r-net in Γi, it follows that there exists z′ ∈
Ni, such that d(z, z′) < r. Let β be the geodesic between

z, and z′. The arc β intersects either γ(x), or γ(y). Assume

w.l.o.g. that it intersects γ(x) at some points z′′. By lemma

II.2 we have that as we travel along β, the distance to x∗ is

a convex function. This implies that d(x, z′′) ≤ d(z, z′). We

conclude that d(x, y) ≤ 2d(x, z) ≤ 2(d(x, z′′)+d(z′′, z)) ≤
2(d(x, z′′) + d(z′, z)) ≤ 4d(z, z′) ≤ 4r = O(1).

Next, we consider the case where x ∈ Ni, and y ∈ Ni+1,

for some i ∈ {0, . . . ,Δ}. Let y′ be the point where γ(y)
intersects Γi. Arguing as above, we have that d(y′, x) =
O(1). Therefore, d(x, y) ≤ d(y, y′)+d(y′, x) ≤ r+O(1) =
O(1). This concludes that proof that for any edge {x, y} ∈
E(G), we have d(x, y) = O(1), and therefore for any x, y ∈
V (G), we have dG(x, y) = Ω(d(x, y)).

It remains to show that for any x, y ∈ V (G), we have

dG(x, y) = O(d(x, y)). We consider first the case where

there exists i ∈ {1, . . . ,Δ}, such that x, y ∈ Ni (the case

i = 0 is trivial since N0 contains only x∗). Let β be a

geodesic between x, and y. By lemma II.2, we have β ⊂ Di.

Let x′ be the unique point in γ(x) ∩ Γi−1, and let y′ be

the unique point in γ(y) ∩ Γi−1. By lemma II.3 we have

d(x′, y′) ≤ d(x, y). Let x′′ be the parent of x, and let y′′ be

the parent of y in G. Let x′ = z1, . . . , zk = y′ be the points

in Ni−1 that appear between x′, and y′ along Γi−1. For any

i ∈ {1, . . . , k}, pick a child wi of zi, with w1 = x, and wk =
y. For any i ∈ {1, . . . , k}, the curve β intersects γ(wi). By

the above discussion we have that the distance between any

two such consecutive intersection points is Ω(1). Therefore,

d(x, y) = len(β) = Ω(k). The x-y path in G that visits

the vertices xz1 . . . zky in this order has length k + 2, and

therefore dG(x, y) = O(d(x, y)).
Next, we consider the case where there exists i ∈

{1, . . . ,Δ}, such that x ∈ Ni, and y ∈ Ni−1. This case

is identical to the case above, by replacing y with y′′. We

therefore also obtain dG(x, y) = O(d(x, y)) in this case.

Finally, we consider the case of arbitrary points x, y ∈
V (G). Let β be the geodesic between x, and y. The curve

β can be decomposed into consecutive segments β1, . . . , βk,

such that every such segment is contained in (the closure

of) Di \ Di−1, for some i ∈ {1, . . . ,Δ}. Consider such a

segment βi. There exists j, � ∈ {0, . . . ,Δ}, with |j−�| ≤ 1,

and such that xi ∈ Γj , and yi ∈ Γ�. Let x′i be the nearest

neighbor of xi in Nj , and let y′i be the nearest neighbor of yi
in N�. Since Nj is a O(1)-net for Γj , and N� is a O(1)-net

for Γ�, we have d(x′i, y
′
i) ≤ d(xi, yi)+O(1) = O(d(xi, yi)).

By the above analysis we have dG(x
′
i, y

′
i) = O(d(x′i, y

′
i)).

Therefore, we obtain dG(xi, yi) = O(d(xi, yi)). We con-

clude that dG(x, y) ≤
∑

i dG(xi, yi) = O(
∑

i d(xi, yi)) =
O(d(x, y)), as required.

III. CUTTING ALONG A RAY

We now show that every funnel admits a constant-

distortion stochastic embedding into a distribution over

simpler graphs, that we call pyramids. Intuitively, a pyramid

is obtained by “cutting” a funnel along a ray. The structure

of pyramids will simplify the exposition of the embedding

into L1 that we describe in the subsequent sections.

Definition III.1 (Pyramid). Let G be an unweighted planar
graph, let v ∈ V (G), and let Δ ≥ 1 be an integer. We say
that G is a pyramid with basepoint v, and of depth Δ if the
following conditions are satisfied:
(1) There exists a collection of pairwise vertex-disjoint

paths P1, . . . , PΔ ⊂ G, with Pi = ui,1 . . . uni,i, such
that V (G) =

⋃Δ
i=1 V (Pi). For notational convenience,

we allow a path Pi to consist of a single vertex,
in which case it has no edges. Moreover, we have
V (P1) = {v}. We refer to each Pi as a layer.

(2) For every i ∈ {2, . . . ,Δ − 1}, the graph G \
V (Pi) has exactly two connected components, one with
vertex set

⋃i−1
j=1 V (Pj), and another with vertex set⋃Δ

j=i+1 V (Pj).
(3) For every i ∈ {2, . . . ,Δ}, every u ∈ V (Pi) has exactly

one neighbor u in V (Pi−1). We refer to this neighbor
as the parent of u. In particular, v is the parent of all
vertices in V (P2).

(4) For every i ∈ {1, . . . ,Δ−1}, every w ∈ V (Pi) at least
one neighbor w′ in V (Pi−1). We refer to every such w′

as a child of w.
(5) For any i ∈ {1, . . . ,Δ − 1}, and for any
{ui,j , ui+1,j′}, {ui,t, ui+1,t′} ∈ E(G), we have j ≤
t ⇐⇒ j′ ≤ t′. In other words, the ordering of
the vertices in Pi+1 agrees with the ordering of their
parents in Pi.

We say that a path R in G between v, and a vertex u ∈
V (PΔ), is a ray. We denote by Pyramids the family of all
pyramid graphs. Figure 2 depicts an example of a pyramid.

Definition III.2 (Skeleton of a pyramid). Let G be a
pyramid with basepoint v ∈ V (G). We define the skeleton

of G to be a tree T , with V (T ) = V (G), with root v, and
with

E(T ) =

{
{x, y} ∈

(
V (G)

2

)
: x is the parent of y

}
.

For any x, y ∈ V (G), we denote by nca the nearest common
ancestor of x, and y in T . We also define for any x ∈ V (G),

depth(x) = dT (v, x) + 1.

Figure 2 depicts an example of a skeleton.

Definition III.3 (≺). For any i ∈ {1, . . . ,Δ}, for any
ui,j , ui,j′ ∈ V (Pi), with j < j′, we write ui,j ≺ ui,j′ .
Moreover, for any x, y ∈ V (G), such that x, and y do not

181



Figure 2. A pyramid (left), and its skeleton (right).

lie on the same ray, let z = nca(x, y), and let x′ (resp. y′)
be the child of z in the z-x (resp. z-y) path in T . Then,
we write x ≺ y if and only if x′ ≺ y′. Finally, for any
x′′, y′′ ∈ V (G), we write x′′ � y′′ if and only if either
x′′ � y′′, or x′′, and y′′ lie on the same ray.

Lemma III.4 (Pyramid representation). For every funnel G,
we have G� ⊕1{Pyramids}.

Proof: Let G be a funnel with basepoint x∗ ∈ V (G),
and depth Δ. Let R be a ray in G. Replace R\x∗ by a Δ×4
grid H . Clearly, this results into an embedding of G into a

funnel G′ with distortion O(1). Let R′ be the union of the

two central columns of H , and let A = R′ ∪ {x∗}. Observe

that dilG′(A) = 1. Applying lemma I.5 on G′ and the set A,

we obtain a stochastic embedding of G′ into a distribution

of graphs D. Since G′ is planar, and dilG′(A) = 1, it

follows by Theorem I.3 that the distortion of the resulting

stochastic embedding is O(1). Every graph in the support

of D is obtained via 1-sums of G′[A], with G′[V \A∪{a}],
for some a ∈ A. The graph G′[A] is a Δ × 2 grid, with

the basepoint x∗ connected to the two vertices in the top

row, and is therefore a pyramid. For any a ∈ A, the graph

G′[V \A∪{a}] is obtained from G′ by cutting along a ray,

and is therefore also a pyramid. This concludes the proof.

IV. MONOTONE CUTS

In this section we describe the family of cuts, that we will

use when defining our embedding into L1. These are cuts

that we call monotone, and intuitively correspond to sets

that only cross every ray at most once. We also describe a

specific “shifting” operation that will allow us to modify a

cut in order to adapt to the finer geometry of a given space.

Definition IV.1 (Monotone cut). Let G be a pyramid with
basepoint v ∈ V (G), and let S ⊆ V (G). We say that S is
v-monotone (or monotone when v is clear from the context)
if v ∈ S, and for any ray R in G, R∩S is a prefix of R. In
particular, this implies that G[S] is a connected subgraph
(see Figure 3).

Definition IV.2 (Boundary of a monotone cut). Let S ⊆
V (G) be a monotone cut. We define the vertex boundary

of S, denoted by ∂V S, to be the set of all u ∈ S, such
that all children of u are not in S. We also define the edge

Figure 3. A monotone cut (top-left), its boundary (top-right), its odd
(2, {e1, e2})-shift (bottom-left), and its even (2, {e1, e2})-shift (bottom-
right).

boundary of S, denoted by ∂ES, to be ∂ES = {{x, y} ∈
E(G) : x, y ∈ ∂V S and depth(x) = depth(y)}. Finally, we
define the graph ∂S = (∂V S, ∂ES) (see Figure 3).

Definition IV.3. Let G be a pyramid, let T be the skeleton
of G. Let u ∈ V (G), and r ≥ 0. Then, we denote by Ñ(u, r)
the set of all vertices w ∈ V (G), such that u is an ancestor
of w in T , and dT (u,w) ≤ r.

Definition IV.4 (Odd/even shift of a monotone cut). Let
S ⊆ V (G) be a monotone cut, let r > 0, and Z ⊆ ∂ES.
Let Z = {{xi, yi}}ki=1, with

x1 ≺ y1 � x2 ≺ y2 � . . . � xk ≺ yk.

Let {Vi}k+1
i=1 be a decomposition of ∂V S, with V1 = {u ∈

∂V S : u � x1}, Vk+1 = {u ∈ ∂V S : yk � u}, and for
any i ∈ {2, . . . , k}, Vi = {u ∈ ∂V S : yi � u � xi+1}.
We define a partition ∂V S = Vodd ∪ Veven, by setting Vodd =⋃�t/2�

i=1 V (Q2i−1), and Veven =
⋃�t/2	

i=1 V (Q2i). We define the
odd (r, Z)-shift of S to be the cut Sodd given by

Sodd = S ∪
⋃

u∈Vodd

Ñ(u, r).

Similarly, we define the even (r, Z)-shift of S to be the cut
Seven given by

Seven = S ∪
⋃

u∈Veven

Ñ(u, r).

We say that a cut S′ is a (r, Z)-shift of S, if it is either
the odd, or the even (r, Z)-shift of S (see Figure 3 for an
example).

V. THE EMBEDDING

In this section we present a constant-distortion embedding

of pyramids into L1. Combining with lemmas I.4, II.4, &
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III.4, this implies that every planar metric of non-positive

curvature embeds into L1 with constant distortion.

Let G be a pyramid, with basepoint v ∈ V (G). Let

Δ ≥ 1 be the depth of G, and let δ = �logΔ�. It will

be convenient for our exposition to isometrically embed G
into a larger pyramid G′, with depth Δ′ = O(Δ), as follows.

The pyramid G′ contains a copy of G, and a new basepoint

v′, that is connected to the basepoint v of G via a path of

length 2Δ, resulting into a pyramid of depth Δ′ = 3Δ.

We will then compute an embedding for G′, and prove that

its restriction on G has small distortion. We remark that our

embedding will have unbounded distortion for points in G′

close to v′ (more precisely, pairs of vertices at distance ε
from v′, will be distorted by a factor of O(1/ε)). However,

this does not affect our result, since we only case about

distances in G, which lies far from v′.

Definition V.1 (Evolution of a monotone cut). Let r > 0,
and let S ⊆ V (G′) be a monotone cut. The r-evolution of S
is a probability distribution D over monotone cuts, defined
by the following random process. Let Y = {{x, y} ∈ ∂ES :
depth(x) − depth(nca(x, y)) ∈ [r, 6r)}. Pick a random
subset Y ′ ⊆ Y , by choosing every e ∈ Y independently,
with probability 1/r. We probability 1/2, let S′ be the
odd (r, Y ′)-shift of S, and otherwise let S′ be the even
(r, Y ′)-shift of S. The resulting random cut S′ defines the
distribution D.

Let M be the set of all v-monotone cuts in G′. We induc-

tively define a sequence {μi}δ+1
i=0 , where each μi is a prob-

ability distribution over M. We define μ0 as follows. Let

P1, . . . , PΔ′ be the layers of G′. For any j ∈ {1, . . . ,Δ′},
let Xi =

⋃j
t=1 V (Pt) = ball(v′, i). Let μ0 be the uniform

distribution over the collection of cuts X1, . . . , XΔ′ .

For any i ≥ 0, given μi, we inductively define μi+1 via

the following random process: We first pick a random cut Si

according to μi. Let D = D(Si) be the Δ/3i-evolution of

Si. We pick a random cut Si+1 according to D. The resulting

random variable Si+1 defines the probability distribution

μi+1.

We define the embedding f induced by the probability

distribution μδ , and the embedding f0 induced by the proba-

bility distribution μ0. Finally, we set the resulting embedding

to be

g = f ⊕ f0,

i.e. the concatenation of the embeddings f , and f0. In the

next section we show that the distortion of g restricted on

G is bounded by some universal constant.

VI. DISTORTION ANALYSIS

We now analyze the distortion of the embedding g con-

structed in the previous section.

A. Distortion of vertical pairs of points

Lemma VI.1. Let u ∈ V (G), with depth(u) < Δ′, and let
i ∈ {1, . . . , δ}. Then, Pr[u ∈ ∂V Si] = 1/Δ′.

Proof: The proof is by induction on i. For i = 0, the

assertion holds since μ0 is the uniform distribution over the

cuts X1, . . . , XΔ′ . Suppose next that i > 0. Let r = Δ/3i−1,

and let u′ be the ancestor of u in T , with dT (u, u) = r.

Fix some Si−1 in the support of μi−1, and suppose that Si

is sampled from the r-evolution of Si−1. This means that

we first sample a set of edges Y , and for any such Y we

set Si to be the odd (r, Y )-shift of Si−1 with probability

1/2, or otherwise we set Si to be the even (r, Y )-shift of

Si−1. Therefore, we have have u ∈ ∂V Si, only if either

u ∈ ∂V Si−1, or u′ ∈ ∂V Si−1. Conditioned on either of

these two events, and for any Y , exactly one of the odd/even

shifts of Si−1 has u in its boundary. This implies that Pr[u ∈
∂V Si] = Pr[u ∈ ∂V Si|u ∈ ∂V Si−1] · Pr[u ∈ ∂V Si−1] +
Pr[u ∈ ∂V Si|u′ ∈ ∂V Si−1] · Pr[u′ ∈ ∂V Si−1] =

1
Δ′ · 1

2 +
1
Δ′ · 12 = 1/Δ′, as required.

Lemma VI.2. Let x, y ∈ V (G), such that x, y lie on the
same ray. Then, ‖f(x)− f(y)‖1 = dG(x, y)/Δ.

Proof: Let R be the ray containing both x, and y. Let

R′ be the subpath of R between x, and y, including x,

and excluding y. By the monotonicity of Sδ , it follows that

1Sδ
(x) 
= 1Sδ

(y), if and only if there exists z ∈ V (R′),
such that z ∈ ∂V Sδ . Since these events are disjoint for

different z, we obtain by lemma VI.1 that ‖f(x)−f(y)‖1 =
Pr[1Sδ

(x) 
= 1Sδ
(y)] = |V (R′)|/Δ′ = dG(x, y)/Δ

′, as

required.

B. Distortion of horizontal pairs of points

We now bound the distortion on pairs of vertices x, y ∈
V (G) that lie on the same layer of G′, i.e. such that

depth(x) = depth(y) = h. Let dG(x, y) = L. Let also

h′ = depth(nca(x, y)). We assume w.l.o.g. that x � y. Let

P be the subpath of Ph between x, and y.

Let

Etop = {{z, w} ∈ E(P ) : depth(nca(z, w)) ≤ h− L/2} ,
and

Ebottom = E(P ) \ Etop.

Lemma VI.3. |Etop| ≤ L.

Proof: Suppose, to the contrary, that |Etop| > L. For

any i ∈ {h − L/2, . . . , h}, let Zi be the subpath of Pi
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between the ancestor of x, and the ancestor of y in Pi.

For any e = {z, w} ∈ Etop, with z ≺ w, let Rz be a ray

containing z, and let We be the subpath of Re contained

between Ph−L/2, and Ph.

The union of all these paths (
⋃

i Zi) ∪ (
⋃

e We) forms a

(L/2 + 1) × L grid minor in G′, with x, and y being

the bottom-left, and bottom-right vertices respectively. Since

the x-y shortest path in G′ is contained in ball(v′, h), this

implies that dG(x, y) > L, which is a contradiction.

Let H be the subgraph of G induced on the set of vertices

V (H) = {u ∈ V (G) : h′ ≤ depth(u) ≤ h and x � u � y}.
Definition VI.4 (Straight cut). Let i ∈ {1, . . . , δ}, and j ∈
{1, . . . ,Δ′}. We say that Si is j-straight if ∂Si ∩H ⊆ Pj .

Let e = {z, w} ∈ E(P ). We say that an edge e′ =
{z′, w′} ∈ E(G) is an ancestor of e, if z′ is an ancestor

of z in T , w′ is an ancestor of w in T , and depth(z′) =
depth(w′).

Definition VI.5 (Bend). Let e ∈ E(P ). We say that e bends

Si, if the following events happen.
(1) There exists j ∈ {1, . . . ,Δ′}, such that Si is j-straight.
(2) Let Y ⊆ ∂ESi, such that Si+1 is the (r, Y )-shift of Si,

for some r > 0. Then, there exists an ancestor of e in
Y .

Lemma VI.6. Let j ∈ {h′, . . . , h}, and let i ∈ {1, . . . , δ}.
Then, Pr[Si is j-straight] ≤ 1/Δ′.

Proof: Let z be an arbitrary vertex in V (Pj) ∩ V (H).
Clearly, Si can only be j-straight if z ∈ ∂V Si. Therefore,

by lemma VI.1 we obtain Pr[Si is j-straight] ≤ Pr[z ∈
∂V Si] = 1/Δ′, as required.

For any edge e = {z, w} ∈ E(P ), and for any i ∈
{1, . . . , δ}, let E(e, i) be the conjunction of the following

two events:

• E1(e, i): There exists j, such that the following event,

denoted by E1(e, i, j), holds: Intuitively, the event

E1(e, i, j) describes a necessary condition such that a

bend of Si can potentially lead to a cut Sδ that separates

x, and y. Formally, we have that Si is j-straight, with

Δ/3i ≤ j − depth(nca(z, w)) < 6Δ/3i, (4)

and

h− j ≤ 2Δ/3i. (5)

• E2(e, i): e bends Si.

Lemma VI.7. Suppose that 1Sδ
(x) 
= 1Sδ

(y). Then, there
exists e ∈ E(P ), and i ∈ {1, . . . , δ}, such that the event
E(e, i) occurs.

Proof: Recall that by the definition of μ0, the cut S0

is j0-straight, for some j0 ∈ {1, . . . ,Δ′}. Since 1Sδ
(x) 
=

1Sδ
(y), it follows that for all jδ ∈ {1, . . . ,Δ′}, the cut Sδ

is not jδ-straight. Let i∗ ∈ {0, . . . , δ − 1} be the smallest

integer such that for all j ∈ {1, . . . ,Δ′}, the cut Si∗+1 is not

j-straight. This means that Si∗ is j∗-straight, for some j∗ ∈
{1, . . . ,Δ′}. Therefore, there exists e = {z, w} ∈ E(P ),
such that e bends Si∗ , which means that the event E2(e, i∗)
occurs. It suffices to show that the event E1(e, i∗, j∗) also

occurs. We have established that Si∗ is j∗-straight, so its

remains to show that (4) & (5) hold. Condition (4) follows

immediately form the fact that e bends Si∗ , and Si∗+1 is

the (Y,Δ/3i
∗
)-shift of Si∗ , with e ∈ Y . Since Si∗ is j∗-

straight, we have Si∗ ⊆ ball(v′, j∗). The cut Sδ is obtained

from Si∗ via a sequence of (Y, r)-shifts, with exponentially

decreasing values of r. This implies Sδ ⊆ ball(v′, t), for

some t ≤ j∗+
∑δ

i=i∗ Δ/3i < j∗+2Δ/3∗. Since 1Sδ
(x) 
=

1Sδ
(y), we have t > h, and therefore h − j∗ < 2Δ/3i

∗
,

which implies (5), and concludes the proof.

Lemma VI.8 (Expansion of horizontal pairs). Let x, y ∈
V (G), such that depth(x) = depth(y). Then, ‖f(x) −
f(y)‖1 = O(d(x, y)/Δ′).

Proof: Let Etop denote the event that there exists e ∈
Etop, and i ∈ {1, . . . , δ}, such that E(e, i) occurs. Similarly,

let Ebottom denote the event that there exists e ∈ Ebottom, and

i ∈ {1, . . . , δ}, such that E(e, i) occurs. By lemma VI.7 we

have

‖f(x)− f(y)‖1 = Pr[1Sδ
(x) 
= 1Sδ

(x)]

≤ Pr[Etop] + Pr[Ebottom].

Let us bound the two latter quantities separately.

We first bound Pr[Etop]. Let e = {z, w} ∈ Etop, and i ∈
{1, . . . , δ}. Let h′ = depth(nca({z, w})). Recall that by

the definition of E1(e, i, j), in order for E1(e, i, j) to occur

for some j, we must have by (4) that j − h′ ≤ 6Δ/3i,
and by (5) that h − j ≤ 2Δ/3i. We therefore obtain that

h− h′ = h− j + j − h′ = O(Δ/3i). Note that Si+1 is the

(Y, r)-shift of Si, for some r = Δ/3i, and for random some

Y ⊆ ∂ESi. In order for the edge e to bend Si, its must

be the case that its unique ancestor (if it exists) in ∂ESi is

chosen in Y . Every edge in chosen in Y with probability at

most 1/r. Therefore, for any j, and for any i, we have

Pr[E2(e, i)|E1(e, i, j)] ≤ 3i/Δ.
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Moreover, E1(e, i, j) can occur only if j ∈ {h′, . . . , h}. For

each such value j ∈ {h′, . . . , h}, and for any i, we have by

lemma VI.6 that Pr[E1(e, i, j)] = O(1/Δ). To summarize,

we have

Pr[Etop] ≤
∑

e∈Etop

∑
i∈{1,...,δ}

Pr[E(e, i)]

≤
∑

e∈Etop

∑
j∈{h′,...,h}

∑
i∈{1,...,δ}

Pr[E2(e, i)|E1(e, i, j)] · Pr[E1(e, i, j)]
≤

∑
e∈Etop

∑
j∈{h′,...,h}

∑
i∈{1,...,δ}

3i

Δ
O(1/Δ)

≤
∑

e∈Etop

∑
j∈{h′,...,h}

O(1/(h− h′)) ·O(1/Δ)

≤
∑

e∈Etop

O(1/Δ)

= O(|Etop|/Δ)
= O(L/Δ′). (6)

We next bound Pr[Ebottom]. Let {1, . . . , δ}, j ∈
{1, . . . ,Δ′}, e ∈ Ebottom, such that both E1(e, i, j), and

E2(e, i) occur. As above, let e = {z, w}, and h′ =
depth(nca(z, w)). Then, we must have h′ ≤ j ≤ h, which

implies j − h′ ≤ h − h′ ≤ L/2. Since Si+1 is the (r, Y )-
shift of Si for some Y ⊆ E(P ), with r = Δ/3i, we obtain

that j − h′ ∈ [r, 6r), which implies 3i ≥ 2Δ/L. Let Rx

be the ray containing x, and let χ be the unique vertex in

the intersection of Rx with ∂Si. Let also χ′ be the unique

vertex in the intersection of Rx with ∂Sδ . For every i′ ≥ i,
the intersection of ∂Si′ with Rx moves by at most Δ/3i

′

along Rx, and therefore dT (χ, χ
′) < 2Δ/3i

′
= O(L). Since

χ ∈ Pj , and j ∈ [h′, h], it follows that depth(χ) can take at

most h′ − h+ 1 different values. Therefore, χ′ can only lie

inside a subpath R′x ⊆ Rx of length O(h′ − h). Applying

lemma VI.1, we obtain

Pr[Ebottom] ≤ Pr[χ′ ∈ R′x] ≤ |V (R′x)|/Δ′
= O(h′ − h)/Δ′ = O(L/Δ′). (7)

Combining (6) & (7) we conclude that ‖f(x) − f(y)‖1 =
O(L/Δ′) = O(d(x, y)/Δ′), as required.

We next bound the contraction of f .

Lemma VI.9 (Contraction of horizontal pairs). Let x, y ∈
V (G), such that depth(x) = depth(y). Then, ‖f(x) −
f(y)‖1 = Ω(d(x, y)/Δ′).

Due to lack of space, the proof of Lemma VI.9 is given

in the full version of the paper.

C. Distortion of general pairs of points

Lemma VI.10 (Embedding pyramids into L1). There exists
a universal constant c > 1, such that every pyramid graph
admits an embedding into L1 with distortion at most c.

Proof: We will show that the embedding g = f ⊕ f0
has constant distortion on G. Let x, y ∈ V (G). Assume

w.l.o.g. that depth(x) ≥ depth(y). Let Rx be the ray

containing x, and let x′ be the unique vertex in Rx, with

depth(x′) = depth(y). By lemmas VI.8 & VI.9 we have

that there exist universal constants α > β > 0, such that for

any

βdG(x
′, y)/Δ ≤ ‖f(x′)− f(y)‖1 ≤ αdG(x

′, y)/Δ (8)

Note that

dG(x, x
′) = depth(x)− depth(x′)
= depth(x)− depth(y) ≥ dG(x, y). (9)

Thus, we have

‖f(x)− f(y)‖1 ≤ ‖f(x)− f(x′)‖1
+ ‖f(x′)− f(y)‖1 (10)

≤ dG(x, y)/Δ+ αdG(x
′, y)/Δ (11)

≤ dG(x, y)/Δ+ αdG(x
′, x)/Δ

+ αdG(x, y)/Δ

= (α+ 1)dG(x, x
′)/Δ+ αdG(x, y)/Δ

≤ (α+ 1)dG(x, y)/Δ

+ αdG(x, y)/Δ (12)

= (2α+ 1)dG(x, y)/Δ, (13)

where (10) follows by the triangle inequality, (11) by lemma

VI.2 & (8), and (12) by (9). By (13) we have

‖g(x)− g(y)‖1 = ‖f(x)− f(y)‖1 + ‖f0(x)− f0(y)‖1
≤ (2α+ 1)dG(x, y)/Δ+ dG(x, y)/Δ

= (2α+ 2)dG(x, y)/Δ. (14)

This bounds the expansion of g. It remains to bound the

contraction of g.

Let γ = β
4(2α+1) . Assume first that dG(x, y) ≥ γdG(x, y).

We have

‖g(x)− g(y)‖1 ≥ ‖f0(x)− f0(y)‖1
= dG(x

′, y)/Δ
≥ γdG(x, y)/Δ (15)

Next, assume that dG(x, y) < γdG(x, y). We have

‖g(x)− g(y)‖1 ≥ ‖f(x)− f(y)‖1
≥ ‖f(x′)− f(y)‖1 − ‖f(x)− f(x′)‖1
≥ β

dG(x
′, y)

Δ
− (2α+ 1)

dG(x, x
′)

Δ
(16)

> (1− γ)β
dG(x, y)

Δ
− γ(2α+ 1)

dG(x, y)

Δ

>
β

2

dG(x, y)

Δ
(17)
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where (16) follows by (8) & (13). Combining (15) & (17),

we obtain that for all x, y ∈ V (G)

‖g(x)− g(y)‖1 ≥ β

4(2α+ 1)
dG(x, y)/Δ. (18)

From (14) & (18) we conclude that the distortion of g is at

most 4(2α + 1)(2α + 2)/β = O(1), concluding the proof.

D. Proof of the main result

Combining the above results, we can now prove our main

theorem.

Proof: Proof of theorem I.2 Let (X, d) be a planar

metric of non-positive curvature. Using lemma II.4, the

metric (X, d) admits an embedding into some funnel G
with distortion c1 = O(1). Using lemma III.4 we can find

a stochastic embedding of G into a distribution F over

pyramids with distortion c2 = O(1). By lemma VI.10 every

pyramid in the support of F admits an embedding into L1

with distortion c3 = O(1). Combining with lemma I.4 we

obtain that G admits an embedding into L1 with distortion

c2c3. Therefore (X, d) admits an embedding into L1 with

distortion γ = c1c2c3 = O(1), concluding the proof.
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