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Abstract—The Euler genus of a graph is a fundamental
and well-studied parameter in graph theory and topology.
Computing it has been shown to be NP-hard by Thomassen
[23], [24], and it is known to be fixed-parameter tractable.
However, the approximability of the Euler genus is wide
open. While the existence of an O(1)-approximation is not
ruled out, only an O(

√
n)-approximation [3] is known even in

bounded degree graphs. In this paper we give a polynomial-
time algorithm which on input a bounded-degree graph of
Euler genus g, computes a drawing into a surface of Euler
genus gO(1) · logO(1) n. Combined with the upper bound from
[3], our result also implies a O(n1/2−α)-approximation, for
some constant α > 0.

Using our algorithm for approximating the Euler genus
as a subroutine, we obtain, in a unified fashion, algorithms
with approximation ratios of the form OPTO(1) · logO(1) n for
several related problems on bounded degree graphs. These
include the problems of orientable genus, crossing number,
and planar edge and vertex deletion problems. Our algorithm
and proof of correctness for the crossing number problem is
simpler compared to the long and difficult proof in the recent
breakthrough by Chuzhoy [5], while essentially obtaining a
qualitatively similar result. For planar edge and vertex deletion
problems our results are the first to obtain a bound of form
poly(OPT, log n).

We also highlight some further applications of our results
in the design of algorithms for graphs with small genus.
Many such algorithms require that a drawing of the graph
is given as part of the input. Our results imply that in several
interesting cases, we can implement such algorithms even when
the drawing is unknown.

I. INTRODUCTION

A drawing of a graph G into a surface S is a mapping that

sends every vertex v ∈ V (G) into a point ϕ(v) ∈ S , and

every edge into a simple curve connecting its endpoints, so

that the images of different edges are allowed to intersect

only at their endpoints. In this paper we deal with closed

surfaces (compact and without boundary). A surface S can

be orientable or non-orientable. The Euler genus eg(S) of

a nonorientable surface S is defined to be the nonorientable

genus of S . The Euler genus eg(S) of an orientable surface

S is equal to 2γ, where γ is the orientable genus of S .
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For a graph G, the Euler genus of G, denoted by eg(G), is

defined to be equal to the infimal Euler genus of a surface

S , such that G can be drawn into S . The orientable genus

of a graph G, denoted by genus(G), is the infimal genus of

an orientable surface S into which G can be drawn.

Drawings of graphs into various surfaces are of central

importance in graph theory [18], topology, and mathematics

in general, and have been the subject of intensive study.

In particular, surface embedded graphs are an important

ingredient in the seminal work of Robertson and Seymour on

graph minors and the proof of Wagner’s conjecture. Surface

embedded graphs are also important in computer science,

and engineering, since they can be used to model a wide

variety of natural objects.

We consider two simple-to-state and fundamental op-

timization problems in topological graph theory: given a

graph G, compute eg(G) and genus(G). Thomassen [23]

showed that computing these quantities is NP-hard. Deciding

whether a graph has Euler genus 0, i.e. planarity testing,

can be done in linear time by the seminal result of Hopcroft

& Tarjan [10]. Deciding if eg(G) ≤ g is fixed-parameter

tractable. In fact, Mohar [16] gave a linear time algorithm

for this problem, and subsequently a relatively simple linear-

time algorithm was given by Kawarabayashi, Mohar & Reed

[11]. The dependence of the running time in the above

mentioned algorithms is at least exponential in g. We note

that, for any fixed g, the set of all graphs with genus at

most g, denoted by Gg is minor-closed. From the work of

Robertson and Seymour [21], Gg is characterized as the class

of graphs that exclude as a minor all graphs from a finite

family of graphs Hg . However, Hg is not known explicitly

even for small values of g and |Hg| can be very large.

In this paper we consider the case when g is not a

fixed constant and examine the approximability of eg(G)
and genus(G). Perhaps surprisingly, this problem is very

poorly understood. We briefly describe the known results

and illustrate the technical difficulties. In general, eg(G) can

be as large as Ω(n2) where n is the number of nodes of G
(e.g. for the complete graph Kn), and Euler’s characteristic

implies that any n-vertex graph of Euler genus g has at most

O(n+g) edges. Since any graph can be drawn into a surface

that has one handle for every edge, this immediately implies
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an O(n/g)-approximation, which is a Θ(n)-approximation

in the worst case. In other words, even though we currently

cannot exclude the existence of an O(1)-approximation, the

state of the art only gives a trivial O(n)-approximation. Us-

ing the fact that graphs of small genus have small balanced

vertex-separators, Chen, Kanchi & Kanevsky [3] obtained a

simple O(
√
n)-approximation for graphs of bounded degree

which is currently the best known approximation ratio. In

fact, if we do not assume bounded degree, nothing better

than the trivial O(n/g)-approximation is known. Consider

the case of apex graphs which are graphs that contain a

single vertex whose removal makes them planar. Mohar

[17] showed that the genus problem for even these graphs

is NP-hard. He also gave an elegant characterization of

the genus for apex graphs, which can in turn be used to

obtain a O(1)-approximation for such graphs. It is worth

mentioning that essentially nothing is known for graphs

with a constant number of apices! We also remark that by

Euler’s formula, there is a trivial O(1)-approximation if the

average degree is at least 6 + ε, for some fixed ε > 0.

Finally, we mention a recent result by Makarychev, Nayyeri

& Sidiropoulos [14], who gave an algorithm that given a

Hamiltonian graph G along with a Hamiltonian path P ,

draws the graph into a surface of Euler genus gO(1) logO(1) n
where g is the orientable genus of G. We note that their

algorithm does not assume bounded degree which is its

strength but assumes Hamiltonicity which is a limitation.

Moreover, the techniques in [14] rely heavily on using the

given Hamiltonian path P while our techniques here are

based on treewidth related ideas among several others.

Our algorithms for approximating genus also give us,

in a unified fashion, algorithms for two related problems

on drawing a graph on a planar surface, namely crossing

number and planar edge/vertex deletion. The guarantees of

our algorithms are of the form OPTO(1) logO(1) n. These

problems have also been well-studied and have the common

feature that the know hardness results are weak (either NP-

Hardness or APX-Hardness) while known approximation

bounds are polynomial in n even in bounded-degree graphs.

In this context we make some remarks on why the bounded-

degree assumption is interesting despite being a limitation

in some ways. First, we can assume that the graph has

bounded average degree since otherwise the lower bound on

the instance is very high and it becomes easy to approximate

(see previous comment on genus). It is not uncommon in

applications such as VLSI design and graph layout to assume

some form of an upper bound on the degree; heuristically

algorithms that work for bounded degree graphs can be

extended to handle the case of graphs that can be made

bounded degree by the removal of a small number of edges.

Second, from a theoretical point of view, understanding

the approximability even when all degrees are bounded

(in fact at most 3) is non-trivial and there has been very

limited progress over two decades. It is only very recently

that Chuzhoy, in a breaktrough and technically difficult

work, obtained a bound of the form OPTO(1) logO(1) n for

crossing number problem in bounded degree graphs. We now

describe our results formally.

Our results. Our main result is an approximation algorithm

for the Euler genus of bounded degree graphs. More specif-

ically, given a graph G of Euler genus g, our algorithm

computes a drawing of G into a surface of Euler genus

ΔO(1)gO(1) logO(1) n where Δ is the maximum degree. The

algorithm’s running time is polynomial in both g and n.

Combined with the simple O(n1/2)-approximation from [3],

our result gives a O(n1/2−α)-approximation for some fixed

constant α > 0. The following theorem summarizes our

main result.

Theorem I.1 (Main result). There is a polynomial-time
algorithm which given a graph G of maximum degree Δ,
and an integer g ≥ 0, either outputs a drawing of G into
a surface of Euler genus O(Δ2g12 log19/2 n), or correctly
decides that the Euler genus of G is greater than g.

Remark I.1. Kawarabayashi, Mohar and Reed [11] claim
an exact algorithm to compute the Euler genus of a given
graph in time 2O(OPT)n time, which in particular implies
a polynomial-time algorithm when OPT = O(log n); this
simplifies and improves a previous linear-time algorithm of
Mohar [16] which had a doubly-exponential dependence
on OPT. Theorem I.1, when combined with the algorithm
in [11], implies a polynomial-time algorithm that given a
graph G outputs a drawing on a sufrace with Euler genus
O(Δ3OPTO(1)).

We build on our main result to obtain several other

non-trivial results; we describe the outline of the unified

methodology in Section I-B. First, we obtain an algorithm to

approximate genus(G), the orientable genus of a given graph

G, summarized in the theorem below. Note that genus(G)
can be Ω(

√|V (G)|) even when eg(G) = O(1) [9].

Theorem I.2 (Approximating the orientable genus). There
exists a polynomial-time algorithm which given a graph G
of maximum degree Δ, and an integer g > 0, either correctly
decides that genus(G) > g, or outputs a drawing of G into
a surface of orientable genus O(Δ3g14 log19/2 n).

Crossing number. In the crossing number problem the input

is a graph G which may not be planar and the goal is to

draw it into the Euclidean plane with as few edge crossings

as possible. When we deal with this problem, we will allow

the edges in a graph drawing to intersect in their interiors.

The point where the interiors of two edges intersect, is called

a crossing of the drawing. We do not allow the interiors of

edges to intersect vertices, and we also assume that there are

no three edges, with their interiors intersecting at the same

point. The crossing number of a graph G, denoted by cr(G),
is defined to be the smallest integer k, such that G admits
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a drawing into the plane, with at most k crossings.

The crossing number problem has also been a difficult

problem to approximate, and the focus has been primarily

on bounded degree graphs. It is an NP-hard problem but for

each fixed k there is a linear time algorithm to decide if

cr(G) ≤ k [12]. In a recent breakthrough paper, Chuzhoy

[5] described an algorithm that given a graph G outputs

a drawing into the plane with O(cr(G)10 poly(Δ log n))
crossings; as a corollary she obtained the first algorithm

that had an approximation ratio that is sub-linear in |V (G)|.
The algorithm and proof in [5] occupy almost 80 pages.

It is a simple observation that if the crossing number of

a graph G is k then genus(G) ≤ k since one can add a

handle for each edge that participates in a crossing. We

can apply our approximation algorithm to find a drawing

of G into an orientable surface, via Theorem I.2, of genus

O(Δ4k9 log13/2 n). Interestingly, having a drawing on a rel-

atively low genus surface, allows us to obtain a rather simple

algorithm for crossing number. Our result is summarized

below.

Theorem I.3 (Approximating the crossing number). There
exists a polynomial-time algorithm which given a graph G of
maximum degree Δ, and an integer k ≥ 0, either correctly
decides that cr(G) > k, or outputs a drawing of G into the
plane with at most O(Δ9k30 log19 n) crossings.

We note that the dependence on k in our theorem is worse

than that in [5]. However, we believe that our approach, in

addition to giving a simpler proof, is interesting because it

appears to differ from that in [5] in going via a somewhat

indirect route through a low genus drawing. We refer the

interested reader to [4]–[6] for various pointers to the

extensive work on crossing number and related problems.

Planar Edge and Vertex Deletion. We extend our approach

via genus to obtain an approximation algorithm for the

minimum planar edge/vertex deletion problems. In these

problems we are given a graph G and the goal is to

remove the smallest number of edges/vertices to make it

planar. We denote by edge-planarization(G) the minimum

size of such a planarizing set of edges and similarly

by vertex-planarization(G) for vertices. The best known

approximation for this problems is O(
√
n log n) due to

Tragoudas via the separator algorithms [13], and recently

Chuzhoy [5] gives an algorithm that outputs a solution of

size O(cr(G)5 poly(Δ · log n)); we observe that the cr(G)
could be Ω(

√
n) even though there may be a single edge e

such that G − e is planar. We obtain the first non-trivial

approximation algorithm for this problem. Our result is

summarized in the following Theorem.

Theorem I.4 (Approximating the minimum planar

edge/vertex deletion). There exists a polynomial-time
algorithm which given a graph G of maximum degree
Δ, and an integer k > 0, either correctly decides that

edge-planarization(G) > k, or outputs a set Y ⊆ E(G),
with |Y | = O(Δ5k15 log19/2 n), such that G \ Y is planar.
Similarly, there is a polynomial-time algorithm that either
correctly decides that vertex-planarization(G) > k or
outputs a set X ⊂ V with |X| = O(Δ4k15 log19/2 n) such
that G \X is planar.

Remark I.2. Our approach via genus gives algorithms with
ratios O(ΔO(1)OPTO(1)) for crossing number and planar
edge/vertex deletion. It is useful to note that, unlike for
genus, crossing number and planar edge/vertex deletion do
not yet have fixed-parameter-tractable algorithms that have
a singly-exponential dependence on OPT.

Further algorithmic applications. Our approximation algo-

rithm for Euler genus has further consequences in the design

of algorithms for problems on graphs of small genus. Most

algorithms that take advantage of the fact that a graph can

be drawn on a surface of small genus require a drawing of

the input graph be given as part of the input. If the genus

g = O(log n) then one can use existing exact algorithms

that run in 2O(g)poly(n) time to obtain a drawing. Our

result implies that we can obtain a drawing even when

g = Ω(log n), that while not being optimal, nevertheless

yields interesting results. A concrete example of this appli-

cation is the following. Recently, Erickson and Sidiropoulos

[7] have obtained a O(log g/ log log g)-approximation for

Asymmetric TSP on graph of Euler genus g, when a drawing

of the graph is given as part of the input; this improves

the bounds of Oveis-Gharan and Saberi [19] who gave an

O(
√
g log g)-approximation and also required the drawing as

an input. Our result implies the following corollary: There

exists a polynomial-time O(log g/ log log g)-approximation

for ATSP on bounded-degree graphs of genus g, even when

a drawing of the graph is not given as part of the input1.

The proof of Theorem I.1 is somewhat technical and uses

several ingredients. To aid the reader we first give an

overview of the algorithmic ideas and highlight the ingredi-

ents that are needed. We assume that the reader is familiar

with the notion of the treewidth of a graph. Section I-B

highlights the high-level idea that allows us to leverage an

algorithm for Euler genus for the other problems considered

in the paper.

A. Overview of the algorithm for Euler genus

It is convenient to work with a promise version of the

problem where we assume that eg(G) is at most a given

number g. This allows us to assume certain properties that

G needs to satisfy. Our algorithm may find that G does not

1More precisely, there exists a polynomial-time algorithm which given a
bounded-degree graph G (the instance of ATSP), and an integer g, either
correctly decides that eg(G) > g, or it outputs a O(log g/ log log g)-
approximate TSP tour in G.
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Figure 1. A high-treewidth graph drawn into the torus (left), and the
low-treewidth skeleton obtained after removing irrelevant vertices (right).

satisfy such a property in which case it obtains a certificate

that eg(G) > g.

An idea from exact algorithms. Our algorithm is inspired

by fixed-parameter algorithms that run in polynomial time

for any fixed genus [11], [16], [21]. It is instructive to

briefly describe how such algorithms work. Let G denote

the input graph, and suppose we want to find a drawing into

a surface of Euler genus g, if one exists. If G happens to have

bounded treewidth, say f(g) for some function f , then one

can compute its Euler genus exactly via a dynamic program,

in time roughly 2O(f(g))nO(1). If on the other hand G has

treewidth larger than f(g), by choosing f to be sufficiently

large, a theorem of Robertson, and Seymour [20], [22],

asserts that G contains a flat ((2g + 1) × (2g + 1))-grid

minor H . Here, being flat means that the graph H admits a

planar drawing, such that all edges leaving H are incident

to the outer face. The central vertex v of such a grid can be

shown to be irrelevant, i.e. such that G admits a drawing

into a surface of Euler genus g, if and only if G− v does.

Therefore, we can simply remove v from G, and recurse

on the remaining graph. We continue removing irrelevant

vertices in this fashion, until the treewidth becomes at most

f(g). We call the resulting low-treewidth graph a skeleton of

G (see Figure 1). After drawing the skeleton, we can extend

the drawing to all the removed irrelevant vertices.

Challenges when g is not a fixed constant. Our algorithm

is based on modifying the above approach, so that it works

in the approximate setting when g is part of the input. We

now briefly describe the main challenges towards this goal.

Let us begin with considering the case of a bounded-degree

graph G of small treewidth, say at most gO(1), where g is

the Euler genus of G. By repeatedly cutting along balanced

separators, we can compute in polynomial time a set of at

most ΔO(1)gO(1) logO(1) n edges E∗ ⊂ E(G), such that

G \E∗ is planar. By introducing one handle for every edge

in E∗, we get a drawing of G, into a surface of Euler genus

(in fact orientable genus) ΔO(1)gO(1) logO(1) n .

Let us now consider the general case when treewidth of

the graph G is larger than gc for some sufficiently large

constant c. Let us assume for now that we can again find

an irrelevant vertex in G. It might seem at first that we are

done, by proceeding as in the exact case and recursing on the

reduced instance. However, this is the critical point where

things break down in the approximate setting. Suppose that

we remove a set U ⊂ V (G) of irrelevant vertices, such

that the skeleton G \ U has treewidth gO(1). We know

that the skeleton can be embedded with genus g iff G
can. However, we only have an approximate algorithm for

handling a low-treewidth graph. Using such an algorithm,

we can compute a drawing ϕ of G \ U into a surface of

Euler genus ΔO(1)gO(1) logO(1) n. Unfortunately, now we

are stuck! Since the drawing ϕ is not into a surface of Euler

genus g, there might be no way of extending ϕ to U .

Ensuring extendability. We overcome the above issue

by carefully computing irrelevant parts, that have some

extra structure. This structure guarantees that the resulting

approximate drawing of the skeleton can be extended to the

whole G, by introducing only a small number of additional

handles. To that end, we define a structure that we call a

patch. A patch is simply a subgraph X ⊂ G, together with

a cycle C, which we can think of as its “boundary”. We also

think of X \C as the “interior” of the patch. Our goal is to

compute patches X1, . . . , Xk, satisfying the following two

conditions:

(C1) After removing the interiors of all patches, the result-

ing skeleton has treewidth at most gO(1).

(C2) There exists a drawing ϕOPT of G into a surface S
of genus eg(G), such that every patch Xi is drawn

inside a disk Di, with its boundary being mapped to the

boundary of Di. Moreover, the disks Di have pairwise

disjoint interiors, and there is no part of G drawn inside

each Di, other than Xi (see Figure 2(a)). We remark

that we do not explicitly know ϕOPT , but we can

nevertheless guarantee its existence.

Let us suppose for now that we can compute such a skele-

ton, with a corresponding collection of patches X1, . . . , Xk.

Let Ci be the boundary cycle of each Xi. Let G′ be the

skeleton G \ ⋃k
i=1(Xi \ Ci) (see Figure 2(b)). Let us now

revisit the algorithm for low-treewidth graphs: We repeatedly

remove balanced separators of size gO(1) logO(1) n, until all

connected components become planar. After removing a set

E′ of at most gO(1) logO(1) n edges, we end up with a planar

graph H ′ = G′ \ E′. Fix a planar drawing ϕ′ of H ′. We

would like to extend ϕ′ to a low-genus drawing of the whole

G. To that end, ideally, we would like every cycle Ci to

bound a face in ϕ′. There are two things that can go wrong:

(P1) A cycle might be broken into several different paths.

(P2) A maximal segment P of a cycle Ci in H ′ might not

be “one-sided”. That is, there might be no face of ϕ′

containing P as a subpath.

Problem (P1) can be easily addressed: If a cycle gets

broken into t pieces, then we can “fix” this by adding at

most t extra handles. Since we remove only a small number

of edges, and every edge can break at most two cycles, it

follows that we only need to add a small number of new

handles because of (P1).
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(a) A collection of patches (in bold). (b) The skeleton obtained after removing the
interiors of all patches.

(c) The graph G′′ obtained after attaching a
width-3 cylinder along every boundary cycle.

Figure 2. Constructing a skeleton.

Overcoming problem (P2) is somewhat more difficult:

Intuitively, while computing the drawing of the skeleton G′,
we modify G′ by attaching a cylinder of width 3 on each

cycle Ci (see Figure 2(c)). This ensures that in the resulting

planar drawing of H ′, each segment of every cycle is one-

sided. In reality, things are more complicated, but this is

the high-level idea. After computing a planar drawing ϕ′ as

above, where every segment of a cycle is one-sided, we can

extend ϕ′ to a low-genus drawing of G.

Computing the skeleton. The missing ingredient is an

algorithm to compute the skeleton satisfying the conditions

described above. The challenging part is to satisfy condition

(C2). One difficulty is that we can only compute patches

iteratively. Hence, if we compute the patches naively, it is

possible that a patch can “interfere” with previous patches.

We avoid this by showing that every new patch, either is

interior-disjoint from all previous ones, or it contains some

of them in its interior. In the latter case, we can simply

merge all internal patches with the current one. This is the

technical part of the paper. Our proof uses several tools from

the theory of graph minors, and topological graph theory,

such as the grid-minor/treewidth duality, Whitney flips, and

results on the so-called planarly-nested sequences [15].

B. Orientable genus, Crossing number and Planar
edge/vertex deletion

Our algorithms for genus(G), cr(G),
edge-planarization(G) and vertex-planarization(G) rely on

the algorithm for eg(G). Interestingly having a drawing

(even if it is into a non-orientable surface) helps via

the following conceptually simple methodology. First we

consider the problem of computing genus(G). Suppose

we have a drawing ϕ of G into a surface S whose Euler

genus is gO(1) logO(1) n where g is genus(G). Note that

eg(G) ≤ genus(G) and hence eg(G) provides a lower

bound for genus(G). We can efficiently check if S is

orientable or non-orientable. If S is orientable then we are

done. Suppose not. Then we compute ρ, the representativity
(equivalently facewidth) of the drawing ϕ which captures

how “densely” G is embedded in the surface. If ρ is

“small” relative to g we can cut a small number of edges

along a non-contractible cycle and reduce the genus of the

surface. We repeat this process until we obtain a drawing

into a surface S ′, such that either S ′ is orientable, or S ′ is

nonorientable, and the representativity is “large”. If S ′ is

orientable then we can add handles for all the edges cut

along the way and obtain a drawing of the original graph

into an orientable surface. The interesting case is when S ′
is non-orientable and has high representativity. In this case

we can show via results in [2] that G has a large Möbius

grid minor that certifies that genus(G) > g.

A similar approach works for cr(G) and

edge-planarization(G). It is an easy observation that

for each of these problems we have OPT ≥ genus(G)
where OPT is the optimum value for the corresponding

problem. Thus we can use our algorithm for genus(G)
to first obtain an embedding into an orientable surface of

genus comparable to OPT. We once again use the idea

of representativity. Either we can iteratively keep cutting

along short non-contractible cycles to reduce the genus by

at least one in each step and obtain a planar graph, or we

get stuck with an embedding on a non-planar surface with

large representativity. In the latter case we find a certificate

that OPT is large. In the former case we need to handle

the small number of edges removed to obtain the planar

graph. There is nothing to do for planar edge deletion since

they are part of the output. For crossing number we can

add these edges to the planar graph without incurring too

many crossings via the results in [4], [6].

Discussion: One could argue that the main reason for the

difficulty in approximating graph drawing problems is to get

a suitable lower bound on the optimum value. Previous al-

gorithms were based on divide and conquer based approach

[1], [3], [13]. However, this approach incurs an additive

term that depends on the size of a graph and therefore

one only obtains a polynomial-factor approximation. On

the other hand the problems are fixed parameter tractable

so when OPT is quite small, one can obtain an exact

algorithm. Chuzhoy’s algorithm for crossing number, and

our results, address the intermediate regime when OPT is

not too small but is not so large that an additive term

that depends on n can be ignored. Chuzhoy’s algorithm

and analysis are technically very involved but in essense

her algorithm finds large rigid substructures in the given
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graph (via well-linked sets and grid minors) that have to be

necessarily planar in any drawing with crossing number at

most cr(G). Our algorithms for crossing number and planar

edge/vertex deletion, are indirect in that they are based on

algoritms for genus. Consequently, the bounds we obtain are

quantitatively somewhat weaker than those of Chuzhoy for

crossing number. However, our algorithm offers a different

perspective and approach which may be useful.

Organization: Due to space constraints several proofs and

algorithms are omitted. A full version is available on the

ArXiv: http://arxiv.org/abs/1304.2416. Section II has some

basics and a procedure to simplify the input graph. Section

III contains the formal description of our algorithm for Euler

genus; it assumes an algorithm for computing the skeleton

which is given in Section IV.

II. PRELIMINARIES

For an orientable surface S , let genus(S) denote its ori-

entable genus. Similarly, for a graph G, let genus(G) denote

its orientable genus. For a graph G, and for X,Y ⊆ V (G),
we use E(X,Y ) to denote the set of edges with one end

point in X and the other in Y . For X ⊆ V (G) we use

NG(X) to denote the neighbors of X , i.e. the set of vertices

in V (G) \X that have an edge to some vertex in X .

A graph H is a minor of a graph G if it is obtained from

G by a sequence of edge deletions, edge contractions, and

deletions of isolated vertices.

Definition II.1 (Minor mapping). Let G be a graph, and
let H be a minor of G. Then there exists a function σ :
V (H)→ 2V (G), satisfying the following conditions:

(1) For every v ∈ V (H), σ(v) induces a connected
subgraph in G.

(2) For any u 	= v ∈ V (H), we have σ(u) ∩ σ(v) = ∅.
(3) For any {u, v} ∈ E(H), there exist u′ ∈ σ(u), and

v′ ∈ σ(v), such that {u′, v′} ∈ E(G).
We refer to σ as a minor mapping (for H). For a set U ⊂
V (H), we will use the notation σ(U) =

⋃
v∈U{σ(v)}.

Definition II.2 (Grids and cylinders). Let r ≥ 1, k ≥ 3.
We define the (r × k)-cylinder to be the Cartesian product
of the r-path P , with the k-cycle C. We fix an endpoint v
of P , and let u be the other endpoint. We refer to the copy
of the k-cycle {v} × C, as the top, and to {u} × C, as the
bottom (of the cylinder).

Similarly, for s ≥ 1, t ≥ 1, the (s × t)-grid is the
Cartesian product of the s-path P , with the t-path Q. We
fix an endpoint v of P , and let u be the other endpoint. We
refer to the copy of the t-path {v} ×Q, as the top, and to
{u} ×Q, as the bottom (of the grid).

We will make use of the following result of Feige et al. for

computing balanced vertex-separators.

Theorem II.3 (Feige et al. [8]). There exists a polynomial
time O(

√
log n)-pseudo approximation for balanced vertex

separators. Moreover, given a graph G of treewidth t, we
can compute in polynomial time a tree decomposition of G
of width O(t

√
log t).

A. Graph normalization

Before we begin with the description of our algorithm, we

give a procedure for simplifying the input graph. Throughout

the proof of the main result, we will need to compute and

maintain structures that satisfy certain properties in any
optimal drawing. In order to achieve this, we need to enforce

a certain type of “local rigidity” of drawings. To that end, it

suffices to ensure that there are no planar components that

can “flip” along a small vertex separator. The following is

a formal definition of precisely this situation.

Definition II.4 (Freedom). Let G be a graph, and let H ⊆ G
be a vertex-induced subgraph of G. We say that H is free

(in G) if it satisfies the following conditions:
(1) There exist at most two vertices in V (H), called portals,

with neighbors in V (G) \ V (H).
(2) If H has two portals t, t′, then H is not a path between

t and t′.
(3) There exists a planar drawing of H such that all portals

lie in the boundary of the outer face.
If there exists only one portal, then we say that H is a petal,
and if there exist two portals, then we say that it is a clump.

Definition II.5 (Normalized graph). We say that a graph G
is normalized if there exists no free subgraph H ⊆ G.

The following lemma allows us to restrict our attention to

normalized graphs. A similar statement is proven in [15].

Lemma II.6. Given a graph G of maximum degree Δ, we
can compute in polynomial time a graph G′ of maximum
degree at most Δ, satisfying the following conditions:
(1) The graph G′ is normalized.
(2) Given a drawing of G′ into a surface S , we can compute

in polynomial time a drawing of G into S .

III. THE ALGORITHM

We begin by formally defining the notion of a patch,

which we alluded to in Section I-A.

Definition III.1 (Patch). Let G be a graph. Let X ⊆ G be
a subgraph, and let C � X be a cycle. Then, we say that
the ordered pair (X,C) is a patch (of G).

Note that the above definition of a patch is completely

combinatorial, i.e. it is completely independent from draw-

ings of the graph G. We will often refer to a patch, w.r.t. a

specific drawing. This is captured in the following definition.

Definition III.2 (ϕ-Patch). Let G be a graph, and let (X,C)
be a patch of G. Let ϕ be a drawing of G into a surface
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S . We say that (X,C) is a ϕ-patch (of G), if there exists a
disk D ⊂ S , satisfying the following conditions:
(1) ∂D = ϕ(C).
(2) ϕ(G) ∩ D = ϕ(X).

The following definition captures the notion of a pair of

“interfering” patches.

Definition III.3 (Overlapping patches). Let G be a graph,
and let (X1, C1), (X2, C2) be patches of G. We say that
(X1, C1), and (X2, C2) are overlapping if either (X1 \
C1) ∩ X2 	= ∅, or (X2 \ C2) ∩ X1 	= ∅. In particular,
if (X1, C1), and (X2, C2) are non-overlapping, then this
definition implies X1 ∩X2 = C1 ∩ C2.

Our general goal will be to compute patches that do not

interfere precisely in the above sense. We now have all the

notation in place, to state the main result for computing a

skeleton of the input graph.

Lemma III.4 (Computing a skeleton). There exists a
polynomial-time algorithm which given a graph G of
treewidth t ≥ 1, and maximum degree Δ, and an integer
g > 0, either correctly decides that eg(G) > g, or
outputs a collection of pairwise non-overlapping patches
(X1, C1), . . . , (Xr, Cr) of G, so that the following condi-
tions are satisfied:
(1) If eg(G) ≤ g, then there exists a drawing ϕ of G

into a surface of Euler genus g, such that for any i ∈
{1, . . . , r}, (Xi, Ci) is a ϕ-patch. We emphasize the
fact that ϕ is not explicitly computed by the algorithm.

(2) The graph G \ (⋃r
i=1(Xi \ Ci)) has treewidth at most

O(Δg11 log8 n).

Lemma III.4 is the main technical part of the paper. In

the interest of clarity, we postpone its proof to later sections,

and we instead show now how it can be used to obtain our

approximation algorithm for Euler genus.

Before we describe the actual algorithm, we need to define

a local “framing” operation, which we use to modify the

skeleton. Intuitively, this is needed to ensure that when

computing a drawing for the skeleton, the boundaries of

the patches are drawn in a “nearly one-sided” fashion. This

“near one-sidedness” in turn will allow us to extend the

drawing of the skeleton, to a drawing of the whole graph.

Note that framing is a combinatorial operation and does not

rely on a drawing.

Definition III.5 (Graph framing). Let G be a graph, and let
C = C1, . . . , Ck ⊆ G be a collection of cycles. Let G′ be the
graph obtained from G by taking for every i ∈ {1, . . . , k},
a copy Ki of the (3×|V (Ci)|)-cylinder, and identifying the
top of Ki with Ci. We refer to G′ as the C-framing of G
(see Figure 3(a)).

More generally, we define the framing operation for
subgraphs. Let H ⊆ G be a subgraph of G. We define a
graph H ′ as follows. Consider some Ci ∈ C. If Ci ⊆ H ,

then we take a copy of the (3 × |V (Ci)|)-cylinder, and we
identify its top with Ci. If Ci 	⊆ H , then let P1, . . . , Pa be
the set of maximal subpaths of Ci that are contained in H .
For every such Pj , we take a copy of the (3×|V (Pj)|)-grid,
and we identify its top with Pj . We repeat this process for
all Ci ∈ C, and we define H ′ to be the resulting graph. We
refer to H ′ as the C-framing of H (see Figure 3(b)). The
reader can check that the definition of the C-framing of H
agrees with the one given above, when H = G.

We now state a basic property of framing whose proof

follows directly from the definition of a C-framing.

Lemma III.6. Let G be a graph, and let C be a collection
of cycles in G. Let H be a collection of pairwise vertex-
disjoint subgraphs of G. Let G′ be the C-framing of G, and
for any H ∈ H, let H ′ be the C-framing of H . Then, the
graph

⋃
H∈HH

′ is (isomorphic to) a subgraph of G′.

We first argue that framing does not increase the genus

of the skeleton.

Lemma III.7 (The genus of a framed skeleton). Let G be
a graph, and let ϕ be a drawing of G into some surface
S . Let P be a collection of pairwise non-overlapping ϕ-
patches of G. Let G′ = G \

(⋃
(X,C)∈P X \ C

)
. Let G′′ be

the {C}(X,C)∈P -framing of G′. Then, eg(G′′) ≤ eg(G).

Lemma III.8 (Planarizing the skeleton). There exists a
polynomial-time algorithm which given a graph G of max-
imum degree Δ, an integer g > 0, and a collection of
pairwise non-overlapping patches (X1, C1), . . . , (Xr, Cr) of
G satisfying the assertion of Lemma III.4, it either correctly
decides that eg(G) > g, or it outputs a set S ⊆ V (G),
satisfying the following conditions:
(1) |S| = O(Δg12 log19/2 n).
(2) Let C = {C1, . . . , Cr}, and let G′ = G \ (⋃r

i=1(Xi \
Ci)). For every connected component H of G′ \ S, we
have that the C-framing of H is planar.

We can now prove the main result of this paper.

Proof of Theorem I.1: By Lemma III.4, in polynomial

time, we can either correctly decide that eg(G) > g, or we

can compute a (possibly empty) collection P of pairwise

non-overlapping patches of G, satisfying the following con-

ditions:

• If eg(G) ≤ g, then there exists a drawing ϕ of G into a

surface S of Euler genus g, such that any (X,C) ∈ P
is a ϕ-patch.

• The graph G′ = G \
(⋃

(X,C)∈P X \ C
)

has treewidth

t′ = O(Δg11 log8 n).

Let C = {C : (X,C) ∈ P}. For any subgraph H ⊆ G′, let

H framed denote the C-framing of H .

Let S ⊆ V (G) be the set computed by Lemma III.8. Let

G′′ = G′ \S, and let H be the set of connected components

of G′′. Since for every H ∈ H the graph H framed is planar, it
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(a) {C1, C2}-Framing of a graph. (b) {C1, C2}-Framing of a subgraph.

Figure 3. Examples of graph framing.

follows that (G′′)framed =
⋃

H∈HH
framed is also planar. Pick

a planar drawing ψ of (G′′)framed (which can be computed,

e.g. by the algorithm of Hopcroft, and Tarjan [10]).

We now proceed to obtain a drawing of G, by modifying

the drawing ψ of (G′′)framed. We iterate over all patches

(X,C) ∈ P . Consider some (X,C) ∈ P . Since every

(X,C) ∈ P is a ϕ-patch, it follows that the graph X
admits a planar drawing ϕ(X,C) into a disk D(X,C), with

ϕ(X,C)(C) = ∂D(X,C). Let nC = |E(C) \ E(G′′)|. We

consider two cases:

(i) If nC = 0, it follows that C ⊆ G′′. Therefore,

(G′′)framed contains a (3 × |V (C)|)-cylinder K. The

top of K is identified with C in (G′′)framed. Since K is

3-vertex-connected, it admits a unique planar drawing.

Let C ′ be the bottom of K. It follows K bounds a face

F in ψ. We can therefore extend the current drawing

to X \ C, by placing the open disk D(X,C) \ ∂D(X,C)

inside the face F , deleting all vertices of K that do

not belong to its top, and connecting the vertices in X ,

with their neighbors in the copy of C in G′′. Notice

that in this case, we do not increase the genus of the

current surface.

(ii) If nC > 0, we proceed as follows. First, we place

the disk D(X,C) in the unbounded face of the cur-

rent drawing. Let P1, . . . , PnC
be the set of maximal

segments of C contained in G′′. Consider a maximal

segment Pj . There exists a (3 × |V (Pj)|)-grid L in

(G′′)framed, such that the top of L is identified with

Pj . We argue that the bottom of L is a segment of a

face F in ψ: If |V (Pj)| ≤ 2, this is immediate, and if

|V (Pj)| ≥ 3, it follows by Whitney’s theorem, since

L is 3-connected, and therefore has a unique planar

drawing. If the orientation of Pj along a clockwise

traversal of ∂D(X,C) agrees with the orientation of

Pj along a clockwise traversal of F , then we attach

a handle between Pj in X , and the bottom of L.

Otherwise, we attach a Möbius band. Next, we delete

all the vertices in L that do not belong to its bottom,

and we also delete the copy of Pj in X (i.e. the copy

that lies on the boundary of D(X,C). Finally, we draw

the edges between X \ C, and Pj , by routing them

along the new handle, or Möbius band. We continue

in the same fashion, with all the remaining maximal

segments. For every maximal segment, we increase the

Euler genus of the underlying surface by at most 3.

Therefore, the total increase in the Euler genus is at

most 3nC .

After considering all patches in P , we arrive at a drawing

into some surface. We remove any remaining vertices from

(G′′)framed \ G′′. We arrive at a drawing ψ′ of the graph

Γ = G
[
V (G′′) ∪

(⋃
(X,C)∈P X \ C

)]
= G \ S.

Since the cycles {ϕ(C)}C∈C bound disks with disjoint

interiors in the drawing ϕ, it follows that every edge of

G′ is contained in at most two cycles in C. Therefore,∑
C∈C nC ≤ 2 · |E(G′) \E(G′′)| ≤ Δ · |V (G′) \ V (G′′)| =

Δ · |S| = O(Δ2g12 log19/2 n). It follows that the resulting

drawing ψ′ of Γ is into a surface of Euler genus at most∑
C∈C 3nC = O(Δ2g12 log19/2 n).
It remains to extend the drawing to S. This can be done

by adding at most |S| ·Δ additional handles (one for every

edge incident to a vertex in S). The resulting drawing of

G has Euler genus O(Δ2g12 log19/2 n) + O(|S| · Δ) =
O(Δ2g12 log19/2 n), as required. This concludes the proof.

IV. COMPUTING A SKELETON

The rest of the paper is devoted to the algorithm for com-

puting a skeleton, i.e. the proof of Lemma III.4. At the high

level, the algorithm proceeds iteratively as follows: (i) We

compute a patch. (ii) We remove its interior. (iii) We repeat

until the treewidth of the remaining graph becomes small

enough. One issue with implementing the above approach is

that we do not have access to an explicit optimal drawing of

the input graph. Therefore, we cannot argue that a computed

patch is a ϕ-patch for a specific optimal drawing. To that end,

we will need a stronger notion of a patch. More precisely,
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we need to compute patches that are ϕ-patches, in any
optimal drawing ϕ. Moreover, because the above procedure

computes patches in an ever decreasing graph, we need to

make sure that the genus never decreases. This property will

ensure that at the end of the procedure, all computed patches

are ϕ-patches for the same optimal drawing ϕ. The following

definition states precisely the properties that we need.

Definition IV.1 (Universal patch). Let G be a graph of Euler
genus g. Let X ⊆ G be a subgraph of G, and let C � X
be a cycle in X . We say that (X,C) is a universal patch (of
G) if it satisfies the following conditions:

(1) For any drawing ψ of G into a surface of Euler genus
g, we have that (X,C) is a ψ-patch.

(2) Let G′ = G \ (X \ C). Then, eg(G′) = eg(G) = g.

The following lemma shows that we can compute a

universal patch in polynomial time, in a normalized graph

of sufficiently large treewidth. A crucial property of the

algorithm is that after removing the interior of the computed

patch, the resulting graph remains normalized. This fact

allows us to inductively maintain a normalized graph, while

computing the skeleton. Intuitively, dealing with a normal-

ized graph is essential for avoiding “locally-pathological”

planar drawings. Roughly speaking, a non-normalized graph

can have an optimal drawing that locally looks rather com-

plicated. This makes it very difficult to control how different

overlapping patches interact with each other.

Lemma IV.2 (Computing a universal patch). There exists a
universal constant α > 0, such that the following holds.
Let G be a normalized graph of Euler genus g ≥ 1,
treewidth t ≥ 1, and maximum degree Δ. Suppose that
t ≥ αΔg11 log15/2 n. Then, we can compute in polynomial
time a universal patch (X,C) in G, such that G \ (X \C)
is normalized.

The proof of Lemma IV.2 is rather long, and requires

several other results, including our algorithm for computing

a flat grid minor, and properties of planarly nested sequences

due to Mohar [15]. For that reason, we defer it to the full

version, and show here how to use it to construct a skeleton

(i.e. to prove Lemma III.4).

Before we proceed with the proof of Lemma III.4, we first

derive a property that will be used in showing the correctness

of the algorithm. While computing a sequence of patches, it

is possible that a patch overlaps a previously computed one.

In this case, we can show that we can essentially “merge”

the two patches. The following Lemma gives the necessary

properties for doing exactly that.

Lemma IV.3 (Merging overlapping patches). Let G be a
graph, let ϕ1 be a drawing of G into a surface S , and let
(X1, C1) be a ϕ1-patch of G. Let G′ = G \ (X1 \C1). Let
ϕ2 be the drawing of G′ into S obtained by restricting ϕ1

to G′. Let (X2, C2) be a ϕ2-patch of G′. Suppose further

that (V (X2) \ V (C2)) ∩ V (C1) 	= ∅. Then, (X1 ∪X2, C2)
is a ϕ1-patch of G.

Proof: Since (X2, C2) is a ϕ2-patch, it follows that

there exists D2 ⊂ S , such that ∂D2 = ϕ2(C2). It remains

to show that ϕ1(G) ∩ D2 = ϕ1(X1 ∪X2). Since (X1, C1)
is a ϕ1-patch, it follows that there exists a disk D1 ⊂ S ,

with ∂D1 = ϕ1(C1). We claim that D1 ⊆ D2. Suppose to

the contrary that there exists a point p ∈ D1 \ D2. Pick an

arbitrary vertex v ∈ (V (X2) \V (C2))∩V (C1), and let q =
ϕ1(v) = ϕ2(v). We have q ∈ D2∩D1. Moreover, since v ∈
V (X2) \ V (C2), it follows that q /∈ ∂D2. Therefore, there

exists a segment of ∂D2 that lies inside D1. This implies

that ϕ2(X2) intersects the interior of D1. Thus, there exists

e /∈ E(X1), with ϕ2(e) = ϕ1(e) ⊂ D1, which contradicts

the fact that (X1, C1) is a ϕ1-patch.

We are now ready to prove Lemma III.4, which is the

main result of this section. Before proceeding, we remark

that the assertion of Lemma III.4 can in fact be slightly

strengthened. More precisely, one can show that in the

computed collection, all patches are universal. We omit

the details since they are not relevant to our algorithmic

application.

Proof of Lemma III.4: Fix a drawing ϕ of G into a

surface of Euler genus g. We remark that we use g in the

following argument, even though we do not know how to

explicitly compute it in polynomial time.

We inductively compute a sequence P(0), . . . ,P(s), with

P(0) = ∅, where for each i ∈ {1, . . . , s}, P(i) is a collection

of pairwise non-overlapping ϕ-patches of G. The desired

collection will be P(s).

For any 
 ∈ {1, . . . , s}, we define the graph G(�) = G \⋃
(X,C)∈P(�)(X \ C). We maintain the inductive invariant

that for any 
 ∈ {1, . . . , s},
G(�) is normalized, and eg(G(�)) = eg(G) = g. (1)

Given P(�), for some 
 ≥ 0, we proceed as follows. Let

α > 0 be the constant in the statement of Lemma IV.2. By

Theorem II.3, there exists a polynomial time algorithm that

given a graph of treewidth k, outputs a tree decomposition

of width at most α′k
√
log k, for some universal constant

α′. We run the algorithm of Theorem II.3 on G(�). If the

algorithm returns a tree decomposition of width at most

α · α′ · Δg11 log8 n, then we have a certificate that the

treewidth of G(�) is at most O(Δg11 log8 n), and we set

r = 
. Otherwise, we know that the treewidth of G(�) is at

least αΔg11 log15/2 n, and we proceed to compute P(�+1).

By Lemma IV.2, and since G(l) is normalized, we

can compute in polynomial time a universal patch in

(X∗, C∗) of G(�). Let Q(�) = {(X,C) ∈ P(�) :
(X,C) and (X∗, C∗) are overlapping}. Fix an ordering of

the patches in Q(�) = {(Yi, Fi)}k�
i=1, where k� = |Q(�)|.

Let Y =
⋃k�

i=1 Yi. We argue that (X∗ ∪ Y,C) is a ϕ-

patch of G. Let Γ(0) = G(�), and for any j ∈ {1, . . . , k�},
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let Γ(j) = Γ(j−1) ∪ Yj . Let also ϕ(j) be the drawing of

Γ(j) induced by restricting ϕ to Γ(j). Since (X∗, C∗) is

a universal patch of Γ(0) = G(�), and ϕ(0) is a drawing

into a surface of Euler genus g, it follows that (X∗, C∗)
is also a ϕ(0)-patch. Note that for any j ∈ {1, . . . , k�},
since (Yj , Fj) is a ϕ-patch, and ϕ(j) is a restriction of ϕ, it

follows that (Yj , Fj) is also a ϕ(j)-patch. By Lemma IV.3

we obtain that (X∗ ∪ Y1, C∗) is a ϕ(1)-patch of Γ(1). By

inductively applying Lemma IV.3 on the pair of patches

(Yj , Fj), and
(
X∗ ∪

(⋃j−1
i=1 Yi

)
, C∗

)
, we conclude that

(X∗ ∪ Y,C) is a ϕ(k�)-patch of Γ(k�). Since the patch

(X∗ ∪ Y,C) is non-overlapping with any of the patches in

P(�) \Q(�), it follows that (X∗∪Y,C) is a ϕ-patch. We set

P(�+1) =
(P(�) \ Q(�)

) ∪ {(X∗ ∪ Y,C∗)}. It is immediate

that P(�+1) is a collection of non-overlapping ϕ-patches.

We next show that the inductive invariant (1) is main-

tained. Observe that G(�+1) = G(�) \ (X∗ \ C∗). Since

(X∗, C∗) is a universal patch of G(l), it follows that

eg(G(l+1)) = eg(G(l)) = g. Moreover, by Lemma IV.2 we

have that G(�+1) is normalized. This shows that the inductive

invariant (1) is maintained.

It remains to argue that the above process terminates after

polynomially many steps. Note that since (X∗, C∗) is a

patch, we have X∗ � C∗. Therefore, G(�+1) � G(�). It

follows that the algorithm terminates in polynomial time.

This concludes the proof.
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