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Abstract—We show that a canonical form for strongly
regular (s. r.) graphs can be found in time exp( ˜O(n1/5))
and therefore isomorphism of s. r. graphs can be tested
within the same time bound, where n is the number of
vertices and the tilde hides a polylogarithmic factor.

The best previous bound for testing isomorphism of s. r.
graphs was exp( ˜O(n1/3)) (Spielman, STOC 1996) while
the bound for GI in general has been standing firmly
at exp( ˜O(n1/2)) for three decades. (These results, too,
provided canonical forms.)

The previous bounds on isomorphism of s. r. graphs
(Babai 1980 and Spielman 1996) were based on the
analysis of the classical individualization/refinement (I/R)
heuristic. The present bound depends on a combination of
a deeper analysis of the I/R heuristic with Luks’s group
theoretic divide-and-conquer methods following Babai-
Luks (STOC 1983) and Miller (1983).

Our analysis builds on Spielman’s work that brought
Neumaier’s 1979 classification of s. r. graphs to bear on
the problem. One of Neumaier’s classes, the line-graphs
of Steiner 2-designs, has been eliminated as a bottleneck
in recent work by the present authors (STOC’13). In the
remaining hard cases, we have the benefit of “Neumaier’s
claw bound” and its asymptotic consequences derived by
Spielman, some of which we improve via a new “clique
geometry.”

We also prove, by an analysis of the I/R heuris-
tic, that, with known (trivial) exceptions, s. r. graphs
have exp( ˜O(n9/37)) automorphisms, improving Spiel-
man’s exp( ˜O(n1/3)) bound.

No knowledge of group theory is required for this
paper. The group theoretic method is only used through
an easily stated combinatorial consequence (Babai–Luks,
1983 combined with Miller, 1983).

While the bulk of this paper is joint work by the five
authors, it also includes two contributions by subsets of the
authors: the clique geometry [BW] and the automorphism
bound [CST].

Keywords-Algorithms, graph isomorphism, strongly reg-
ular graphs

I. INTRODUCTION

A. History and statement of the main result

It follows from the early theory of interactive proofs

that the Graph Isomorphism problem (GI) is not NP-

complete unless the polynomial-time hierarchy col-

lapses [1] (see [2] for a self-contained proof and ref-

erences). On the other hand, for three decades now, the

best known upper bound on the complexity of GI has

been exp(Õ(
√
n)) where n is the number of vertices

and the tilde hides a polylog factor [3], [4], [5].

A strongly regular graph with parameters (n, k, λ, μ)
is a regular graph with n vertices and degree k such that

each pair of adjacent vertices has λ common neighbors

and each pair of non-adjacent vertices has μ common

neighbors.

The class of strongly regular graphs, while not be-

lieved to be GI-complete, has long been identified as a

hard case for GI (cf. [6]).

A function F from a class F of finite structures to

itself is called a canonical form if for every X,Y ∈ F
we have X ∼= F (X) and X ∼= Y if and only if F (X) =
F (Y ). Isomorphism of members of F can be decided

by two applications of a canonical form function and

comparison of the outputs.

The set Iso(G,H) of G → H isomorphisms is a

coset of the automorphism group Aut(G) and can be

concisely represented by a set of O(n) generators of

Aut(G) together with a single G→ H isomorphism.

Our main result is the following.

Main Theorem I.1. Let G,H be s. r. graphs. A canon-
ical form for G can be computed, and consequently,
isomorphism of G and H can be decided, in time
exp(Õ(n1/5)). Moreover, the set Iso(G,H) can be
computed within the same time bound.

Disconnected s. r. graphs are disjoint unions of
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cliques of equal size; we refer to them and to their

complements as the “trivial s. r. graphs.” Nontrivial

s. r. graphs have diameter 2 and therefore have degree

k ≥ √n− 1. Since the complement of a s. r. graph is

s. r., we shall assume throughout the paper that
√
n− 1 ≤ k ≤ (n− 1)/2. (1)

Babai showed in 1980 [7] (cf. [8]) that isomorphism

of s. r. graphs can be tested in time

exp(Õ(n/k)). (2)

In the light of inequality (1) this gives an overall bound

of exp(Õ(
√
n)). This was improved by Spielman [9]

(STOC 1996) to exp(Õ(n1/3)); no further improvement

was obtained until the present paper.

B. Graphic s. r. graphs and vertex coloring

Let G = (V,E) be an (undirected) graph; V is the

set of vertices and E the set of edges. The line-graph
L(G) has the vertex set E with two edges of G being

adjacent in L(G) if they share a vertex in G.

L(G) is a nontrivial s. r. graph precisely if G = Kv

(n =
(
v
2

)
) or Kv,v (n = v2) (v ≥ 3); we refer to

these graphs and their complements as the “graphic
s. r. graphs.”

We shall work with vertex-colored graphs (colors

are preserved by isomorphisms by definition). While

canonical forms for the graphic s. r. graphs can easily be

found in linear time, the vertex-colored versions of each

of the two classes of graphic s. r. graphs are GI-complete
via a quadratic reduction. So an exp(Õ(n1/4−ε)) GI

bound for either of these colored classes would improve

the general bound for GI to exp(Õ(n1/2−2ε)) and would

therefore in itself be a major result. However, our main

results remain valid for the vertex-colored versions of

all s. r. graphs except the graphic ones.

This comment also underlines the significance of

being able to separate graphic s. r. graphs from the

remaining ones. A spectral separation was first achieved

by Seidel [10] who showed that for n ≥ 29, the

s. r. graphs with least eigenvalue −2 are precisely the

s. r. line graphs. This was powerfully generalized by

Neumaier to separate additional classes of s. r. graphs

which we call geometric (below); following Spielman,

we build on Neumaier’s classification.

C. Geometric s. r. graphs and conference graphs

For the purposes of this paper, a finite geometry is a

set P of v “points” and set L of subsets of P called

“lines.” The “length” of a line is the number of its

points; we assume (i) all lines have the same length

� ≥ 3; (ii) every pair of lines shares at most one point.

The line-graph of a finite geometry (P,L) has L for its

set of vertices; adjacency corresponds to intersection.

Two classes of finite geometries are of particular

interest. In a Steiner 2-design there is a line through

every pair of points. The points of a transversal design
are partitioned into � classes of equal size; there is a

line through a pair of points if and only if the points do

not belong to the same class.

The line graphs of these two classes of geometries

are s. r.; we refer to them and to their complements as

geometric s. r. graphs.

A conference graph is a s. r. graph of degree k =
(n− 1)/2 with μ = (n− 1)/4 and λ = μ− 1.

D. The Neumaier classification

The following result was central to Spielman’s work

and remains central to ours.

Theorem I.2 (Neumaier, 1979). A s. r. graph is trivial,
graphic, geometric, or a conference graph, or satisfies
“Neumaier’s claw bound.”

Neumaier’s claw bound [11], [12] is an inequality

involving the parameter μ and the eigenvalues of the

adjacency matrix (see e. g. [9]). We shall only need the

following asymptotic consequences of the claw bound.

Theorem I.3. Suppose G is a s. r. graph satisfying
Neumaier’s claw bound. Assum k = o(n). Then

(a) μ ∼ k2/n (Spielman)
(b) λ = O(k2/3μ1/3) = O(k4/3n−1/3) (Spielman)
(c) If k = Ω(n2/3) then λ = O((kμ)1/2) =

O(k3/2n−1/2) ([13], see Section V)

Parts (a) and (b) are implicit in [9].

We point out the philosophical significance of these

results. Written as μ/n ∼ (k/n)2, item (a) can be inter-

preted as saying that the neighborhoods of nonadjacent

pairs of vertices are “asymptotically independent.” Since

most pairs of vertices are not adjacent, this is the typical

behavior. While the neighborhoods of adjacent vertices

can be heavily positively correlated, items (b) and (c)

limit this correlation. We found this intuition helpful.

In the rest of this section we discuss how we dispose

of the cases that do not satisfy Neumaier’s claw bound.

The rest of the paper will assume the claw bound.

The following results appear in Miller [14] (1978) for

transversal designs and in [15] and [16] (STOC’13) for

Steiner 2-designs.

Theorem I.4. Canonical forms for transversal designs
and for Steiner 2-designs can be computed in nO(logn)

time where n is the number of lines.
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To apply Theorem I.4 to geometric graphs, we first

need to reconstruct the underlying geometry from the

line-graph. This is not always possible. However, up

to a degree threshold ∼ n2/3 the geometry can be

uniquely reconstructed in polynomial time, as shown by

Miller [14] for transversal designs and by Spielman [9]

for Steiner designs. All this is implicit in Neumaier’s

work, along with the following.

Proposition I.5. Let G be a geometric s. r. graph. Then
either the underlying geometry can be uniquely recon-
structed in polynomial time, or G satisfies Neumaier’s
claw bound.

The assumption k = o(n) in Theorem I.3 is justified

by (2) [7]. Indeed, for k ≥ n/ log n, we can construct

canonical forms in quasipolynomial time (exp(Õ(1)))
by (2). This observation takes care in particular of

conference graphs (a case in Neumaier’s classification).

In the remaining cases we shall assume k ≤ n/ log n
and that Neumaier’s claw bound holds, and therefore

items (a), (b), (c) of Theorem I.3 hold as well.

E. The individualization/refinement (I/R) heuristic and
the automorphism bound

A classical heuristic approach to the GI problem is the

“individualization/refinement” (I/R) method: we indi-

vidualize t vertices (assign unique colors to them), then

apply a canonical color refinement process (cf. Sec. II).

If we are lucky enough that the refinement process

completely splits the graph (assigns a unique color to

each vertex after refinement) then we obtain a canonical

form for the graph in time nt+O(1) by repeating the

process for all possible choices of the list of t vertices

to be individualized and picking the lexicographically

first among the resulting labeled graphs.

The results of Babai [7] and Spielman [9] as well as

[15] and [16] were based solely on the analysis of the

I/R heuristic.

This heuristic, however, has an inherent mathematical

limitation: if the individualization of t vertices com-

pletely splits the graph G then |Aut(G)| ≤ nt. Babai

has conjectured for three decades that for nontrivial,

non-graphic s. r. graphs |Aut(G)| = exp(no(1)), but the

best result to date in this direction is

|Aut(G)| ≤ exp(Õ(n9/37)) (3)

by [17] (see Section VIII), improving Babai’s

exp(Õ(n1/2)) and Spielman’s exp(Õ(n1/3)) bounds

and inspiring the present work.

Our algorithmic result, however, goes beyond the

exp(Õ(n9/37)) bound and therefore necessarily in-

volves more than an intricate analysis of I/R. Indeed,

part of our work is based on Luks’s group-theoretic

divide-and-conquer through a simply-stated combinato-

rial consequence, Theorem III.1, implicit in Babai–Luks

(1983) [3] combined with a result of Miller (1983) [18].

Theorem III.1 reduces the problem of finding canonical

forms to a relaxed analysis of I/R, where instead of

targeting a complete split, our goal is a “color-t-bounded

graph” (see the definition before Theorem III.1).

F. Detailed results
Our main result follows from a combination of the

following results with Theorem I.3.

Theorem I.6. Let G be a s. r. graph satisfying Neu-
maier’s claw bound. Assume k = o(n). Then a canoni-
cal form of G can be found in time
(a) nO(μ+logn) (Sec. IV)
(b) exp(Õ((n/k)1/2)) for k = o(n2/3) (Spielman)
(c) exp(Õ(1+λ/μ)) for k = ω((n log n)1/2) (Sec. VI)

Parts (b) and (c) of this result combined with parts

(a) and (c) of Theorem I.3 yield
(b′) exp(Õ((n/k)1/2)) for all k.

Remark I.7. Part (a) is the only part where the proof

uses the group theory method. In all other cases, the

time bounds stated suffice to list all isomorphisms. (This

is true for the nO(logn) bound in the geometric cases as

well [15], [16].)

Deriving the Main Theorem I.1 from Theorems I.6,
I.3, Prop. I.5, and Eq. (2): We settle the trivial and the

graphic cases in a straightforward manner in polynomial

(in fact, linear) time. The following cases are done in

quasipolynomial time: the cases k ≥ n/ log n by (2);

and the geometric cases where we don’t have the claw

bound, using Theorem I.4 and Proposition I.5. Finally

in the remaining cases we use part (a) of Theorem I.6

in combination with part (a) of Theorem I.3 for k ≤
n3/5 noting that μ ∼ k2/n � n1/5 in this range; and

statement (b′) after Thm. I.6 for n3/5 ≤ k ≤ n/ log n.

The bottleneck timing arises at k ∼ n3/5.
We now state our bounds in terms of k and n, along

with the history for comparison.

Theorem I.8. Canonical forms for a s. r. graph G can
be computed in time
(a) exp(Õ(n/k)) for all k [7]
(b) exp(Õ(

√
n/k)) for k = o(n2/3) [9] unless G is

geometric
(c) nO(logn) if G is geometric and does not satisfy

Neumaier’s claw bound ([15], [16] plus Prop. I.5)
(d) In the present paper we prove

(d1) exp(Õ(k2/n)) for k = O(n/ log n), improv-
ing Spielman’s bound in the range k ≤ n3/5
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(d2) exp(Õ(
√
n/k)) for k = o(n), extending the

range of Spielman’s bound.
We still use (b) for n3/5 ≤ k = o(n2/3) and (a)
for k = Ω(n) (and (c) for the geometric case).

G. Outline of the paper

The two basic techniques, I/R and the group theoretic

method, are sketched in Sections II and III, resp. Sec-

tion IV gives the full proof of part (a) of Theorem I.6

via a color-μ-bound (see def. before Thm. III.1). This

is the only part of the paper that depends on the

group theory method. For lack of space, all the other

proofs are only sketched. Section V describes the clique

geometry and indicates the proof of the improved bound

on λ (part (c) of Theorem I.3). Sections VI and VII

outline two proofs of the case of large degree (part (c)

of Theorem I.6) based on different strategies. Finally,

Section VIII outlines the proof of the exp(Õ(n9/37))
bound on the number of automorphisms.

Three follow-up papers will contain the complete

proofs. The bulk of the work will be covered by the

“full version” of this paper; the clique structure will be

presented in [13], and the automorphism bound in [17].

II. INDIVIDUALIZATION AND REFINEMENT

We consider vertex-colored graphs G = (V,E, f)
where f : V → {1, . . . , s} is a map for some s (the

number of colors). The coloring f defines a partition

of the vertices into color classes. A coloring g of the

graph (V,E) is a refinement of the coloring f of (V,E)
if (∀v, w ∈ V )(g(v) = g(w)⇒ f(v) = f(w)).

A color-refinement operator R over a class C of col-

ored graphs assigns to every member of C another mem-

ber with the same underlying graph and a refined color-

ing. We call the refinement operator R canonical if for

all G,H ∈ C we have Iso(G,H) = Iso(R(G),R(H)).
The coloring of G is stable if the coloring of R(G)

defines the same partition as G. Repeated application

of a (canonical) refinement operator to a colored graph

G = (V,E, f) leads to a (canonical) stable refinement

G∗ = (V,E, f∗).
We say that a vertex v has a unique color if no other

vertex shares the color of v.

We say that a color refinement operator completely
splits the colored graph G = (V,E, f) if the stable

refinement G∗ of G assigns a unique color to each

vertex. We note that if this is the case andR is canonical

then |Aut(G)| = 1 and sorting the vertices of G in the

order of their f∗-values puts G into a canonical form.

Individualizing a vertex v means the assignment of a

unique color to v. Depth-d stabilization is the process

of individualizing d vertices and refining to a stable

coloring. (It seems this was first introduced in [19] in

the context of the Weisfeiler-Leman refinement.) We

say that depth-d stabilization achieves a certain type
of coloring if there exists a set S of size |S| ≤ d such

that after individualizing S, the stable refinement is of

the stated type.

Proposition II.1. Let C be a class of colored graphs,
closed under isomorphisms. Let R be a canonical re-
finement operator over C. Suppose depth-� stabilization
completely splits G ∈ C. Then |Aut(G)| ≤ n� and we
can compute a canonical form of G and list Iso(G,H)
for any colored graph H in time T (R)n�+O(1), where
T (R) denotes the cost of one execution of R on a
colored graph on n vertices.

The naive color refinement process first replaces

the coloring f by the coloring f ′ where f ′(v) =
(f(v);mi(v) : i ∈ [s]) where mi(v) denotes the

number of neighbors of v of color i. Next we lex-

icographically order the set {f ′(v) : v ∈ V } of

strings, and define f̂(v) to be the rank of f ′(v) in this

ordering. (The f̂ notation hides the fact that f̂ depends

not only on f but on (V,E, f).) The correspondence

(V,E, f)→ (V,E, f̂) is clearly a canonical refinement;

this is one round of the naive refinement process. The

naive refinement operator replaces f by the stable

coloring f∗.
Except for Section VII, the only refinement operator

we consider is the naive refinement. The same is true for

papers [7], [9], [15]. Paper [16] and Section VII of the

present paper use a slight extension of naive refinement,

subsumed by the Weisfeiler-Leman refinement [19].

III. THE GROUP THEORY METHOD

The proof of part (a) of Theorem I.6 is based on

a combination of Luks’s group theoretic divide-and-

conquer methods [20] and the I/R technique. This

combination was developed by Babai and Luks in [3],

see esp. Section 4.5 of that paper. Below we state the

general principle implicit in [3].

Let G be a colored graph with color classes

C1, . . . , Cm (in this order). Let Bk =
⋃k

i=1 Ci. We say

that G is color-t-bounded if for k = 1, . . . ,m, no set

of t+1 vertices in Ck has the same set of neighbors in

Bk−1. (Note that B0 = ∅, so for k = 1 this condition

means |C1| ≤ t.)

Theorem III.1. Let G be a color-t-bounded colored
graph. Then a canonical form for G can be computed
in nO(t) time.

A weaker form of this result is implicit in [3]; this

weaker form would suffice for our purposes. We stated
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the result in this stronger form for its simplicity. To

prove this stronger form, we need to adapt the proof

of [18, Theorem 2] (G. L. Miller, 1983) to the [3]

technique. (This route is also indicated in [3].)

Proposition III.2. Let C be a class of colored graphs,
closed under isomorphisms, and R a canonical refine-
ment operator over C. Let G ∈ C have n vertices. Sup-
pose depth-� stabilization results in a color-t-bounded
graph. Then we can compute a canonical form of G in
time T (R)n�+O(t), where T (R) denotes the cost of one
execution of R on a colored graph on n vertices.

The proof is analogous to the proof of Prop. II.1.
Our next result implies Part (a) of Theorem I.6.

Theorem III.3. After individualizing O(log n) vertices
of G, naive refinement yields a color-μ-bounded graph.

Remark III.4. We note a structural obstruction to this

strategy. This comment, ending with the paragraph after

Proposition III.5, requires the basics of group theory and

is not needed for the rest of the paper.

Following Luks [20], let Γr denote the class of those

groups L which have a subgroup chain L = L0 ≥ L1 ≥
· · · ≥ Lm = {1} (the “≤” sign placed between groups

means “subgroup”) such that for all i ≥ 1 we have

|Li−1 : Li| ≤ r. Equivalently, a group L belongs to

Γr if all composition factors of L are isomorphic to

subgroups of the symmetric group Sr.

Proposition III.5. If depth-� stabilization (with respect
to any canonical refinement operator) of the graph G
results in a color-t-bounded graph then Aut(G) has a
Γt-subgroup of index ≤ n�.

Ideally we would wish the conclusion (a non-

algorithmic mathematical fact) to hold for some small

value of � + t. It is open whether it holds with

� + t ≤ n1/5−ε for all notrivial, non-graphic s. r.

graphs. But a slightly weaker parameter that might still

potentially permit the application of some version of the

group theory method is polylogarithmically bounded,

see Theorem IX.1.

IV. GENERATING THE GRAPH μ VERTICES AT A TIME

In this section we prove Theorem III.3 and thereby

part (a) of Theorem I.6.
For a ∈ V (G), let N(a) denote the set of neighbors

of a (so a /∈ N(a)). For A ⊆ V (G), let N(A) =⋃
a∈A N(a). Given a set A of vertices, we define Â =

A ∪G(A), where

G(A) = {u ∈ V : ∃a, b ∈ A s. t. a �= b, a �∼ b, and

u ∈ N(a) ∩N(b)}.

We say a set A is closed if A = Â. The closure A of A
is the smallest closed set containing A. We say a set A
generates a set B if B ⊆ A. We show that there exists

a small set A of vertices that generates all of V .

Lemma IV.1. There exists a set A ⊂ V with |A| =
O(log n) such that A = V .

Proof of Theorem III.3: Observe that by construc-

tion, for any set B ⊆ V , each vertex in G(B) has a

pair of nonadjacent neighbors in B. Therefore, no set

of μ + 1 vertices in G(B) can have the same set of

neighbors in B.

By Lemma IV.1, there is some set A ⊆ V with |A| =
O(log n) such that A = V . Individualize A and refine

the coloring until it is stable. Order the color-classes:

start with the members of A (a single vertex in each

class), and then repeatedly apply the B �→ B̂ operator to

the union of the color-classes already listed; add the list

of color classes in B̂\B in any order. By the foregoing,

our colored graph now is color-μ-bounded.

We will prove Lemma IV.1 in three stages. The

first and largest step is to generate a set A containing

a positive fraction of each of the neighborhoods of

two vertices, starting from a set A of logarithmic

size (Lemma IV.4). This is proved inductively; in the

inductive step (Lemma IV.5), we show that a subset of

a neighborhood of a vertex will generate a significantly

larger subset of a neighborhood of a vertex after indi-

vidualizing two additional vertices.

To complete the proof of Lemma IV.1, we prove

that once we have a set A of the sort guaranteed in

Lemma IV.4, we already have that A = V . First, we

show in Lemma IV.7 that Â already covers a constant

fraction of the space, and then, in Lemma IV.8, we

complete the proof. Both steps follow by counting

the number of edges leaving the set we have already

generated.

Two preliminary estimates and some additional no-

tation are required. For x ∈ V , we write N+(x) =
N(x) ∪ {x}. For A ⊆ V and y ∈ V , consider the set

A+ y := N(A \N+(y)) ∩N(y). (4)

Clearly, |A+y| ≤ μ|A|. Furthermore, we note A+y ⊆
Â ∪ {y} ∩N(y).

Lemma IV.2. Let L ⊂ N(A). Then

Ey(|(A+ y) ∩ L|) ≥ |L|(k − λ− 1)/n ∼ |L|(μ/k).
Proof: For each u ∈ L, designate a neighbor u′ ∈

A. For y ∈ V , let ϑu(y) denote the indicator of the event

that y ∈ N(u)\N+(u′). Since |N(u)∩N+(u′)| = λ+1,

we have Ey(ϑu) = (k − λ− 1)/n.
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Now, if u ∈ L and ϑu = 1 then u ∈ (A + y) ∩ L.

So |(A+ y)∩L| ≥∑
u∈L ϑu and Ey(|(A+ y)∩L|) ≥∑

u∈L Ey(ϑu) = |L|(k − λ− 1)/n.

Fact IV.3. Let m ≥ 1 be real and let X be a random
variable such that 0 ≤ X ≤ m and E(X) = 1. Then
P (X > 1− ε) ≥ ε/(m− 1 + ε). In particular, P (X >
1/2) ≥ 1/(2m− 1).

Lemma IV.4. There exists a pair of distinct vertices
x, y ∈ V and a set A with |A| = O(log n) such that
|A ∩N(x)| ≥ k/100 and |A ∩N(y)| ≥ k/100.

To prove the lemma, we will show that given a set

A ⊂ N(x) with |A| ≤ k/100, we can grow A into

a new set A′ ⊆ N(x′) whose size exceeds |A| by a

constant factor, and which is generated by A and two

additional vertices; moreover, we have many choices for

x′. Here is the precise statement.

Lemma IV.5 (Growth lemma). Let x ∈ V and A ⊂
N(x). Suppose |A| < k/100. Then there are Ω(n/μ)
vertices y such that there are Ω(n/μ) vertices z such
that |A′ ∩N(z)| � (9/8)|A| where A′ = A ∪ {y, z}.

Lemma IV.4 will then follow by induction.

Proof of Lemma IV.4 (based on the Growth lemma

(Lemma IV.5)): Fix adjacent vertices y0 and z0, and let

A0 = {y0, z0}. When Ai, yi, and zi have been defined,

and |Ai∩N(zi)| ≤ k/100, by Lemma IV.5, there exists

a pair (yi+1, zi+1) of vertices such that, setting Ai+1 =
Ai ∪ {yi+1, zi+1}, we have

|Ai+1 ∩N(zi+1)| � (9/8)|Ai ∩N(zi)|.
Thus, for some t = O(log n), we have a set At of

vertices such that |At| ≤ 2t and |At ∩ N(zt)| >
k/100. Furthermore, Lemma IV.5 ensures that we have

Ω(n/μ) = ω(log n) choices for each zi. We repeat

the construction to obtain sets A′i for i ≤ t′ where

t′ = O(log n) using a sequence of pairs (y′i, z
′
i) where

the set {z1, . . . , zt} is disjoint from the set {z′1, . . . , z′t′}.
We then have |A′t′ ∩N(z′t)| ≥ k/100 and z′t′ �= zt. So

A = At ∪A′t′ has the desired property.

In this section we only prove the Growth lemma

(Lemma IV.5) for μ ≥ 8.

The case of small μ presents an added technical

difficulty because in those cases, the sets as given in

the proof may not grow at all, or not at a constant rate.

The proof for μ ≤ 7 will use similar ideas as the proof

below for larger μ except we shall need to use two

additional vertices y, z per round rather than just one to

nudge our sets to grow. We defer the proof of the case

μ ≤ 7 to the full version of the paper.

For μ ≥ 8, the Growth lemma follows from

Lemma IV.6. Suppose μ ≥ 8. Let A ⊂ N(x) and
suppose |A| < k/100. Then there are Ω(n/μ) vertices
y ∈ V such that |A ∪ {y} ∩N(y)| � (9/8)|A|.

Proof: Define R as the set of triples (a, v, b)
satisfying a ∈ A, b ∈ N(x) \A, and v ∈ N(a) ∩N(b).
Let Q = {(a, v, b) ∈ R : v /∈ N+(x)}. We claim that

|Q| � (99/200)|A|k(μ− 3). (5)

The lemma then follows. Indeed, if v is such that

(a, v, b) ∈ Q for some a, b, then clearly v ∈ N(A).
Furthermore, such a vertex v can appear at most

|N(v) ∩N(x) ∩A| · |N(v) ∩N(x) \A| ≤ μ2

4

times in Q. Therefore,

|N(A)| ≥ 4|Q|/μ2 � (99/50)((μ− 3)/μ)(k/μ)|A|
≥ (99/80)(k/μ)|A|.

It then follows by Lemma IV.2 that Ey(|A + y|) �
(99/80)|A|. Let Z = |A+ y| and let us apply Fact IV.3

to the random variable X = Z/Ey(Z) with ε = 1/11.

Since Z ≤ μ|A| for all y, we obtain that

P (Z > (9/8)|A|) � ε

(80μ/99)− 1 + ε
=

9

80μ− 90
,

proving the lemma.

We now prove inequality (5). Define Q′ =
{(a, v, b) ∈ R : v /∈ N(x)} and W = {(a, v, b) ∈
R : a �∼ b and v �= x}. Thus, Q ⊂ Q′, and Q′ \ Q is

the set of triples of the form (a, x, b) where a ∈ A and

b ∈ N(x) \A. In particular, |Q′| = |Q|+ |A|(k − |A|).
For every a ∈ A, there are ≥ k − λ − |A| vertices

b ∈ N(x) \ A with a �∼ b. For every such pair (a, b),
there are μ−1 vertices v such that (a, v, b) ∈W . Thus,

since λ = o(k), we have |W | � |A|(k − |A|)(μ− 1).
The set W \Q′ is the collection of triples (a, v, b) of

distinct vertices in N(x) such that a ∈ A, b /∈ A, and

(a, v, b) induces a path (i. e., a ∼ v ∼ b and a �∼ b).
Let F be the set of edges {a, b} such that a ∈ A and

b ∈ N(x) \ A. For any (a, v, b) ∈ W \Q′, exactly one

of the edges {a, v} and {v, b} is in F . Fix {a, b} ∈ F
with a ∈ A and b /∈ A, and let K = K(a, b) = N(a)∩
N(b)∩N(x). There are ≤ |N(a)∩N(x)\K| = λ−|K|
vertices w such that (w, a, b) ∈W \Q′. Similarly, there

are ≤ |N(b) ∩ N(x) \ K| = λ − |K| vertices w such

that (a, b, w) ∈W \Q′. Thus,

|W \Q′| ≤
∑

{a,b}∈F
2(λ− |K(a, b)|)

On the other hand, Q′\W contains all triples (a, v, b)
such that {a, b} ∈ F with a ∈ A and v ∈ N(a) ∩
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N(b) \ N(x). Thus, for fixed {a, b} ∈ F , there are

exactly |N(a) ∩ N(b) \K| = λ − |K| vertices v such

that (a, v, b) ∈ Q′ \W . Thus,

|Q′ \W | ≥
∑

{a,b}∈F
(λ− |K(a, b)|)

so that |Q′ \W | ≥ |W \Q′|/2. It follows that

|Q′| = |Q′ ∩W |+ |Q′ \W | ≥ |Q′ ∩W |+ |W \Q′|/2
≥ |W |/2 � (1/2)|A|(k − |A|)(μ− 1) .

Since |Q| = |Q′| − |A|(k − |A|), we have |Q| �
(1/2)|A|(k − |A|)(μ − 3). Inequality (5) now follows,

since |A| < k/100.

Lemma IV.7. Let A ⊆ V . Suppose there exist dis-
tinct vertices x, y such that |A ∩ N(x)| ≥ ck and
|A ∩ N(y)| ≥ ck for some constant c > 0. Then
|Â| � c2n.

Proof: Let X = A ∩ N(x) \ N(y) and Y = A ∩
N(y) \N(x). Without loss of generality, assume |Y | ≤
|X|. We have |N(x) ∩N(y)| ≤ λ and therefore |Y | ≥
ck − λ ∼ ck.

Define Q = {(a, b, v) : a ∈ X, b ∈ Y, a �∼ b, v ∈
N(a) ∩N(b)}. Note that if (a, b, v) ∈ Q then v ∈ Â.

Since no vertex in Y is adjacent to x, each vertex in

Y has at most μ neighbors in X . Therefore

|Q| ≥ (|X| − μ)|Y |μ ∼ c2k2μ.

If v ∈ N(x) and (a, b, v) ∈ Q then v ∈ N(b) ∩ N(x)
and b /∈ N(x), while a ∈ N(v) ∩N(x). It follows that

there are ≤ μλ|Y | such triples (a, b, v). Similarly, there

are ≤ μλ|X| triples (a, b, v) ∈ Q such that v ∈ N(y).
For every other vertex v, we have |N(v) ∩ X| ≤ μ
and |N(v) ∩ Y | ≤ μ, so there are ≤ μ2 pairs a, b such

that (a, b, v) ∈ Q. Thus, the number of distinct vertices

v ∈ V \ (X ∪ Y ) such that (a, b, v) ∈ Q for some a, b
is at least

|Q| − μλ|X| − μλ|Y |
μ2

� c2k2

μ
∼ c2n.

In particular, |Â| � c2n.

Lemma IV.8. Let A ⊆ V is such that |A| = Ω(n).
Then for n sufficiently large, A = V .

Proof: Let B be the collection of vertices with at

least λ + 2 neighbors in A. Clearly B ⊂ Â. Thus, it

suffices to show that every vertex x /∈ A∪B has at least

λ+2 neighbors in A∪B for n sufficiently large. Indeed,

if x /∈ A ∪ B, then |A \ N(x)| ≥ Ω(n − λ) = Ω(n).
Every vertex in A \N(x) has μ neighbors in N(x), so

the number of edges between N(x) and A \ N(x) is

Ω(μn) = Ω(k2). Thus, Ey∈N(x)(|N(y) ∩ A|) = Ω(k),
and since each vertex in N(x) has at most k neighbors

in A, it follows by Fact IV.3 that at least Ω(k) neighbors

of x each have at least Ω(k) neighbors in A. Since

λ = o(k), for n sufficiently large, x has more than

λ+ 2 neighbors in B.

Finally, we complete the proof of Lemma IV.1 by

using Lemmas IV.4, IV.7, and IV.8 in this order.

V. CLIQUE GEOMETRY AND THE λ BOUND

Spielman found the following remarkable lower

bound on the density of the subgraph induced by the

set of common neighbors of a pair of adjacent vertices.

Lemma V.1 (Spielman). Let u, v be adjacent vertices.
Then there are at most (k−λ−1)(μ−1) ordered pairs
of nonadjacent vertices in N(u) ∩N(v).

Using this bound we can prove that for large λ,
almost all vertices in N(u) ∩ N(v) induce a clique.

Here is the exact statement.

Corollary V.2. If kμ = o(λ2) then we have the
following structure.

(i) For every pair {u, v} of adjacent vertices there
is a unique maximal clique C(u, v) of order ∼ λ
such that u, v ∈ C(u, v). Let us call these cliques
special.

(ii) Let D(u, v) = N(u) ∩ N(v) \ C(u, v). Then
the vertices of D(u, v) each have at most μ
neighbors in C(u, v), and hence have degree o(λ)
in the subgraph of G induced on N(u) ∩ N(v).
The special cliques are therefore easily identified,
since the vertices of C(u, v) have degree ∼ λ in
N(u) ∩N(v).

(iii) If x �= y are vertices in C(u, v) then C(x, y) =
C(u, v). In other words, two distinct special
cliques have at most one vertex in common.

We defer the proof to [13].

This structure can be viewed as an approximate

version of the well-studied class of “partial geometries”

(where all lines must have equal length and the number

of lines from x to � must always be the same). The

special cliques are the “lines.” They are of almost equal

length ∼ λ; every pair of adjacent vertices belongs to

a unique line; two lines intersect in at most one point.

Furthermore, if a point x is not on a line � then there

are at most μ lines connecting x to points of �.
We now use this structure to derive our bound on λ.

A hypergraph is a pair H = (V, E) where E ⊆ 2V is

the set of edges. Let n = |V |. The degree deg(v) of the

vertex v ∈ V is the number edges containing v. We say
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that H is nearly d-regular if deg(v) ∼ d for all v ∈ V ,

and H is nearly λ-uniform if |A| ∼ λ for all A ∈ E .

Lemma V.3. Let H = (V, E) be a nearly d-regular,
nearly λ-uniform hypergraph with n vertices, such that
every pair of edges shares at most one vertex. Assume
d→∞ with n. Then λ � √n.

Proof: Count the triples (v,A,B) where v ∈ V ,

A,B ∈ E , A �= B, and v ∈ A ∩B in two ways.

Proof of Theorem I.3 (c): Assume k = Ω(n2/3).
Note that μ ∼ k2/n = Ω(n1/3), so kμ = Ω(n). We

need to show that λ = O((kμ)1/2). Assume instead

that kμ = o(λ2). Let H be the hypergraph on V whose

edges are the “special cliques” C(u, v). Then H is

nearly λ-uniform and nearly k/λ-regular. It follows by

Lemma V.3 that λ2 � n = O(kμ), contradicting the

assumption that kμ = o(λ2).

VI. THE exp(Õ(1 + λ/μ)) BOUND

In this section, we will outline a proof of Theo-

rem I.6 (c). An alternative proof will be outlined in

Section VII.

In view of Prop. II.1, the theorem follows from the

following lemma. We set ν = max{λ, μ}.
Lemma VI.1. Assume ν = ω(log n). For some d =
O((ν/μ) log3 n), depth-d stabilization completely splits
G.

The overall strategy of the proof of Lemma VI.1 is

similar to that of [15]. By individualizing vertices in

three stages, we gradually refine the coloring of G. In

the first stage, we ensure that for a positive fraction

of vertices x, the neighborhood N(x) intersects many

color classes. Here is a precise statement. We say that

a subset T of a colored set is stable if T is a union of

color-classes.

Lemma VI.2. For some t = O((ν/μ) log2 n), depth-t
stabilization yields a stable set A with |A| = Ω(n) such
that for every x ∈ A there are Ω(k/ν) disjoint stable
sets C such that |N(x) ∩ C| = Ω(μ).

Proof sketch: We show that with a single individ-

ualization, we can either increase the number of color

classes by a factor of (1+Ω(μ/(ν polylog(n)))), or else

obtain a collection of Ω(k/ν) color classes of bounded

size. By iterating this process Õ(ν/μ) times, we ensure

that the latter event obtains. The neighborhoods of these

bounded-size color classes will be the stable sets C in

the statement of the lemma. The set of all vertices x ∈ V
such that |N(x) ∩ C| = Ω(μ) is stable, and we show

that the number of such x is Ω(n).

Next, we give unique colors to a substantial fraction

of all vertices.

Lemma VI.3. Suppose there is a stable set A with
|A| = Ω(n) such that for every x ∈ A there are Ω(k/ν)
disjoint stable sets C such that |N(x) ∩ C| = Ω(μ).
Then for some t = O((ν/μ) log3 n), depth-t stabiliza-
tion produces Ω(n) vertices with unique colors.

First, in Lemma VI.4, we show that if a pair of

vertices has Ω(k/ν) different colors appearing in the

symmetric difference of their neighborhoods, then with

high probability they will receive different colors in the

stable refinement after individualizing Õ(ν/μ) random

vertices.

Lemma VI.4. For any δ > 0 there is some M > 0 such
that the following holds. Suppose x, y ∈ V are such
that N(x)\N(y) intersects at least δk/ν color classes.
Individualize at least M(ν/μ) log2 n random vertices.
Then for n sufficiently large, x and y get different colors
in the stable refinement with probability at least 1/2.

Proof sketch: By taking intersections with the

neighborhoods of random vertices, we iteratively shrink

the color classes in N(x)�N(y). With high probability,

some color class shrinks to a single vertex after Õ(ν/μ)
such intersections.

Sketch of proof of Lemma VI.3: The hypotheses

of Lemma VI.4 are satisfied by pairs of nonadjacent

vertices in the set A of Lemma VI.3, and so indi-

vidualizing some set of Õ(ν/μ) random vertices will

suffice to partition the set A of Lemma VI.3 into color

classes of size at most λ in the stable refinement. This

coloring of A will induce a relatively fine coloring

of neighborhoods for those vertices which intersect A
substantially. Hence, by repeating the argument, we can

give different colors to every pair of vertices whose

neighborhoods have large intersection with A.

Lemma VI.5. Suppose Ω(n) vertices have unique col-
ors. Then for n sufficiently large, G is completely split
in the stable refinement.

The proof is similar to that of Lemma IV.8.

Proof of Lemma VI.1: Apply Lemmas VI.2, VI.3,

and VI.5, in that order.

The details of the proofs are left to the full paper.

VII. BIPARTITE STRUCTURE

In this section we outline an alternative proof of

Theorem I.6 (c). As in [16] (as well as in [7], [9]),

the overall strategy is to distinguish pairs of vertices.

Given a s. r. graph, we achieve this by building a

family of bipartite structures that can be utilized in a
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multi-stage analysis. When aiming at distinguishing two

vertices u �= v, we simultaneously grow two sequences

of bipartite structures, one for u and one for v, with

the assistance of some random vertices (seeds). At

each step, the bipartite structures have the following

properties: either their interactions with a small number

of random seeds can introduce the desired asymmetry

with high probability, or their interactions with “not

too many” random seeds likely produce another pair of

bipartite structures with measurable progress. Note that

in order to perform multilevel analyses of non-trivial

s. r. graphs whose diameter is 2 it is usually essential to

build substructures within a s. r. graph that can stretch.

For a vertex u, we focus on the induced bipartite

subgraph between N(u) and V \ N+(u). Specifically,

we focus on a family of bipartite systems, each con-

sisting of a sequence of induced bipartite subgraphs

((A1, B1), . . . , (Aγ , Bγ)), where the Ai are disjoint

subsets of N(u) and Bi ⊆ V \ N+(u). For our

construction and analysis, in addition to demanding that

every (Ai, Bi) be dense enough, we further require that

(i) the sizes of all the Ai be within a factor of 2 of each

other, (ii) all degrees involved by vertices in
⋃

i Bi be

within a factor of 2 of each other, (iii) the numbers of

Bi to which each vertex in
⋃

i Bi belongs be within a

constant factor of each other.

With these strong “regularity” conditions, we have the

following property: Assume ((Ai, Bi)) and ((A′i, B
′
i))

are a pair of bipartite structures built for u and v, respec-

tively. If |Ai∩A′i| = o(|Ai|) and |Ai| (= |A′i|) is smaller

than k/max(λ, μ), then we have |Bi ∩ B′i| = o(|Bi|).
Thus, if |⋃i Bi| is very close to n, then the interaction

of a small number of random seeds w with
⋃

i Bi and⋃
i B

′
i is likely to produce the asymmetry that we aim

for: for some i, w ∈ Bi but w /∈ B′i.

Our initial bipartite systems for u, v are simply

((N(u), V \N+(u)) and ((N(v), V \N+(v)), respec-

tively, which do not meet the size condition above since

|N(u)| = |N(v)| = k is greater than k/max(λ, μ).
To make progress, we draw a small number of random

seeds and use the following process to partition a

bipartite system ((Ai, Bi)) to ((A′j , B
′
j)). For a seed

z, if z ∈ Bi for some i, then we extract a new

induced bipartite graph (A′, B′), where A′ contains all

the vertices of Ai that are also neighbors of z, and

B′ contains all neighbors of A′ in V \ N+(u). We

collect all such new induced bipartite graphs and then,

“clean up” the bipartite graphs to make the new bipartite

system satisfy the desired “regularity” conditions. Our

two goals are to ensure that (1) the union of the B-

part of the new bipartite system still contains almost

all vertices in V \ N+(u), and (2) the A-part of the

new bipartite system is smaller than the old one by a

factor of O(n−Ω(1)). Thus, a constant number of steps

is sufficient to obtain the desired structures.

We show that our construction of bipartite systems

is isomorphism-invariant, and that Õ(1 + λ/μ) random

seeds are sufficient to distinguish all pairs of vertices

with high probability. As a result, this gives an alter-

native algorithm for testing isomorphism of s. r. graphs

that satisfy Neumaier’s claw bound with running time

exp(Õ(1 + λ/μ)). For technical reasons, our analysis

works only for s. r. graphs of k = O(n1−ε) for some

arbitrary constant ε > 0. For larger k we refer to the

bound (2) [7]. We defer the details to the full paper.

VIII. THE COMBINATORIAL 9/37 BOUND

We now outline the proof of inequality (3). We state

the algorithmic result which implies (3).

Theorem VIII.1. If G and H are non-trivial, non-
graphic s. r. graphs then Iso(G,H) can be listed in time
exp(Õ(n9/37)).

This section is not required for our main algorithmic

result.

The proof follows from a combination of results

stated in the Introduction and the following lemma that

gives a strong combinatorial bound for small k.

Lemma VIII.2. Assume G satifies the claw bound.
Suppose k ≤ n7/13/ log n. Then for some d =
O((k17/3/n8/3) log5 n), depth-d stabilization com-
pletely splits G.

Proof of Theorem VIII.1 from the Lemma: As

in the derivation of Theorem I.1 near the end of Sec-

tion I-F, we quickly reduce to the case when G satisfies

Neumaier’s claw bound. We then use Lemma VIII.2

(as per Prop. II.1) for the case when k ≤ n19/37, then

Theorem I.6 (b′) up to k ≤ n/ log n, and finally (2) for

k ≥ n/ log n (see Remark I.7). The bottleneck for the

automorphism bound arises at k ∼ n19/37.

Outline of the proof of Lemma VIII.2: The Lemma

follows the high-level strategy of [7], [9], and [16]. We

show that, for each pair of vertices u, v ∈ V , if d
(as given in the statement of Lemma VIII.2) vertices

are sampled uniformly at random and individualized,

then with high probability, u and v will receive distinct

colors after three steps of refinement. Lemma VIII.2

then follows by a union bound.

To this end, we show that, with high probability, there

are three individualized vertices w1, w2 and w3 such that

the following event holds for u but does not hold for

v: There exist two vertices p, q such that w2 and w3
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are both neighbors of q; w1 and q are both neighbors

of p; p is a neighbor of u (but no such pair of vertices

exists for v). It is then clear that, after three steps of

refinement, u and v receive distinct colors.

We defer the details of the proof to [17].

IX. OPEN PROBLEMS

The main open problem in the area is to reduce the

complexity of GI to exp(n0.49). The target for isomor-

phism of s. r. graphs is subexponential (exp(no(1))) or

even quasipolynomial (exp((log n)O(1))). This may not

be entirely out of reach using the group theory method

in the light of the following new result.

Theorem IX.1 ([21]). Suppose the alternating group At

is involved in Aut(G) (as a quotient of a subgroup) for
a nontrivial, non-graphic s. r. graph G with n vertices.
Then t = O((log n)2/ log log n).

This implies that any primitive permutation group

involved in Aut(G) has quasipolynomially bounded

order, a key condition for the quasipolynomial-time

efficiency of Luks’s divide-and-conquer. However, the

obstacles to applying Luks’s method are still consid-

erable, given that s. r. graphs lack an evident recursive

structure (substructures that satisfy the same constraint

on their automorphism groups).

A major open problem, related to an obstruction to

the I/R method without group theory, is a subexponen-

tial bound on |Aut(G)| (see the bound (3) and the

paragraph preceding it in Sec. I-E).

Among the open cases of isomorphism of s. r. graphs

we should highlight the line-graphs of partial geome-
tries; nothing better than our exp(Õ(n1/5)) is known

for them in spite of their geometric structure.
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