
Efficient Accelerated Coordinate Descent Methods and
Faster Algorithms for Solving Linear Systems

Yin Tat Lee

Mathematics Department
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
Email: yintat@mit.edu

Aaron Sidford

Electrical Engineering and Computer Science Department
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
Email: sidford@mit.edu

Abstract—In this paper we show how to accelerate random-
ized coordinate descent methods and achieve faster convergence
rates without paying per-iteration costs in asymptotic running
time. In particular, we show how to generalize and efficiently
implement a method proposed by Nesterov, giving faster
asymptotic running times for various algorithms that use
standard coordinate descent as a black box. In addition to
providing a proof of convergence for this new general method,
we show that it is numerically stable, efficiently implementable,
and in certain regimes, asymptotically optimal.

To highlight the power of this algorithm, we show how it can
used to create faster linear system solvers in several regimes:
• We show how this method achieves a faster asymptotic

runtime than conjugate gradient for solving a broad class
of symmetric positive definite systems of equations.

• We improve the convergence guarantees for Kaczmarz
methods, a popular technique for image reconstruction
and solving overdetermined systems of equations, by
accelerating an algorithm of Strohmer and Vershynin.

• We achieve the best known running time for solving Sym-
metric Diagonally Dominant (SDD) system of equations
in the unit-cost RAM model, obtaining a running time
of O(m logˆ{3/2}n (log log n)ˆ{1/2} log((log n)/eps)) by
accelerating a recent solver by Kelner et al.

Beyond the independent interest of these solvers, we believe
they highlight the versatility of the approach of this paper and
we hope that they will open the door for further algorithmic
improvements in the future.

Keywords-convex optimization; coordinate descent; Kacz-
marz method; symmetric diagonally dominant matrix

I. INTRODUCTION

In recent years iterative methods for convex optimization

that make progress in sublinear time using only partial

information about the function and its gradient have become

of increased importance to computer science. Beyond the

hope for performance gains in practice, rapidly converging

algorithms with sublinear time update steps create hope for

new provable asymptotic running times for old problems and

stronger guarantees for efficient algorithms in distributed and

asynchronous settings.

The idea of using simple sublinear-time iterative steps

to solve convex optimization problems is an old one [1],

[2], [3]. It is an algorithmic design principle that has seen

great practical success [4], [5], [3] but has been notoriously

difficult to analyze. In the past few years great strides have

been taken towards developing a theoretical understanding

of randomized variants of these approaches. Of particular

relevance to this paper, in 2006 Strohmer and Vershynin

[6] showed that a particular sublinear update algorithm

for solving overconstrained linear systems called random-
ized Kaczmarz converges exponentially, in 2010 Nesterov

[7] analyzed randomized analog of gradient descent that

updates only a single coordinate in each iteration, called

coordinate gradient descent method, and provided a com-

putationally inefficient but theoretically interesting acceler-

ated variant, called accelerated coordinate gradient descent
method (ACDM), and in 2013 Kelner et al. [8] presented a

simple combinatorial iterative algorithm with sublinear-time

update steps that can be used to solve symmetric diagonally
dominant (SDD) linear systems, a broad class of linear

systems with numerous applications.

In this paper we provide a framework that both strength-

ens and unifies these results. We present a more general

version of Nesterov’s ACDM and show how to implement

it so that each iteration has the same asymptotic runtime

as its non-accelerated variants. We show that this method is

numerically stable and optimal under certain assumptions.

Then we show how to use this method to outperform

conjugate gradient in solving a general class of symmetric

positive definite systems of equations. Furthermore, we show

how to cast both randomized Kaczmarz and the SDD solver

of Kelner et al. in this framework and achieve faster running

times through the use of ACDM.

Due to the success of the Kaczmarz method in practice

[4], [5] and the wide array of theoretical problems for which

the fastest running time is obtained through a SDD solver

[9], [10], [11], we hope that the ideas in this paper can be

used to make advancements on both fronts.

A. Previous Work

Given a convex differentiable function the gradient de-
scent method is a simple greedy iterative method that

computes the gradient at the current point and uses that

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.24

147

information to perform an update and make progress. This

method is central to much of scientific computing and from

a theoretical perspective the standard method is well under-

stood [12]. There are multiple more sophisticated variants

of this method [13], but many of them have only estimates

of local convergence rates which makes them difficult to be

applied to theoretical problems and be compared in general.

In 1983, Nesterov [14] proposed a way to accelerate the

gradient descent method by iteratively developing an approx-

imation to the function through what he calls an estimate
sequence. This accelerated gradient descent method has the

same worst case running time as conjugate gradient method

and it is applicable to general convex functions. Recently,

this method has been used to improve the fastest known

running time of some fundamental problems in computer

science, such as compressive sensing [15], [16], undirected

maximum flow [17], linear programming [18], [19].

The accelerated gradient descent method is known to

achieve an optimal convergence rate among all first order

methods, that is algorithm that only have access to the

function’s value and gradient [12]. Therefore, to further

improve accelerated gradient descent one must either assume

more information about the function or find a way to reduce

the cost of each iteration. Using the idea of fast but crude

iteration steps, Nesterov proposed a randomized coordinate

descent method [7], which minimizes convex functions by

updating one randomly chosen coordinate in each iteration.

Coordinate descent methods, which use gradient informa-

tion about a single coordinate to update a single coordinate

in each iteration, have been around for a long time [2].

Various update schemes have been considered, such as cyclic

coordinate update and the best coordinate update, however

these schemes are either hard to estimate [20] or difficult

to be implemented efficiently. Both the recent work of

Strohmer and Vershynin [6] and Nesterov [7] overcame

these obstacles by showing that by performing particular

randomized updates one can produce methods with provable

global convergence rate with small costs.

Applying the similar ideas of accelerated gradient descent,

Nesterov also proposed an accelerated variant called the ac-
celerated coordinate descent method (ACDM) that achieves

a faster convergence rate. However, in both Nesterov’s

paper [7] and later work [21], this method was considered

inefficient as the naive implementation of each iteration of

ACDM requires Θ(n) time to update every coordinate of

the input, at which point the accelerated gradient descent

method would seem preferable.

B. Our Contributions

In this paper, we generalize Nesterov’s ACDM and present

a simple technique to implement update steps efficiently. Our

contributions are as follows:

• Generalization: A generalization of ACDM to a

broader class of sampling probabilities, overcoming

technical challenges due to skewed sampling proba-

bilities, so that any convergence rate achieved through

Nesterov’s coordinate descent method can be improved

by ACDM. This generalization was essential for appli-

cations considered later in the paper.

• Efficiency: A proof that under mild assumptions about

the oracle for querying function and gradient values,

each iteration of ACDM can be implemented with the

same asymptotic cost as a coordinate descent step.

• Numerical Stability: A proof that ACDM is numer-

ically stable and can be implemented with finite pre-

cision arithmetic and no overhead in the standard unit

cost RAM model.

• Lower Bound: A lower bound argument showing that

ACDM achieves an optimal convergence rate among a

certain class of coordinate descent algorithms.

In some sense, the principle difference between the

asymptotic running time of ACDM and accelerated gradi-

ent descent (or conjugate gradient for linear case) is that

as accelerated gradient descent depends on the maximum

eigenvalue of the Hessian of the function being minimized,

ACDM instead depends on the trace of the Hessian and has

the possibility of each iteration costing a small fraction of the

cost a single iteration of of accelerated gradient descent. As

a result, any nontrivial bound on the trace of the Hessian

and the computational complexity of performing a single

coordinate update creates the opportunity for ACDM to yield

improved running times. To emphasize this point, we focus

on applications of our method to solving linear systems and

we use three different cases to illustrate the flexibility and

competitiveness of our method.

• Symmetric Positive Definite Systems: We show that

under mild assumptions ACDM solves positive definite

systems with a faster asymptotic running time than

conjugate gradient (and even milder assumptions for

Chebyshev method), and it is an optimal algorithm for

solving general systems in certain regimes.

• Overdetermined Systems: For over-constrained sys-

tems of equations the randomized Kaczmarz method

of Strohmer and Vershynin [6], which iteratively picks

a random constraint and projects the current solution

onto the plane corresponding to a random constraint,

has been shown to have strong convergence guarantees

and appealing practical performance. We show how

to cast this method in the framework of coordinate

descent and accelerate it using ACDM yielding im-

proved asymptotic performance. Given the appeal of

Kaczmarz methods for practical applications such as

image reconstructions [5] , there is hope that this could

yield improved performance in practice.

• Symmetric Diagonally Dominant (SDD) Systems:
Since a breakthrough result in 2004 by Spielman and

Teng [22] showed that such systems can be solved

148

in nearly-linear time, such systems have been used to

create the fastest algorithm for a variety of problems

ranging from max flow [23] to sampling random span-

ning trees [9] and much more. The fastest known solver

for these systems in the standard unit-cost RAM model

is due to Kelner et. al. [8] is Õ(m log2 n log 1
ε) where

m is the number of nonzero entries in the n×n matrix,

and we use Õ to hide O(poly(log log n)) terms. We

show how direct application of ACDM to a simple

algorithm in [8] yields a faster SDD solver with an

asymptotic runtime of Õ(m log1.5 n log 1
ε) in the unit-

cost RAM model, getting closer to the fastest known

running time of Õ(m log n log 1
ε) by Koutis, Miller, and

Peng [24] in a less restrictive computational model.

Just as the accelerated gradient descent method has im-

proved the theoretical and empirical running time of various

gradient descent algorithms [25], [15], we hope that ACDM

will improve the running time of various algorithms for

which coordinate descent based approaches have proven

effective. Given the generality of our analysis and the

previous difficulty in analyzing such methods, we hope that

this is just the next step towards a new class of provably

efficient algorithms with good empirical performance.

II. PRELIMINARIES

In this paper, we consider the unconstrained minimiza-

tion problem min�x∈Rn f(�x) where the objective function
f : Rn → R is continuously differentiable and convex. We

let f∗ def
= min�x∈Rn f(�x) denote the minimum value of this

optimization problem and we let �x∗ def
= argmin�x∈Rn f(�x)

denote an arbitrary point that achieves this value.

To minimize f , we restrict our attention to first-order
iterative methods, that is algorithms that generate a sequence

of points �xk such that lim f(�xk) = f∗, while only evaluating

the objective function and its gradient at points. To compare

such algorithms, we say an iterative method has convergence
rate r if f(�xk)− f∗ ≤ O((1− r)k) for this method.

Now, we say that f has convexity parameter σ with
respect to some norm ‖·‖ if the following holds

∀�x, �y ∈ Rn : f(�y) ≥ f(�x)+〈∇f(�x), �y−�x〉+ σ

2
‖�y − �x‖2 (1)

and we say f strongly convex if σ > 0. We refer to the

right hand side of (1) as the lower envelope of f at �x and for

notational convenience when the norm ‖·‖ is not specified

explicitly we assume it to be the standard Euclidian norm

‖x‖ def
=
√∑

i �x
2
i .

Furthermore, we say f has L-Lipschitz gradient if

∀�x, �y ∈ Rn : ‖∇f(�y)−∇f(�x)‖ ≤ L ‖�y − �x‖
The definition is related to an upper bound on f as follows:

Lemma 1. [12, Thm 2.1.5] For continuously differentiable
f : Rn → R, it has L-Lipschitz gradient if and only if

∀�x, �y ∈ Rn : f(�y) ≤ f(�x)+〈∇f(�x), �y − �x〉+L

2
‖�x− �y‖2 . (2)

We call the right hand side of (2) the upper envelope of f
at �x. The convexity parameter μ and the Lipschitz constant

of the gradient L provide lower and upper bounds on f .

They serve as the essential characterization of f for first-

order methods. For twice differentiable f , these values can

also be computed by properties of the Hessian of f by the

following well known lemma:

Lemma 2 ([7]). Twice differentiable f : Rn → R has
convexity parameter μ and L-Lipschitz gradient with respect
to norm ‖·‖ if and only if ∀�x ∈ Rn the Hessian of f at �x,
∇2f(�x) ∈ Rn×n satisfies

∀�y ∈ Rn : μ ‖�y‖2 ≤ �yT
(∇2f(�x)

)
�y ≤ L ‖�y‖2 .

To analyze coordinate-based iterative methods, that is

iterative methods that only consider one component of the

current gradient in each iteration, we need to define several

additional parameters characterizing f . Let �ei ∈ Rn denote

the standard basis vector for coordinate i, fi(�x) ∈ Rn

denote the partial derivative of f at �x along �ei, i.e. fi(�x)
def
=

�eTi ∇f(�x), and �fi(�x) denote the corresponding vector, i.e
�fi(�x)

def
= fi · �ei. We say f has component-wise Lipschitz

continuous gradient with Lipschitz constants {Li} if

∀�x ∈ Rn, ∀t ∈ R, ∀i ∈ [n] : |fi(�x+t·�ei)−fi(�x)| ≤ Li ·|t|.
Let Sα

def
=
∑n

i=1 L
α
i denote the total component-wise Lips-

chitz constant . Later we will see that Sα has a similar role

for coordinate descent as L has for gradient descent.

We give two examples for convex functions induced by

linear systems and calculate their parameters. Note that even

though one example can be deduced from the other, we

provide both as it allows us to introduce more notation.

Example 1. Let f(�x)
def
= 1

2 〈A�x, �x〉 − 〈�x,�b〉 for symmetric
positive definite matrix A ∈ Rn×n. Since A = AT clearly
∇f(�x) = A�x−�b and ∇2f(�x) = A. Therefore, by Lemma 2,
L and σ satisfy σ ‖�x‖2 ≤ �xTA�x ≤ L ‖�x‖2. Consequently,
σ is the the smallest eigenvalue λmin of A and L is the
largest eigenvalue λmax of A. Furthermore, ∀i ∈ [n] we see
that fi(�x) = �eTi

(
A�x−�b

)
and therefore Li satisfies

∀t ∈ R : |t| · |Aii| = |�eTi A(tei)| ≤ Li|t| .
Since the positive definiteness of A implies that A is positive
on diagonal, we have Li = Aii, and consequently S1 =
tr(A) =

∑
Aii =

∑
λi where λi are eigenvalues of A.

Example 2. Let f(�x) = 1
2 ‖A�x− b‖2 for any matrix A.

Then ∇f(�x) = AT
(
A�x−�b

)
and ∇2f(�x) = ATA.

Hence, σ and L satisfy σ ‖�x‖2 ≤ �xTATA�x ≤ L ‖�x‖2.
And we see that σ is the the smallest eigenvalue λmin of
ATA and L is the largest eigenvalue λmax of ATA. As in
the previous example, we therefore have Li = ‖ai‖2 where
ai is the i-th column of A and S1 =

∑ ‖ai‖2 = ‖A‖2F , the
Frobenius norm of A.

149

III. REVIEW OF PREVIOUS ITERATIVE METHODS

In this section, we briefly review several iterative first-

order methods for smooth convex minimization. This

overview is by no means all-inclusive, our goal is simply

to familiarize the reader with numerical techniques we will

make use of later and motivate our presentation of the

accelerated coordinate descent method. For a comprehensive

review, there are multiple good references, e.g. [12], [26].

A. Gradient Descent

Given an initial point �x0 and step sizes hk, the gradient
descent method applies the following iterative update rule:

∀k ≥ 0 : �xk+1 := �xk − hk∇f(�xk).

For hk = 1
L , this method simply chooses the minimum point

of the upper envelope of f at �xk:

�xk+1 = argmin
�y

f(�xk)+ 〈∇f(�xk), �y − �xk〉+ L

2
‖�y − �xk‖2 .

Thus, we see that the gradient descent method is a greedy

method that chooses the minimum point based on the worst

case estimate of the function based on the value of f(xk)
and ∇f(xk). It is well known that it provides the following

guarantee [12, Cor 2.1.2, Thm 2.1.15]

f(�xk)− f∗ ≤ L

2

(
1− σ

L

)k
‖�x0 − �x∗‖2 . (3)

B. Accelerated Gradient Descent

To speed up the greedy and memory-less gradient descent

method, Nesterov [14], [12] suggested to use a quadratic

function to estimate the function. Formally, we define an

estimate sequence as follows: 1

Definition 1 (Estimate Sequence). A triple of sequences
{φk(x), ηk, �xk}∞k=0 is called an estimate sequence of f if
limk→∞ ηk = 0 and for any �x ∈ Rn and k ≥ 0 we have

φk(�x) ≤ (1− ηk)f(�x) + ηkφ0(�x) (4)

and
f(�xk) ≤ min

�x∈Rn
φk(�x). (5)

An estimate sequence of f is an approximate lower bound

of f which is slightly above f∗. This relaxed definition

allows us to find a better approximation of f instead of

relying on the worst case upper envelope at each step.

A good estimate sequence gives an efficient algorithm [12,

Lem 2.2.1] by the following

lim
k→∞

f(�xk)− f∗ ≤ lim
k→∞

ηk (φ0(�x
∗)− f∗) = 0.

Since an estimate sequence is an approximate lower bound,

a natural computable candidate is to use the convex combi-

nation of lower envelopes of f at some points.

1Note that our definition deviates slightly from Nesterov’s [12, Def 2.2.1]
in that we include condition 5.

Since it can be shown that any convex combinations of

lower envelopes at evaluation points {yk} satisfies (4) under

some mild condition, additional points {yk} other than {xk}
can be used to tune the algorithm. Nesterov’s accelerated
gradient descent method can be obtained by tuning the the

free parameters {yk} and {ηk} to satisfy (5). Among all

first order methods, this method is optimal up to constants

in terms of number of queries made to f and ∇f . The

performance of the accelerated gradient descent method can

be characterized as follows: [12]

f(�xk)− f∗ ≤ L

(
1−
√

σ

L

)k

‖�x0 − �x∗‖2 . (6)

C. Coordinate Descent

The coordinate descent method of Nesterov [7] is a variant

of gradient descent in which only one coordinate of the

current iterate is updated at a time. For a fixed α ∈ R,

each iteration k of coordinate descent consists of picking a

random a random coordinate ik ∈ [n] where

Pr[ik = j] = Pα(j) where Pα(j)
def
= Lα

ik
/Sα

and then performing a descent step on that coordinate:

�xk+1 := �xk − 1

Lik

�fik(�xk).

To analyze this algorithm’s convergence rate, we define

the norm ‖�x‖1−α
def
=
√∑

L1−α
i �x2

i , its dual ‖�x‖∗1−α
def
=

‖�x‖α−1 and the inner product 〈�x, �y〉1−α
def
=
∑

L1−α
i �xi�yi

and we let σ1−α denote the convexity parameter of f with

respect to ‖·‖1−α. Using the definition of coordinate-wise

Lipschitz constant, each step can be shown to have the

following guarantee on expected improvement [7]

f(�xk)− E [f(�xk+1)] ≥ 1

2Sα

(‖∇f(�xk)‖∗1−α

)2
.

and further analysis shows the following convergence guar-

antee coordinate descent [7]

E [f(�xk)]− f∗ ≤
(
1− σ1−α

Sα

)k

(f(�x0)− f∗) .

IV. GENERAL ACCELERATED COORDINATE DESCENT

In this section, we present our general and iteration-

efficient accelerated coordinate descent method (ACDM).
In particular, we show how to improve the asymptotic

convergence rate of any coordinate descent based algorithm

without paying asymptotic cost. We remark that the bulk

of the credit for conceiving of such a method belongs to

Nesterov [7] who provided a different proof of convergence

for such a method for the α = 0 case, however we note that

changes to the algorithm were necessary to deal with the

α = 1 case used in all of our applications.

150

A. ACDM by Probabilistic Estimate Sequences

Following the spirit of the estimate sequence proof of

accelerated gradient descent [12], here we present a proof of

ACDM convergence through what we call a (probabilistic)
estimation sequence.

Definition 2 ((Probabilistic) Estimate Sequence). A triple
of sequences {φk(�x), ηk, �xk}∞k=0 where φk : Rn → R
and �xk ∈ Rn are chosen according to some probability
distribution is called a (probabilistic) estimate sequence of

f if limk→0 ηk = 0 and for all k ≥ 0 we have

E [φk(�x)] ≤ (1− ηk)f(�x) + ηkE [φ0(�x)] , (7)

E [f(�xk)] ≤ min
�x∈Rn

E [φk(�x)] (8)

A probabilistic estimation sequence gives a randomized

minimization method due to the following

lim
k→∞

E [f(�xk)]− f∗ ≤ lim
k→∞

ηk (Eφ0(x
∗)− f∗) = 0 .

Since a probabilistic estimation sequence can be constructed

using random partial derivatives, rather than a full gradient

computations, there is hope that probabilistic estimation

sequences require less information for fast convergence and

therefore outperform their deterministic counterparts.

Similar to the accelerated gradient descent method, in the

following lemma we first show how to combine a sequence

of lower envelopes to satisfy condition (7) and prove that it

preserves a particular structure on the current lower bound.

Lemma 3 ((Probabilistic) Estimate Sequence Construction).
Let φ0(�x), {�yk, θk, ik}∞k=0 be such that
• φ0 : Rn → R is an arbitrary function. Each �yk ∈ Rn.
• Each θk ∈ (0, 1) and

∑∞
k=0 θk =∞.

• Each ik is chosen randomly so that Pr[ik = i] =
Lα

i

Sα
.

Then the pair of sequences {φk(�x), ηk}∞k=0 defined by
• η0 = 1 and ηk+1 = (1− θk)ηk
• φk+1(�x) = (1 − θk)φk(�x) + θkf(�yk) +

θk
Sα

Lik
〈�fik(�yk), �x− �yk〉1−α + θk

σ1−α

2 ‖�x− �yk‖21−α

satisfies condition (7). Furthermore, if φ0(�x) = φ∗0 +
ζ0
2 ‖�x− �v0‖21−α, then this process produces a sequence

of quadratic functions of the form φk(�x) = φ∗k +
ζk
2 ‖�x− �vk‖21−α where

ζk+1 = (1− θk)ζk + θkσ1−α (9)

vk+1 =
(1− θk)ζk�vk

ζk+1
+

θkσ1−α�yk
ζk+1

− Sαθk
ζk+1Lik

�fik (�yk) (10)

φ∗k+1 = (1− θk)φ
∗
k + θkf(�yk)− θ2kS

2
α

2ζk+1

(fik (�yk))
2

L1+α
ik

+
θk(1− θk)ζk

ζk+1

σ1−α

2
‖�yk − �vk‖21−α

+
θk(1− θk)ζk

ζk+1

Sα

Lik

〈�fik (�yk), �vk − �yk〉1−α.

Proof: The proof follows from direct calculations.

In the following theorem, we show how to choose �x,

�y and θ to satisfy the condition (8) and thereby derive a

simple form of the general accelerated coordinate descent

method. We also show that the number of iterations required

for ACDM is Õ
(√

Sαn
σ1−α

)
which is strictly better than the

number of iterations required for coordinate descent method,

Õ
(

Sα

σ1−α

)
. Later in Theorem 12, we show that this is

optimal up to constant for the type of algorithm considered.

Note that while several of the definitions specifications in

the following theorem statement may at first glance seem

unnatural our proof will show that they are nearly forced in

order to achieve certain algorithm design goals.

Theorem 4 (Simple ACDM). For all i ∈ [n] let L̃α
i

def
=

max(Lα
i , Sα/n) and let S̃α

def
=
∑n

i=1 L̃
α
i . Furthermore, for

any �x0 ∈ Rn and for all k ≥ 0, let �y0 = �x0,

φ0(�x) = f(�x0) +
σ1−α

2
‖�x− �x0‖21−α , θk =

√
σ1−α

2S̃αn

Then applying Lemma 3 with these parameters, L̃i as the
coordinate-wise gradient Lipshitz constants, and choosing
�yk and �xk such that

θkζk
ζk+1

(�vk−�yk)+�xk−�yk = 0, �xk = �yk−1− 1

L̃ik−1

�fik(�yk−1)

yields a probabilistic estimate sequence. This accelerated

coordinate descent method satisfies

E [f(�xk)]− f∗ ≤
(
1− 1

2

√
σ1−α

Sαn

)k

(φ0(�x
∗)− f∗) . (11)

Proof: By construction we know that condition (7)
holds. It remains to show that �xk satisfies condition (8) and
analyze the convergence rate. To prove (8), we proceed by
induction to prove that Ek [f(�xk)] ≤ Ek [min�x∈Rn φk(�x)] =
Ek [φ

∗
k] where Ek indicates the expectation up to iteration k.

The base case f(�x0) ≤ φ0(�x0) is trivial and we proceed by
induction assuming that Ek [f(�xk)] ≤ Ek [φ

∗
k]. By Lemma

(3) and the inductive hypothesis we get

Ek

[
φ∗k+1

] ≥ Ek

[
(1− θk)f(�xk) + θkf(�yk)−

θ2kS̃
2
α

2ζk+1

(
fik (�yk)

)2
L̃1+α
ik

+
θk(1− θk)ζk

ζk+1

(
σ1−α

2
‖�yk − �vk‖21−α +

S̃α

L̃ik

〈�fik (�yk), �vk − �yk〉1−α

)]

where for notational convenience we drop the expectation
in each of the variables. By convexity f(�xk) ≥ f(�yk) +〈∇f(�yk), �xk − �yk〉 so applying this and the definitions of
‖·‖1−α and 〈·, ·〉1−α we get

φ∗k+1 ≥ f(�yk)−
θ2kS̃

2
αfik (�yk)

2

2ζk+1L̃
1+α
ik

+ (1− θk)

(
S̃α

L̃α
ik

〈
�fik (�yk),

θkζk

ζk+1
(�vk − �yk)

〉
+ 〈∇f(�yk), �xk − �yk〉

)

151

Using that ∀i ∈ [n] we have Pr[ik = i] =
L̃α

i

S̃α
we get

Ek+1

[
φ∗k+1

] ≥ Ek+1

[
f(�yk)− θ2kS̃

2
α

2ζk+1

(fik(�yk))
2

L̃1+α
ik

]

+ (1− θk)

〈
∇f(�yk),

θkζk
ζk+1

(�vk − �yk) + �xk − �yk

〉
.

From this formula we see that �yk was chosen specifically to

cancel the second term so that

Ek+1

[
φ∗k+1

] ≥ n∑
i=1

[
f(�yk)− θ2kS̃α

2ζk+1

fi(�yk)
2

L̃i

]

and it simply remains to choose θk and �xk+1 so that

Ek+1 [f(�xk+1]) is smaller than this quantity.

To meet condition (8), we simply need to choose {θk}∞k=0

so
θ2
kS̃α

ζk+1
= 1

2n . Using L̃α
i ≥ Sα

n ≥ S̃α

2n , we have

Ek+1

[
φ∗k+1

] ≥ n∑
i=1

[
f(�yk)− 1

2S̃α

fi(�yk)
2

L̃1−α
i

]

To compute �xk+1, we use the fact that applying Lemma 1

to the formula f(�yk − t �fi(�yk)) yields

f

(
�yk − 1

L̃i

�fi(�yk)

)
≤ f(�yk)− fi(�yk)

2

2L̃i

and therefore for �xk+1 as defined we have

Ek+1 [f(�xk+1)] ≤
n∑

i=1

[
f(�yk)− fi(�x)

2

2S̃αL̃
1−α
i

]
≤ Ek+1

[
φ∗k+1

]
.

Recalling that ζk+1 = (1 − θk)ζk + θkσ1−α we see that

choosing ζ0 = σ1−α implies ζk = σ1−α for all k and

therefore choosing θk =
√

σ1−α

2S̃αn
completes the proof that

the chosen parameters produce a probabilistic estimate se-

quence. Furthermore, we see that this choice implies that

ηk =
(
1−
√

σ1−α

2S̃αn

)k
. Therefore, by the definition of a

probabilistic estimate sequence and the fact that S̃α ≥ 2Sα,

equation (11) follows.

B. Numerical Stability

In the previous section, we provided a simple proof how

to achieve an ACDM with a convergence rate of Õ(
√

Sαn
σ1−α

).

While sufficient for many purposes, the algorithm does not

achieve the ideal dependence on initial error. For consistency

with [7] we perform the change of variables

αk
def
=

θkζk
ζk + θkσ1−α

, βk
def
=

(1− θk)ζk
ζk+1

, γk
def
=

S̃αθk
ζk+1

and by better tuning θk we derive the following algorithm.

Accelerated Coordinate Descent Method
1. Define L̃i = max(Li, (Sα/n)

1/α) and S̃α =
∑

L̃α
i

2. Define �v0 = �x0, a0 = 1
2n , b0 = 2

3. For k ≥ 0 iterate:

3a. Find αk, βk, γk ≥ 1
2n such that

γ2
k − γk

2n =
(
1− γkσ1−α

S̃α

)
a2
k

b2k
= βk

a2
k

b2k
= βkγk

2n
1−αk

αk
.

3b. �yk = αk�vk + (1− αk)�xk.

3c. Choose ik according to Pα(i) = L̃α
i /S̃α.

3d. �xk+1 = �yk − 1
L̃ik

�fik(�yk).

vk+1 = βk�vk + (1− βk)�yk − γk

L̃ik

�fik(�yk).

3e. bk+1 = bk√
βk

and ak+1 = γkbk+1.

Theorem 5 (Numerical Stability of ACDM). Suppose that
in each iteration of ACDM step 3d has additive error ε,
i.e. there exists �ε1,k,�ε2,k ∈ Rn with ‖�ε1,k‖1−α ≤ ε and
‖�ε2,k‖1−α ≤ ε such that step 3 is

�xk+1 =�yk − 1

L̃ik

�fik(�yk) + �ε1,k

�vk+1 =βk�vk + (1− βk)�yk − γk

L̃ik

�fik(�yk) + �ε2,k.

If ε < σ2
1−α

8S̃2
αn

and k ≥
√

2S̃αn
σ1−α

, then we have the convergence
guarantee

σ1−αE
[
‖�vk+1 − �x∗‖21−α

]
+(E [f(�xk+1)]− f∗) ≤ δk (12)

where δk
def
= 32σ1−α

(
1− 1

5

√
σ1−α

Sαn

)k
||x0 − x∗||21−α +

32σ1−α

(
1− 1

5

√
σ1−α

Sαn

)k
1
S2
α
(f(x0)− f∗) + 24kSαε

2

and the additional convergence guarantee that
1
k

∑2k−1
j=k ‖∇f(�yk)‖21−α ≤ 2000 S̃α

n δk.

Proof: In the full paper, we give a proof of convergence

of this in the unit-cost RAM model by studying the following

potential function [7] for suitable constants ak, bk ∈ R,

ak (E [f(�xk)]− f∗) + bkE
[
‖�vk − x∗‖21−α

]
.

This theorem provides useful estimates for the error

f(�xk+1)−f∗, the residual ‖�vk+1 − �x∗‖21−α, and the norm of

gradient ‖∇f(�yk)‖∗1−α. Note how the estimate depends on

the initial error f(�x0)− f∗ mildly as compared to Theorem

4. We use this fact in creating an efficient SDD solver in

Section V-C.

C. Efficient Iteration

In both Nesterov’s paper [7] and later work [21] the

original ACDM proposed by Nesterov was not recommend

since a naive implementation takes O(n) time to update the

vector �vk, and therefore is likely slower than accelerated

gradient descent. However, if we make the mild assumption

that we can compute∇f(t�x+s�y) for s, t ∈ R and �y, �y ∈ R in

the same asymptotic runtime as it takes to compute ∇f(�x)

152

(i.e. we do not need to compute the sum explicitly), then

we can implement ACDM without additional asymptotic

computational costs per iteration as compared to the cost

of the coordinate descent method performing an update on

the given coordinate.

Lemma 6 (Efficient ACDM Iteration). For Sα =
O(poly(n)) and σ1−α = Ω(poly(1n)) each iteration of
ACDM can be implemented in O(1) time plus the time to
make one oracle call of the form �fik(t�x + s�y) for s, t ∈ R
and �x, �y ∈ Rn, using at most an additional O(log n) bits of
precision so long as the number of iterations of ACDM is
O
(√

Sαn
σ1−α

log(n)
)

.

Proof: In the full paper, we give a lazy update scheme

to achieve same iteration and prove its stability.

V. FASTER LINEAR SYSTEM SOLVERS

In this section, we show how ACDM can be used to

achieve asymptotic runtimes that outperform various state-

of-the-art methods for solving linear systems in a variety of

settings.

A. Comparison to Conjugate Gradient Method

Here we compare the performance of ACDM to conjugate

gradient (CG) and show that under mild assumptions about

the linear system being solved ACDM achieves a better

asymptotic running time.

For symmetric positive definite (SPD) matrix A ∈ Rn×n

and vector �b ∈ Rn, we solve the linear system of equa-

tions A�x = �b via the following equivalence unconstrained

quadratic minimization problem:

min
�x∈Rn

f(�x)
def
=

1

2
〈A�x, �x〉 − 〈�b, �x〉 . (13)

Let m denote the number of nonzero entries in A, let

nnzi denote the number of nonzero entries in the ith row

of A. To make the analysis simpler, we assume that the

nonzero entries is somewhat uniform, namely nnzi = O(mn).
This assumption is trivially met for dense matrices, finite

difference matrices, etc. Letting 0 ≤ λ1 ≤ . . . ≤ λn denote

the eigenvalues of A, we get the following:

Theorem 7 (ACDM on SPD Systems). Assume A is a SPD
matrix with nnzi = O(mn). Let the numerical rank r(A) =∑n

i=1 λi/λn. ACDM applied to (13) with α = 1 produces

an approximate solution in Õ

(
m
√

r(A)
n

√
λn

λ1
log 1

ε

)
time

with ε error in A norm in expectation.

Proof: The running time of ACDM with α = 1 depends

on σ0 and S1. From Example 1, the total component-wise

Lipschitz constant S1 is the trace of A, which is
∑

λi and

the convexity parameter σ0 is λ1, therefore by Theorem 5

the convergence rate of ACDM is
√

λ1

n
∑n

i=1 λi
as desired.

Furthermore, the running time of each step depends on the

running time of the oracle, i.e. computing fi(x) = (Ax)i ,

which by our assumption on nnzi takes time O
(
m
n

)
.

To compare with conjugate gradient, we know that one

crude bound for the rate of convergence of conjugate gradi-

ent is O
(√

λ1

λn

)
. Hence the total running time of CG to pro-

duce an epsilon approximate solution is Õ
(
m
√

λn

λ1
log 1

ε

)
.

Therefore, with this bound ACDM is always faster or

matches the running time since the numerical rank of A
is always less than or equals to n. Thus, we see that when

the numerical rank of A is o(n), ACDM will likely 2 have

a faster asymptotic running time.

To be more fair in our comparison to conjugate gradient,

we note that in [27] tighter bound on the performance of CG

was derived and they showed that in fact CG has a running

time of Õ

(∑
nnzi

(∑n
i=1 λi

λ1

)1/3)
implying that ACDM

is faster than CG when
∑n

i=1 λi ≤ n3λ1 and it is usually

satisfied. In the extreme cases that the condition is false, CG

will need to run for O(n) iterations at which point an exact

answer could be computed.

B. Accelerating Randomized Kaczmarz

The Kaczmarz method [1] is an iterative algorithm to

solve A�x = b for any full row rank matrix A ∈ Rm×n.

Letting �ai ∈ Rn denote the i-th row of the matrix A, we

know that the solution of A�x = �b is the intersection of

the hyperplanes Hi
def
= {x : 〈�ai, �xk〉 = �bi}. The Kaczmarz

method simply iteratively picks one of these hyperplanes

and projects onto it by the following formula:

xk+1 = projHik
(�xk)

def
=

�bik − 〈aik , �xk〉
‖aik‖2

aik .

There are many schemes that can be chosen to pick

the hyperplane ik, many of which are difficult to ana-

lyze and compare, but in a breakthrough result, Strohmer

and Vershynin in 2008 analyzed the randomized schemes

which sample the hyperplane with probability proportional

to ‖ai‖22. They proved the following

Theorem 8 (Strohmer and Vershynin [6]). The Kaczmarz
method samples row i with probability proportionally to
‖ai‖22 at each iteration and yields the following

∀k ≥ 0 : E
[
‖�xk − �x∗‖22

]
≤ (1− κ(A)−2)k ‖�x0 − �x∗‖2

where �x∗ is such that A�x∗ = �b, κ(A)
def
=
∥∥A−1

∥∥
2
· ‖A‖F is

the relative condition number of A, A−1 is the left inverse
of A,

∥∥A−1
∥∥
2

is the smallest non-zero spectral value of A
and ‖A‖2F def

=
∑

a2ij is the Frobenius norm of A .

Here we show show to cast this algorithm as an instance

of coordinate descent and obtain an improved convergence

2The running time of CG may be asymptotic faster when the eigenvalues
form clusters.

153

rate by applying ACDM. We remark that accelerated Kacz-

marz will sample rows with a slightly different probability

distribution. As long as this does not increase the expected

computational cost of an iteration, it will yield an algorithm

with a faster asymptotic running time.

Theorem 9 (Accelerated Kaczmarz). The ACDM
method samples row i with probability proportionally
tomax

{
‖ai‖22 , ‖A‖

2
F

m

}
and performs extra O(1) work at

each iteration. It yields the following

∀k ≥ 0 : E ‖�xk − �x∗‖22 ≤ 3

(
1− κ(A)−1

2
√
m

)k

‖�x0 − �x∗‖2 .
Proof: To cast Strohmer and Vershynin’s randomized

Kaczmarz algorithm in the framework of coordinate descent,

we consider minimizing the objective function of theorem

theorem directly, i.e. min�x∈Rn
1
2 ‖�x− �x∗‖22. Since A has full

row rank, we write �x = AT�y and consider the equivalent

problem min�y∈Rm
1
2

∥∥AT�y − �x∗
∥∥2
2
. Expanding the objective

function and using A�x∗ = �b, we get∥∥AT�y − �x∗
∥∥2
2
=
∥∥AT�y

∥∥2
2
− 2〈�b, �y〉+ ‖�x∗‖22 .

Therefore, we attempt solve the following equivalent prob-

lem using accelerated coordinate descent.

min
�y∈Rm

f(�y) where f(�y)
def
=

1

2

∥∥AT�y
∥∥2
2
− 〈�b, �y〉 .

From Example 2, we know that the i-th direction

component-wise Lipschitz constant is Li = ‖ai‖2 where ai
is the i-th row of A and we know that ∇f(�y) = AAT�y−b.
Therefore, each step of ACDM consists of the following 3

�yk+1 = �yk− 1

Lik

�fik(�yk) = �yk− 1

‖�aik‖2
(
AAT�yk −�b

)
ik

.

Recalling that we had performed the transformation �x =
AT�y we see that the corresponding step in �x is

�xk+1 = �xk− 1

‖ai‖2
(
A�xk −�b

)
ik

= �xk+
�bik − 〈�aik , �xk〉

‖aik‖22
�aik .

Therefore, ACDM applied this way yields precisely the

randomized Kaczmarz method of Strohmer and Vershynin.
However, to apply the ACDM method and provide com-

plete theoretical guarantees we need to address the problem

that f as we have constructed it is not strongly convex. This

is clear by the fact that the null space of AT may be non

trivial.
To remedy this problem we let Z ⊆ Rm denote the null

space of AT , i.e. Z
def
= {�x ∈ Rm | AT�x = 0}, and we define

the semi-norm ‖·‖Z⊥ on Rm by ‖�y‖Z⊥ def
= inf�z∈Z ‖y + z‖.

Now it is not hard to see that f is strongly convex under

this seminorm with convexity parameter σZ⊥ =
∥∥A−1

∥∥−2

2
.

Furthermore, one can prove similarly to the proof of Lemma

3 and Theorem 4 that the algorithm in this theorem achieves

the desired convergence rate.

3We ignore the thresholding here for illustration purpose.

C. Faster SDD Solvers in the Unit-cost RAM Model

A matrix A ∈ Rn×n is called Symmetric Diagonally
Dominant (SDD) if AT = A and ∀i �= j ∈ [n] we have

Aii ≥
∑

i �=j |Aij |. Solving such systems has had numerous

applications in both theoretical and applied computer sci-

ence. For an overview of such systems of equations, their

applications, and their solvers we refer the reader to [11].

The fastest running times in general for solving such

systems are Õ(m log n log 1
ε)

4 due to Koutis, Miller, and

Peng (cite KMP). However, the numerical stability of this

algorithm is difficult to bound and when analyzed in the

standard unit-cost RAM model, the best known running time

is Õ(m log2 n log 1
ε) due to Kelner et al. [8].

Here we show how to cast the simplest solver pre-

sented [8] as an instance of coordinate descent, and by

applying ACDM, we obtain a faster running time of

Õ(m log3/2 n log 1
ε) in the unit-cost RAM model. Our pre-

sentation will make heavy use of several insights from [8]

and we refer the reader to that paper for further background.
Following the reasoning in [8], solving SDD systems

can be reduced to solving the Laplacian system L�x = �χ
corresponding to a weighted connected graph G = (V,E, ω)

where we call ωe the weight of edge e ∈ E and re
def
= 1

ωe
the

resistance. For notational convenience, we arbitrarily orient
each edge in E and using this convention define a graph’s
incidence matrix B ∈ RE×V , resistance matrix R ∈ RE×E ,
and Laplacian matrix, L ∈ RV×V as follows:

B(a,b),c
def
= 1a=c−1b=c, Re1,e2

def
= re11e1=e2 , L def

= BTR−1B.

Letting �x∗ be the solution of L�x = �χ, we will prove the

following:

Theorem 10. By applying ACDM to a simple
Laplacian system solver in [8], we can produce an
�x ∈ Rn such that ‖�x− �x∗‖L ≤ ε ‖�x∗‖L in time
O(m log3/2 n

√
log log n log(logn

ε)).

Proof: By the method of Lagrange multipliers, the

minimizer �z∗ of the problem

min
BT �z=�χ

1

2
‖�z‖2R where ‖�z‖R def

=

√∑
e∈E

re�z2e

is R−1B�x∗. Therefore, we can find �x∗ by minimizing

f(�z)
def
= 1

2 ‖�z‖2R and use a BFS to get �x from �z.

Now, let �z0 be any vector such that BT�z0 = �χ. With this,

the problem can be simplified to minBT �y=0
1
2 ‖�z0 + �y‖2R .

Now, the {�c ∈ RE |BT�c = 0} is simply the set of circulations

of the graph, called cycle space, and therefore to turn

this constrained problem into an unconstrained problem we

simply require a good basis for cycle space.
Such a basis can easily be found by a spanning tree. Given

a spanning tree T of G, for any (a, b) ∈ E\T let �c(a,b) ∈ RE

be the circulation that corresponds to sending 1 unit on (a, b)
and 1 unit on the unique path from b to a in T . Now, the

4Where we use Õ to hide O(log logn) terms.

154

set {�ce | e ∈ E \ T} forms a basis for cycle space and with
this insight we can simplify the problem further to

min
�y∈�E\T

1

2
‖�z0 +C�y‖2R where C

def
= [ce1ce2 · · ·] ∈ RE×E\T .

Now, for every off-tree edge, i.e. e ∈ E \ T , there is only

one cycle ce that passes through it. So, if we let RE\T be

the diagonal matrix for the resistances of the off tree edges

we have that for any �y ∈ E \ T

�yTCTRC�y ≥
∑

e∈E\T
re�y(e)

2 ≥
(

min
e∈E\T

re

)
‖�y‖22 .

Therefore, the convexity parameter of ‖�z0 +C�y‖2R is at

least mine∈E\T re. This could be wasteful if the resistances

vary, so we compensate by rescaling the space, ỹ = R1/2�y,

to get the following problem:

min
ỹ∈RE\T

f(ỹ) where f(ỹ) =
1

2

∥∥∥�z0 +CR−1/2ỹ
∥∥∥2
R
.

By the same reasoning as above, the convexity parameter

of f with respect to the Euclidian norm is 1 and we bound

the e-th direction component-wise Lipschitz constant Le as

follows

Le = 1T
e R

−1/2CTRCR−1/21e =
�cTe R�ce

re
= st (e) + 1.

where st (e) denotes the stretch of e by the tree T , i.e. the

sum of the resistances of the edges on the path in T connect-

ing the endpoints of e divided by the resistance of the edge

e. Therefore, the total component-wise Lipschitz constant is

given by S1 =
∑

e∈E\T (st (e) + 1) ≤ m +
∑

e∈E st (e) .
Now, as in [8], we can using the following result of Abraham

and Neiman to ensure S1 = O(m log n log log n)

Theorem 11. [28] In O(m log n log log n) time, we can
compute a spanning tree with

∑
st(e) = O(m log n log log n).

Now, applying ACDM to f and letting ek denote the off-

tree edge i.e., coordinate, picked in iteration k, we get 5

ỹk+1 := ỹk − 1

Lek

(
R−1/2CTR(�z0 +CR−1/2ỹ)

)
ek
· 1ek

= ỹk − 1

Lekr
1/2
ek

∑
e

�cek(e)rek(�z0 +CR−1/2ỹ)(e) · 1ek

= ỹk − 1

Lekr
1/2
ek

∑
e∈�cek

re(�z0 +CR−1/2ỹ)(e) · 1ek

Recalling �y = R−1/2ỹ and the derivation of Le, we have

�yk+1 := �yk −
⎡
⎣ 1

re(st(ek) + 1)

∑
e∈�cek

re(�z0 +C�y)(e)

⎤
⎦ · 1ek .

5We ignore the thresholding here again for illustration purpose.

Noting that the �z with BT�z = �χ corresponding to �y is

�z = �z0 +C�y, we write the update equivalently as

�zk+1 := �zk −
⎡
⎣ 1

re(st(ek) + 1)

∑
e∈�cek

re · �zk(e)
⎤
⎦ · �cek

which is precisely the algorithm of the simple solver in [8].

In [8], they also prove that calls to �fek and updates to �yek can

be implemented in O(log n). Therefore, by applying ACDM

we can obtain a faster algorithm. Note that apply ACDM

efficiently computations of �fek need to be performed on the

sum of two vector without explicit summing them. However,

since in this case ∇f is linear, we can just call the oracle

on the two vectors separately and also use the data structure

for updating coordinates in each vector separately.

In order to actually solve the Laplacian system, we need to

compute �x such that
∥∥�x− L†�χ∥∥2L ≤ ε

∥∥L†�χ∥∥2L . However,

by Lemma 6.2 of [8], it suffices to show that ‖∇f(ỹ)‖22 ≤
εf∗. Note that

‖∇f(ỹ)‖22 =
∑

e∈E\T

1

re

⎛
⎝∑

e′∈�ce
�z(e′)re′

⎞
⎠

2

Now, suppose we choose ỹ0 = �0. Then, we see that

‖ỹ0 − ỹ∗‖22 = ‖ỹ∗‖22 =
∥∥∥R1/2

E\T�y
∗
∥∥∥2
2
≤ 2f∗, and

using Lemma 6.1 of [8], we have that 1
S2
α
(f(ỹ0) −

f∗) ≤ f∗

Sα
≤ f∗. Furthermore, since by our choice

of spanning tree S1

|E\T | = O(log n log log n), after k =

O(m
√
log n log log n log logn

ε) iterations of ACDM, by The-

orem 5, we have that 1
k

∑2k−1
j=k ‖∇f(�yk)‖22 ≤ εf∗. There-

fore, if we stop ACDM at random iteration between k and

2k − 1, we have that E ‖∇f(�yk)‖22 ≤ εf∗ as desired.

Beyond obtaining a faster running time, we remark that

this algorithm did not require recursive techniques that were

necessary for Kelner et al. to achieve there fastest running

time. The simple solver that was accelerated actually had a

running time of O(m log2 n log log n log(n/ε)) time due to

the potentially large initial error of f(ỹ0). To achieve their

fastest running time, they ran their solver several times to

ultimately remove the n term in log(n/ε). In our case, since

ACDM measures initial error both in terms of f(ỹ0)−f∗ and

‖ỹ − ỹ∗‖2 and since ‖ỹ − ỹ∗‖2 is relatively small, ACDM

avoids this issue entirely.

VI. TOWARDS THE OPTIMALITY OF ACCELERATED

COORDINATE DESCENT

In this section, we prove that the accelerated coordinate

descent is optimal under the assumption that the iterative

method generates a sequence of vectors {xk} such that

�xk+1 ∈ �x0 + span
{
�fi0(�x0), �fi1(�x1), · · · , �fik(�xk)

}
. (14)

155

This assumption forbids the iterative method from starting

at any other point other than the initial point and forbids the

algorithm from randomly jumping to completely new points.

Theorem 12 (ACDM Lower Bound). Assume the iterative
method satisfies the assumption (14) and further assume the
method randomly picks each ik uniformly at random. Then,
for any S1 > 4σn > 0, x0 ∈ Rn and k ≤ n2

2 , there exists a
convex function f with strong convex parameter σ and total
component-wise Lipschitz constant S1 such that

E [f(�xk)]− f∗ ≥ σ

2

(
1− 2

√
2σ

nS1

)k

‖�x∗ − �x0‖22

−
√

σS1

n

(
1− 1

2

√
nσ

S1

)2n

.

Proof: See full version.

ACKNOWLEDGMENT

We thank Yan Kit Chim, Andreea Gane, Jonathan Kelner,

Lap Chi Lau, and Lorenzo Orecchia for helpful discussions.

This work was partially supported by Hong Kong RGC grant

2150701., NSF awards 0843915 and 1111109, and a NSF

Graduate Research Fellowship (grant no. 1122374).

.

REFERENCES

[1] S. Kaczmarz, “Angenäherte auflösung von systemen linearer
gleichungen,” Bull. Internat. Acad. Polon.Sci. Lettres A, p.
335?57, 1937.

[2] W. Zangwill, Nonlinear Programming: A Unified Approach.
Prentice-Hall, 1969.

[3] H. H. Bauschke and J. M. Borwein, “On projection algorithms
for solving convex feasibility problems,” SIAM Rev., vol. 38,
no. 3, pp. 367–426, Sep. 1996.

[4] F. Natterer, The mathematics of computerized tomography.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2001.

[5] G. T. Herman, Fundamentals of computerized tomography:
image reconstruction from projections. Springer, 2009.

[6] T. Strohmer and R. Vershynin, “A Randomized Kaczmarz
Algorithm with Exponential Convergence,” Journal of Fourier
Analysis and Applications, vol. 15, no. 2, pp. 262–278, Apr.
2008.

[7] Y. Nesterov, “Efficiency of coordinate descent methods on
huge-scale optimization problems,” SIAM Journal on Opti-
mization, vol. 22, no. 2, pp. 341–362, 2012.

[8] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A
Simple, Combinatorial Algorithm for Solving SDD Systems
in Nearly-Linear Time,” Jan. 2013.

[9] J. A. Kelner and A. Madry, “Faster generation of random
spanning trees,” in Proceedings of the 2009 50th Annual IEEE
Symposium on Foundations of Computer Science, ser. FOCS
’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 13–21.

[10] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and
S.-H. Teng, “Electrical flows, laplacian systems, and faster
approximation of maximum flow in undirected graphs,” in
Proceedings of the 43rd annual ACM symposium on Theory
of computing. ACM, 2011, pp. 273–282.

[11] D. A. Spielman, “Algorithms, graph theory, and the solution
of laplacian linear equations,” in Proceedings of the 39th in-
ternational colloquium conference on Automata, Languages,
and Programming - Volume Part II, ser. ICALP’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 24–26.

[12] Y. Nesterov, Introductory Lectures on Convex Optimization:
A Basic Course, 2003, vol. I.

[13] C. T. Kelley, Iterative methods for optimization. Society for
Industrial and Applied Mathematics, 1987, vol. 18.

[14] Y. Nesterov, “A method for solving a convex programming
problem with convergence rate 1/kˆ2,” Doklady AN SSSR, vol.
269, pp. 543–547, 1983.

[15] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, Jan.
2009.

[16] S. Becker, J. Bobin, and E. Candès, “NESTA: a fast and ac-
curate first-order method for sparse recovery,” SIAM Journal
on Imaging Sciences, vol. 4, no. 1, pp. 1–39, 2011.

[17] Y. T. Lee, S. Rao, and N. Srivastava, “A New Approach to
Computing Maximum Flows using Electrical Flows,” Pro-
ceedings of the 45th symposium on Theory of Computing -
STOC ’13, 2013.

[18] Y. Nesterov, “Rounding of convex sets and efficient gradient
methods for linear programming problems,” Optimization
Methods Software, vol. 23, no. 1, pp. 109–128, Feb. 2008.

[19] D. Bienstock and G. Iyengar, “Solving fractional packing
problems in oast(1/esp) iterations,” in Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing,
ser. STOC ’04. New York, NY, USA: ACM, 2004, pp. 146–
155.

[20] Z. Q. Luo and P. Tseng, “On the convergence of the coordi-
nate descent method for convex differentiable minimization,”
Journal of Optimization Theory and Applications, vol. 72,
no. 1, pp. 7–35, Jan. 1992.

[21] P. Richtárik and M. Takáč, “Iteration Complexity of Ran-
domized Block-Coordinate Descent Methods for Minimizing
a Composite Function,” p. 33, Jul. 2011.

[22] D. A. Spielman and S.-H. Teng, “Nearly-linear time algo-
rithms for graph partitioning, graph sparsification, and solving
linear systems,” in Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing. ACM, 2004, pp.
81–90.

[23] J. A. Kelner, L. Orecchia, Y. T. Lee, and A. Sidford, “An
almost-linear-time algorithm for approximate max flow in
undirected graphs, and its multicommodity generalizations,”
arXiv preprint arXiv:1304.2338, 2013.

[24] I. Koutis, G. L. Miller, and R. Peng, “A nearly-m log n time
solver for sdd linear systems,” in Foundations of Computer
Science (FOCS), 2011 IEEE 52nd Annual Symposium on, oct.
2011, pp. 590 –598.

[25] T. Goldstein, B. ODonoghue, and S. Setzer, “Fast alternating
direction optimization methods,” CAM report, pp. 12–35,
2012.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. New
York, NY, USA: Cambridge University Press, 2004.

[27] D. A. Spielman and J. Woo, “A Note on Preconditioning by
Low-Stretch Spanning Trees,” Mar. 2009.

[28] I. Abraham and O. Neiman, “Using petal-decompositions to
build a low stretch spanning tree,” in Proceedings of the 44th
symposium on Theory of Computing - STOC ’12. New York,
New York, USA: ACM Press, May 2012, p. 395.

156

