
Algebraic Algorithms for b-matching, Shortest Undirected Paths, and f -factors

Harold N. Gabow∗, Piotr Sankowski†‡
∗Department of Computer Science, University of Colorado at Boulder, USA. Email: hal@cs.colorado.edu

†Institute of Informatics, University of Warsaw , Poland. Email: sank@mimuw.edu.pl
‡Department of Computer and System Science, Sapienza University of Rome, Italy.

Abstract—Let G = (V,E) be a graph with f : V → Z+ a
function assigning degree bounds to vertices. We present the
first efficient algebraic algorithm to find an f -factor. The time
is O(f(V)ω). More generally for graphs with integral edge
weights of maximum absolute value W we find a maximum
weight f -factor in time ˜O(Wf(V)ω). (The algorithms are
correct with high probability and can be made Las Vegas.)
We also present three specializations of these algorithms:
For maximum weight perfect f -matching the algorithm is
considerably simpler (and almost identical to its special case of
ordinary weighted matching). For the single-source shortest-
path problem in undirected graphs with conservative edge
weights, we define a generalization of the shortest-path tree,
and we compute it in ˜O(Wnω) time. For bipartite graphs, we
improve the known complexity bounds for vertex-capacitated
max-flow and min-cost max-flow on a subclass of graphs.

Keywords- b-matching; shortest undirected paths; f -factors;
min-cost max-flow; matrix multiplication

I. INTRODUCTION

b-matching and f -factors are basic combinatorial notions

that generalize non-bipartite matching, min-cost network

flow, and others. This paper presents the first efficient

algebraic algorithms for both weighted and unweighted b-
matchings and f -factors. Our algorithms for this broad class

of problems are the most efficient algorithms known for a

subclass of instances (graphs of high density, low degree

constraints and low edge weights). We also discuss single-

source all-sinks shortest paths in conservative undirected

graphs. (There is no known reduction to directed graphs.)

We prove the existence of a simple shortest-path ”tree” for

this setting. We also give efficient algorithms – combinatoric

for sparse graphs and algebraic for dense – to construct it.

We must first define b-matching and f -factors. The litera-

ture is inconsistent but in essence we follow the classification

of Schrijver [1]. For an undirected multigraph G = (V,E)
with a function f : V → Z+, an f -factor is a subset of edges

wherein each vertex v ∈ V has degree exactly f(v). For an

undirected graph G = (V,E) with a function b : V → Z+,

a (perfect) b-matching is a function x : E → Z+ such

that each v ∈ V has
∑

w:vw∈E x(vw) = b(v). The fact

that b-matchings have an unlimited number of copies of

each edge makes them decidedly simpler. For instance b-
matchings have essentially the same blossom structure (and

linear programming dual variables) as ordinary matching [1,

Ch.31]. Similarly our algorithm for weighted b-matching is

Time Author

O(n2B) Pulleyblank (1973) [7]

O(n2m logB) Marsh (1979) [8]

O(m2 logn logB) Gabow (1983) [6]

O(n2m+ n logB(m+ n logn)) Anstee (1987) [9]

O(n2 logn(m+ n logn)) Anstee (1987) [9]

˜O(Wφω)4 this paper

Table 1: Time bounds for maximum b-matching. B denotes maxv b(v).

Complexity Author

O(φn3) Urquhart (1965) [10]

O(φ(m+ n logn)) Gabow (1983+1990) [6], [11]

˜O(Wφω) this paper

Table 2: Time bounds for maximum weight f -factors on simple graphs.

almost identical to its specialization to ordinary matching

(b ≡ 1). In contrast the blossoms and dual variables for f -

factors are more involved [1, Ch.32] and our algorithm is

more intricate. Thus our terminology reflects the difference

in complexity of the two notions.1

We begin with unweighted f -factors, i.e., we wish to find

an f -factor or show none exists. Let φ = f(V) (or b(V)).
We extend the Tutte matrix from matching to f -factors, i.e.,

we present a φ×φ matrix that is symbolically nonsingular iff

the graph has an f -factor. Such a matrix can be derived by

applying the Tutte matrix to an enlarged version of the given

graph, or by specializing Lovász’s matrix for matroid parity

[2]. But neither approach is compact enough to achieve our

time bounds.2 Then we reuse the elimination framework

for maximum cardinality matching, due to Mucha and

Sankowski [3] and Harvey [4]. This allows us to find an

f -factor in O(φω) randomized time.3 For dense graphs and

small degree-constraints we improve the best-known time

bound of O(
√
φm) [6], although the latter is deterministic.

We turn to the more difficult weighted version of the

problem. Here every edge has a numeric weight; we assume

1Another version of b-matching considers b(v) as an upper bound on
the desired degree of v. This reduces to weighted b-matching by taking 2
copies of G joined by zero-weight edges. On the other hand in a capacitated
b-matching we are given an upper bound u(e) to each value x(e). The
simplicity of the uncapacitated case is lost, and we are back to f -factors.

2The Tutte matrix becomes too large, m×m. Lovász’s matrix is φ×φ
but involves integers that are too large, nn. Our matrix only uses ±1.

3O(nω) is the time needed for a straight-line program to multiply two
n× n matrices; the best-known bound on ω is < 2.3727 [5].

4The ˜O notation ignores factors of log(nφW).

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.23

137

weights are integers of magnitude ≤ W . We seek a max-
imum f -factor, i.e., an f -factor with the greatest possible

total weight. Efficient algebraic algorithms have been given

for maximum matching (f ≡ 1) in time Õ(Wnω), first for

bipartite graphs [12] and recently for general graphs [13].

The usual approach to generalized matching problems is

by problem reduction. For instance in [1], Ch.31 proves

the properties of the b-matching linear program and poly-

tope by reducing to ordinary matching via vertex splitting;

then Ch.32 reduces f -factors (capacitated b-matching) to b-
matching. Efficient algorithms also use vertex splitting [6] or

reduction to the bipartite case (plus by further processing)

[9]. But reductions may obscure some structure. To avoid

this we use a direct approach and get the following rewards.

For b-matching, as mentioned, the similarity of blossoms to

ordinary matching blossoms leads to an algorithm that is

no more involved than ordinary matching. For undirected

shortest paths we get a simple definition of a generalized

shortest-path tree. (Again such a definition may have been

overlooked due to reliance on reductions, see below.) For

f -factors we get a detailed understanding of the more

complicated versions of the structures that first emerge in b-
matchings (2-edge-connected components giving the cyclic

part of blossoms) and in shortest paths (bridges giving

the incident edges of blossoms – these correspond to the

ungeneralized shortest-path tree).

All three of our non-bipartite algorithms are implementa-

tions of the ”shrinking procedure” given in [14] (a variant

is the basis of the weighted matching algorithm of [13]).

This procedure gives a direct way to find the optimum

blossoms for a weighted f -factor – each blossom is (a

subgraph of) a maximum weight ”2f -unifactor” (a type

of 2f -factor) in the graph with (the cyclic part of) all

heavier blossoms contracted (see [14]). Note that the classic

weighted matching algorithm of Edmonds [15] finds the

optimum blossoms, but only after forming and discarding

various other blossoms. So it does not provide a direct

definition of the optimum blossoms.

The first step of our algorithms use our generalized Tutte

matrix to find the optimum duals of the vertices. Then we

execute the shrinking procedure to get the blossoms, their

duals, and a ”weighted blossom tree” that gives the structure

of the optimum f -factor. (This step is combinatoric. It is

based on the detailed structure of 2f -unifactors that we

derive.) The last step finds the desired f -factor using a top-

down traversal of the weighted blossom tree: At each node

we find an f -factor of a corresponding graph, using our

algorithm for unweighted f -factors. Our algorithms (like

[13] for ordinary matching) can be viewed as a (combi-

natoric) reduction of the weighted f -factor problem into

two subproblems: finding the optimum dual variables of the

vertices, and finding an unweighted f -factor.

To facilitate understanding of the general f -factor al-

gorithm we begin by presenting its specialization to two

subcases. First b-matching. The blossoms, and hence the

2b-unifactors, differ little from ordinary graph matching.

As a result our development for weighted b-matching is

essentially identical to the special case of ordinary matching,

in terms of both the underlying combinatorics and the

algorithmic details. When specialized to ordinary matching

our algorithm provides a simple alternative to [13]. In fact

an advantage is that our algorithm is Las Vegas – the

dual variables allow us to check if the b-matching is truly

optimum. (Our approach to weighted matching/b-matching

differs from [13] – at the highest level, we work with critical

graphs while [13] works with perfect graphs.)

Next we discuss shortest paths in undirected graphs with

a conservative weight function – negative edges are allowed

but not negative cycles. The obvious reduction to a directed

graph (replace undirected edge uv by directed edges uv, vu)

introduces negative cycles and so fails.

We consider the single-source all-sinks version of the

problem. Again, this problem is often solved by reduction,

first to the single-source single-sink version and then to

perfect matching, using either T-joins [1, pp.485–486] or

vertex-splitting [1, p.487]. A path can be viewed as a type

of 2-factor. (For instance an ab-path is an f -factor if we

enlarge G with a loop at every vertex v ∈ V and set

f(v) = 2 for v ∈ V − {a, b}, and f(a) = f(b) = 1.) This

enables us to solve the all-sinks version directly. Examining

the blossom structure enables us to define a generalized

shortest-path tree that, like the standard shortest-path tree

for directed graphs, specifies a shortest path to every vertex

from a chosen source. It is a combination of the standard

shortest-path tree and the blossom tree, plus a generalization

of Bellman’s inequalities. We give a complete derivation of

the existence of this shortest-path structure, as well as an

algebraic algorithm to construct it in time Õ(Wnω). We also

construct the structure with combinatoric algorithms, in time

O(n(m + n log n)) or O(
√

nα(m,n) log n m log(nW)).
These bounds are all within logarithmic factors of the best-

known bounds for constructing the directed shortest-path

tree [1, Ch. 8], [16], [17].

Although the shortest-path problem is classic, our defini-

tion of this structure appears to be new. Most notably, Sebö

has characterized the structure of single-source shortest paths

in undirected graphs, first for graphs with ±1 edge weights

[18] and then extending to general weights by reduction

[19]. Equation (4.2) of [18] (for ±1-weights, plus its version

achieved by reduction for arbitrary weights) characterizes

the shortest paths from a fixed source in terms of how

they enter and leave ”level sets” determined by the distance

function. [18] also shows that the distances from the source

can be computed using O(n) perfect matching computations.

Our structure differs from [18], [19]: it does not give a

necessary and sufficient condition to be a shortest path, but

it gives an exact specification of a set of shortest paths that

are simply related to one another (as in the standard shortest-

138

path tree). One can give an alternative proof of the existence

of our structure by starting from [18], [19].

The general algorithm for maximum f -factors is the most

difficult part of our results. It involves a detailed study of

the properties of blossoms. A simple example of how these

blossoms differ from ordinary matching is that the hallmark

of Edmonds’ blossom algorithm – ”blossoms shrink” – is not

quite true. In other words for ordinary matching a blossom

can be contracted and it becomes just an ordinary vertex. For

f -factors we can contract the ”cycle” part of the blossom,

but its incident edges remain in the graph and must be

treated differently from ordinary edges. Our discussion of

shortest paths introduces this difficulty in the simplest case

– here a blossom has exactly 1 incident edge (as opposed

to an arbitrary number). Even ignoring this issue, another

difficulty is that there are three types of edges that behave

differently (see [14] or Section VII) and the type of an

edge is unknown to the algorithm! Again the three types are

seen to arise naturally in shortest paths. Our contribution

is to develop the combinatoric properties of these edges

and blossoms so the shrinking procedure can be executed

efficiently, given only the information provided by the Tutte

matrix.

While non-bipartite graphs present the greatest technical

challenge, we also achieve some best-known time bounds for

two bipartite problems, maximum network flow and min-

cost network flow. Bipartite f -factors generalize network

flow: max-flow (min-cost max-flow) is a special case of

unweighted (weighted) bipartite f -factors, respectively, e.g.,

[20]. The question of an efficient algebraic max-flow algo-

rithm has confronted the community for some time. The

only advance is the algorithm of Cheung et. al. [21], which

checks whether d units of flow can be sent across a unit-

capacity network in O(dω−1m) time. We consider networks

with integral vertex and edge capacities bounded by D.

We find a max-flow in time Õ((Dn)ω) time and a min-

cost max-flow in Õ(W (Dn)ω) time. The latter algorithm

handles convex edge-cost functions (with integral break-

points) as well. The max-flow problem has a rich history

(see e.g. [1, Chs. 10, 12]) and our time bounds are the

best-known for dense graphs with moderately high ver-

tex capacities. Specifically, previous algorithms for vertex-

capacitated max-flow in dense networks (i.e., m = Θ(n2))
use O(n3/ log n) time [22] or O(n8/3 logD) time [23].

Previous algorithms for dense graph min-cost max-flow

use O(n3 logD) time [24] or O(n3 log n) time [25],

whereas for minimum convex-cost max-flow one needs

O(Dn3 logD) time (by simple reduction to min-cost max-

flow) or O(n3 logD log(nW)) time [20].

In summary the novel aspects of this paper are: (i) new

time bounds for the fundamental problems of b-matching,

undirected single-source shortest paths, and f -factors; (ii)
extension of the Tutte matrix to f -factors; (iii) definition of

the shortest-path structure for undirected graphs, plus alge-

braic and combinatorial algorithms to construct it; (iv) an

algebraic algorithm for b-matching that is no more involved

than ordinary matching; (v) an algebraic algorithm for f -

factors based on new combinatorial properties of blossoms;

(vi) new time bounds for vertex-capacitated max-flow, min-

cost max-flow and convex-cost max-flow on dense graphs.

Organization of the paper: This extended abstract

introduces the basic ideas of our results. It presents the

bipartite case in full detail, and indicates how this extends

to the non-bipartite case. It briefly describes our results for

shortest paths, which also generalize to the non-bipartite

case. The non-bipartite case is the highlight of this paper

and is technically much more demanding. However due

to space limitations the detailed development of our non-

bipartite and shortest-path algorithms is in the full version

of this paper [26].

In detail, we start by giving basic definitions and our

algebraic tools. Next, we present an O(φω) time algorithm

for unweighted bipartite f -factors. This requires our gen-

eralized Tutte matrix (Section III) plus algorithmic details

(Section IV). Section V gives the algorithm for weighted

bipartite f -factors. Flows are discussed in Section VI. Sec-

tion VII overviews the generalized shortest-path tree.

II. PRELIMINARIES

Problem definitions: The symmetric difference of sets

is denoted by ⊕, i.e., A ⊕ B = (A − B) ∪ (B − A). We

use a common convention to sum function values: If f is

a real-valued function on elements and S is a set of such

elements, f(S) denotes
∑{f(v) : v ∈ S}.

Let G = (V,E) be an undirected graph, with vertex set

V = {1, . . . , n}. We sometimes write V (G) or E(G) to

denote vertices or edges of graph G. A walk is a sequence

A = v0, e1, v1, . . . , ek, vk for vertices vi and edges ei =
vi−1vi. The notation v0vk-walk specifies the two endpoints.

The length of A is k, and the parity of k makes A even
or odd. A trail is an edge-simple walk. A circuit is a trail

that starts and ends at the same vertex. The vertex-simple

analogs are path and cycle.

In an undirected multigraph G = (V,E) each edge e ∈ E
has a positive multiplicity μ(e). Each copy of a fixed e ∈ E
is a distinct edge, e.g., a trail may use up to μ(e) distinct

copies of e.

For a set of vertices S ⊆ V and a subgraph H of G,

δ(S,H) (γ(S,H)) denotes the set of edges with exactly one

(respectively two) endpoints in S (loops are in γ but not δ).

d(v,H) denotes the degree of vertex v in H . When referring

to the given graph G we often omit the last argument.

An edge weight function w assigns a numeric weight to

each edge. For complexity bounds we assume the range of

w is [−W..W], i.e., the set of integers of magnitude ≤ W .

The weight of edge set F ⊆ E is w(F). w is conservative
if there are no negative weight cycles. For multigraphs we

denote by w(e, k) the weight of the kth copy of edge e.

139

Let G = (V,E) be a multigraph. For a function f : V →
Z+, an f -factor is a subset of edges F ⊆ E such that

d(v, F) = f(v) for every v ∈ V . Let G = (V,E) be a graph,

where E may contain loops vv but no parallel edges. For a

function b : V → Z+, a (perfect) b-matching is a function

x : E → Z+ such that
∑

w:vw∈E x(vw) = b(v). A maximum
f -factor is an f -factor F with maximum weight w(F).
Similarly a maximum b-matching is a perfect b-matching of

maximum weight, i.e.,
∑

e∈E x(e)w(e).
To simplify the time bounds we assume matrix multipli-

cation time is Ω(n2 log n). This allows us to include terms

like O(m) and O(m log n) within our overall bound O(φω).
Observe that m = O(n2) = O(φ2) if there are no parallel

edges, or if all copies of an edge have the same weight. In the

most general case – arbitrary parallel edges – we can assume

m = O(nφ) = O(φ2) after linear-time preprocessing. In

proof, for each edge uv the preprocessing discards all but

the f(u) largest copies. This leaves ≤ ∑{d(u)f(u) : u ∈
V } ≤∑{nf(u) : u ∈ V } ≤ nφ edges in G.

Algebraic tools: We encode graph problems in matri-

ces, in such a way that determinant of a matrix is (symbol-

ically) non-zero if and only if the problem has a solution.

The Schwartz-Zippel Lemma [27], [28] provides us with an

efficient non-zero test for such symbolic determinants. For

our purposes the following simplified version suffices.

Lemma 2.1 (Schwartz-Zippel): For any prime p, if a non-

zero multivariate polynomial of degree d over Zp is evalu-

ated at a random point, the probability of false zero is ≤ d
p .

After finding the right encoding we compute the determi-

nant using the following result in symbolic computation by

Storjohann [29].

Theorem 2.2 (Storjohann ’03): Let K be an arbitrary

field, A ∈ K[y]n×n a polynomial matrix of degree W ,

and b ∈ K[y]n×1 a polynomial vector of the same degree.

Then the rational system solution A−1b, and the determinant

det(A) can be computed in Õ(Wnω) operations in K,

w.h.p. [29, Algorithms 5 and 12].

III. DETERMINANT FORMULATIONS

Consider a simple bipartite graph G, with both vertex sets

V0, V1 numbered from 1 to n. Let φ =
∑

i f(i)/2. Define a

φ×φ matrix B(G), the symbolic adjacency matrix of G, f ,

as follows. A vertex i ∈ V0 is associated with f(i) rows

indexed by pairs i, r, for 0≤ r < f(i). Similarly j ∈ V1 is

associated with f(j) columns indexed by j, c, for 0≤ c <
f(j). Define B(G) using indeterminates xij

r and yijc as

B(G)i,r,j,c =

{
xij
r y

ij
c ij ∈ E,

0 otherwise.
(1)

Observe that each edge in the graph is represented by a rank-

one submatrix given by the product of two vectors xij(yij)T .

Before we prove the main theorems we make the following

observation that each edge can be used only once.

Lemma 3.1: Let A be a symbolic n × n matrix, with R
(C) a set of l rows (columns) of A. If A[R,C] (the submatrix

of A restricted to rows in R and columns in C) has rank

bounded by r then each term in the expansion of det(A)
contains at most r elements from A[R,C].

Proof: Using Laplace expansion we expand det(A) into

l × l minors that contain all l rows of R, i.e.,∑
M⊆V1,|M |=l

sgn(M) det(A[R,M]) det(A[V0−R, V1−M]),

where sgn(M) =
∏

c∈M (−1)c. Consider each element of

the above sum separately. If M contains > r columns of

C then det(A[R,M]) = 0, so the elements contributing to

det(A) have ≤ columns of C. Moreover, A[V0 − R, V1 −
M] has no rows of A[R,C], so det(A[R,M]) det(A[V0 −
R, V1 −M]) has ≤ r entries from A[R,C].

Note that det(B(G)) is the sum of many different terms

each containing exactly φ occurrences of variable pairs

xij
r y

ij
c . Each xij

r y
ij
c corresponds to an edge ij ∈ E. For

a term σ let Fσ be the multiset of edges that correspond

to the variable pairs in σ. Define F to be the function that

maps each term σ to Fσ.

Theorem 3.2: Let G be a simple bipartite graph. The

function F from terms in det(B(G)) is a surjection onto the

f -factors of G. Hence G has an f -factor iff det(B(G))
= 0.

Proof: First we show that the image of F contains all

f -factors of G. Suppose F is an f -factor in G. Order the

edges of F that are incident to each vertex arbitrarily. If

ij ∈ F is the r+1st edge at i and the c+1st edge at j then

it corresponds to entry B(G)i,r,j,c. Thus F corresponds to

a nonzero term σ in the expansion of det(B(G)). Observe

that entries B(G)i,r,j,c define σ in a unique way, so no other

term has exactly the same indeterminates. Of course there

can be many terms representing F .

Can det(B(G)) contain terms that do not correspond to f -

factors? The answer is no. Suppose det(B(G))
= 0 and take

any term σ in the expansion of det(B(G)). σ corresponds

to an f -factor unless more than one entry corresponds to

the same edge of G. This is impossible because edges are

represented by rank-one submatrices and Lemma 3.1 shows

elements of such submatrices appear at most once.

Now let G be a bipartite multigraph. Let μ(e) denote the

multiplicity of any edge e ∈ E. Redefine B(G) by

B(G)i,r,j,c =

μ(ij)∑
k=1

xij,k
r yij,kc . (2)

In other words, now edge ij of multiplicity μ(ij) is rep-

resented by a submatrix of rank μ(ij). Hence Lemma 3.1

shows edge ij can appear in a term of det(B(G)) at most

μ(ij) times. This leads to a generalization of Theorem 3.2:

Corollary 3.3: Let G be a bipartite multigraph. The func-

tion F from terms in det(B(G)) is a surjection onto the f -

factors in G. Hence, G has an f -factor iff det(B(G))
= 0.

140

Finally let us discuss the complexity of using the B(G)
matrix. As in most algebraic algorithms we evaluate B(G)
using a random value for each indeterminate to get a matrix

B. If G is a simple graph this can done in time O(φ2)
using (1). For multigraphs we need to use a different

approach and construct B in time O(φω), as follows.

As observed above B[I, J] is the product of an f(i) ×
μ(ij) matrix X of indeterminates xij,k

r and an μ(ij)× f(j)
matrix Y of indeterminates yij,kc . Wlog assume f(i) ≤ f(j).
Moreover, if μ(ij) < f(i) we pad X and Y with zeros and

set μ(ij) = f(i). Break up the product XY into products

of f(i) × f(i) matrices. Using fast matrix multiplication,

computing XY requires O(f(i)ω f(j)
f(i)) time. The total time

to compute B is bounded by a constant times∑
i,j

f(i)ω−1f(j) ≤
∑
i

f(i)ω−1(
∑
j

f(j)) ≤ φω−1φ = φω.

IV. FINDING f -FACTORS

This section gives our algorithm to find an f -factor of a

bipartite multigraph. We follow the development from [3]:

We start with an O(φ3)-time algorithm. Then we show

it can be implemented in O(φω) time using the Gaussian

elimination algorithm of Bunch and Hopcroft [30].

An allowed edge is an edge belonging to some f -factor.

For perfect matchings the notion of allowed edge is express-

ible using the inverse of B(G): ij is allowed if and only

if B(G)−1
i,j is non-zero. We prove a similar statement for

bipartite f -factors. For a given f define fi,j to be

fi,j(v) =

{
f(v)− 1 if v = i or v = j,

f(v) otherwise.

Lemma 4.1: Let G be a bipartite multigraph having an

f -factor. Edge ij ∈ E is allowed iff G has an fi,j-factor.

Proof: The “only if” direction is clear: If F is an f -

factor containing ij, then F − ij is an fi,j-factor.

Conversely, suppose F does not contain the chosen edge

ij. Take an fi,j-factor F ′ that maximizes |F ′ ∩ F |. F ′ ⊕ F
contains an alternating ij-trail P that starts and ends with

edges of F . In fact P is a path. (Any cycle C in P has even

length and so is alternating. This makes F ′⊕C an fij-factor

containing more edges of F than F ′, impossible.) ij is not

the first edge of P (ij /∈ F). So ij /∈ P , since P is vertex

simple. Thus (F ⊕ P) + ij is an f -factor containing ij.

Lemma 4.2: Let G be a bipartite multigraph having an f -

factor, and let i ∈ V0 and j ∈ V1. Then (B(G)−1)j,0,i,0
= 0
iff G has fi,j-factor.

Proof: Observe that

(B(G)−1)j,0,i,0 =
(−1)n(j,0)+n(i,0) det(B(G)i,0,j,0)

det(B(G))
,

where B(G)i,0,j,0 is the matrix B(G) with i, 0th row and

j, 0th column removed, and n(i, k) is the actual index of the

row or column given by the pair i, k. We have det(B(G))
=

0 since G has an f -factor. Hence (B(G)−1)j,0,i,0
= 0
iff det(B(G)i,0,j,0)
= 0. Furthermore B(G)i,0,j,0 is the

symbolic adjacency matrix for G when f = fi,j .
Observe that by the symmetry of the matrix B(G), when

(B(G)−1)j,0,i,0
= 0 then as well (B(G)−1)j,κ,i,ι
= 0 for

all 0 ≤ ι < f(i) and 0 ≤ κ < f(j). Combining the above

two lemmas with this observation we obtain the following.
Corollary 4.3: Let G be a bipartite multigraph having an

f -factor, then the edge ij ∈ E is allowed if and only if

(B(G)−1)j,κ,i,ι
= 0 for 0 ≤ ι < f(i) and 0 ≤ κ < f(j).
Being equipped with a tool for finding allowed edges we

can now use the Gaussian elimination framework from [3].

Here, the following observation is essential.
Lemma 4.4 ([3]): Let A be a non-singular φ× φ matrix

and let 1 ≤ i, j ≤ n be such that (A−1)j,i
= 0. Let A′

be the matrix obtained from A−1 by eliminating row j and

column i using Gaussian elimination. Then A′ = (Ai,j)−1

(i.e., A′ is the Schur complement of (A−1)j,i).
The above lemma can be used to obtain the following

algorithm that finds an f -factor.

Algorithm 1 O(φ3) time algorithm for bipartite f -factors.

1: Let B(G) be the φ× φ matrix representing G, f
2: Replace the variables in B(G) by random values from Zp for

prime p = Θ(φ2) to obtain B
3: If B is singular return ”no f -factor”
4: (with probability ≥ 1− 1

φ
matrix B is non-singular when B(G)

is non-singular) � by Lemma 2.1
5: Compute N := B−1 and set F := ∅
6: (each column i, ι of B−1 has an allowed edge, since BB−1 =

I gives j, κ with Bi,ι,j,κB
−1
j,κ,i,ι �= 0)

7: for i = [1..n] do
8: for ι = [0..f(i)− 1] do
9: Find j, κ such that ij ∈ E − F and Nj,κ,i,ι �= 0

10: � by Corollary 4.3 edge ij is allowed
11: Eliminate j, κ’th row and i, ι’th column from N
12: � using Gaussian elimination
13: (N = (Bi,ι,j,κ)−1, i.e., N encodes fi,j-factors)
14: � by Lemma 4.4 in the first iteration
15: Set F := F + ij
16: end for
17: end for
18: Return F

The comment of line 12 is adequate for ι = 0. However

ι > 0 requires an additional observation. To see this first

recall the logic of each iteration: Let f ′ be the residual

degree requirement function, i.e., the current F , enlarged

with an f ′-factor of the current graph, gives an f -factor

of G. In line 10, the f ′-factor F ′ that contains ij is a

subgraph of the graph corresponding to (the current) N and

its corresponding matrix B. Now suppose the iteration for

ι = 0 adds edge ip to F . When the row and column for

ip are deleted from B, the remaining rows for vertex i still

contain entries corresponding to edge ip (recall the definition

of B(G)). So when the iteration for ι = 1 chooses its edge

ij, the corresponding f ′-factor F ′ may contain edge ip. But

141

F cannot be enlarged with F ′, since that introduces two

copies of ip. The same restriction applies to iterations for

ι > 1, but now it concerns all previously chosen edges ip.

Actually there is no problem because we can guarantee an

f ′-factor avoiding all the previous ip’s exists. The guarantee

is given by the following corollary to Lemma 4.1. (Note

when r = 0 the corollary is a special case of the lemma.

Also, the converse of the corollary holds trivially.)

Corollary 4.5: Consider a set of edges P =
{ip1, . . . , ipr}, r ≥ 0. Suppose G − P has an f -

factor. If G has an fij-factor for some edge ij /∈ P then

G− P has an f -factor containing ij.

Proof: The proof of Lemma 4.1 applies, assuming we

start by taking F to be the assumed f -factor.

Observe that Algorithm 1 is implementing Gaussian elim-

ination on B−1, the only difference being that pivot elements

are chosen to correspond to edges of the graph. If there exists

an f -factor, there is an allowed edge incident to each vertex.

Hence, even with this additional requirement the elimination

is able to find a non-zero element in each row of B−1.

Bunch and Hopcroft [30] show how to speed up the

running time of Gaussian elimination from O(φ3) to O(φω),
by using lazy updates: Divide the columns of the matrix

into two almost equal parts. Let L denote the first φ/2�
columns that are to be eliminated, and R the remaining

�φ/2� columns. Note that columns in R are not used until we

eliminate all columns from L.5 Hence all updates to columns

in R resulting from elimination of columns in L can be done

once using fast matrix multiplication in O(|R|ω) time. By

applying this scheme recursively we obtain an O(φω) time

algorithm.

V. WEIGHTED f -FACTORS

This section discusses how to find a maximum f -factor

in a weighted bipartite graph. For simplicity assume in

this section that the weight function is non-negative, i.e.,

w : E → [0..W]. (If not, redefine w(ij) := w(ij) + W ,

changing the weight of each f -factor by exactly Wf(V)/2.)

Let us start by recalling the dual problem for maximum f -

factors. In this problem each vertex v is assigned a real-

valued weight y(v). We say that the dual y dominates the

edge uv ∈ E when y(u) + y(v) ≥ w(e), or it underrates
the edge uv ∈ E when y(u) + y(v) ≤ w(uv). The dual

objective is to minimize

y(V,E) =
∑
v∈V

f(v)y(v) +
∑

uv∈E is underrated

w(uv)−y(u)−y(v).

The dual y minimizes y(V,E) when there exists an f -factor

F such that F contains only underrated edges while its

complement contains only dominated edges. Observe that

5In their paper the elimination proceeds row by row, whereas it is
nowadays more usual to present Gaussian elimination on columns.

when we are given the minimum dual y, then the above f -

factor F is a maximum weight f -factor. On the other hand,

to construct such a maximum f -factor we need to include

every strictly underrated edge and arbitrary tight edges, i.e.,

edges uv ∈ E for which y(u) + y(v) = w(uw). Hence, we

can observe the following.
Lemma 5.1: Given an optimal dual function y, a maxi-

mum f -factor of a bipartite multigraph can be constructed

in O(φω) time.
Proof: Let U be equal to the set of underrated edges

with respect to y. Set f ′(v) = f(v) − d(v, U). Using

Algorithm 1 find an f ′-factor T over the set of tight edges

with respect to y. The maximum f -factor is equal to the

multiset sum of U and T , i.e., to U � T .
This lemma shows that given an algorithm for finding

unweighted f -factors all we need to know is an optimal dual.

Such an optimal dual can be obtained from the combinatorial

interpretation as given in [14]. Let us define G+ to be G
with additional vertex s ∈ V1 and new 0 weight edges su,

for all u ∈ V0. In G+ we set f(s) = 1. Let fv be the degree

constraint function defined to be identical to f except for

fv(v) = f(v)+(−1)i, where v ∈ Vi. Let Fv be a maximum

fv-factor in G+. To show that Fv always exists take F to

be any f -factor in G. Now, when v ∈ V0 then F + sv is an

fv-factor, whereas when v ∈ V1 − s then for any uv ∈ F ,

F − uv + su is an fv-factor
Theorem 5.2 ([14]): For a bipartite multigraph with an

f -factor, optimal duals are given by y(v) = (−1)iw(Fv)
for v ∈ Vi.

Hence to construct the optimal duals we need to know the

weights w(Fv) for all v ∈ V0 ∪ V1. At first sight it might

seem we did not gain anything, since instead of finding one

F factor we now need to find all factors Fv . But we only

need the weights of these factors. In fact we need w(Fv) for

just one side of the bipartite graph.
Lemma 5.3: For a bipartite multigraph with an f -factor,

let y(v) be an optimal dual for each v ∈ V1. An optimal

dual y(u) for u ∈ V0 is equal to the largest value yu that

makes at least f(u) edges incident to u underrated, i.e.,

|{uv∈E : yu ≤ w(uv)− y(v)}| ≥ f(u).
Proof: Observe that there are at least f(u) underrated

edges incident to u with respect to optimal dual y, as each

maximum f -factor needs to contain only underrated edges.

On the other hand, the complement contains at least d(u)−
f(u) dominated edges. This fixes the largest possible value

for y(u) as the value given in the lemma.
Now consider a simple bipartite graph G and similar to (1)

define B(G) as

B(G)i,r,j,c =

{
zw(ij)xij

r y
ij
c ij ∈ E,

0 otherwise,

where z is a new indeterminate. Theorem 3.2 shows that

there is a mapping F from terms of det(B(G)) onto f -

factors in G. Consider a term σ in det(B(G)). Observe that

142

its degree in z is equal to the weight of F(σ) because the

powers of z get added in the multiplication. For a polynomial

p, denote the degree of p in z by degz(p).
Corollary 5.4: For a bipartite graph G, degz(det(B(G)))

equals the weight of a maximum f -factor in G.
To compute fv-factors in G+ we use the following

auxiliary graph. Let G∗ be G+ with an additional vertex

t ∈ V0 that is joined to every vertex of V1 − s by an edge

of weight zero. Set f(t) = 1.
Lemma 5.5: ∀v∈V1

degz(adj(B(G∗))v,0,t,0) = w(Fv).
Proof: Observe that

adj(B(G∗))v,0,t,0 = (−1)n(t,0)+n(v,0) det(B(G∗)t,0,v,0),

where B(G∗)t,0,v,0 is the matrix B(G∗) with row t, 0 and

column v, 0 removed and n(i, r) gives the order of rows

and columns indexed by pairs i, r. By Theorem 3.2 we

know that det(B(G∗)) consists of terms corresponding to

f -factors in G∗. Hence the above equality shows terms

of adj(B(G∗))v,0,t,0 correspond to f -factors that use edge

tv, but with this edge removed. These are exactly the fv-

factors in G+, because forcing the f -factor to use edge

tv effectively decreases f(v) by 1. As we observed in

Corollary 5.4 the degree of z equals the total weight of

corresponding f -factor. The lemma follows.
Recall that the adjoint of a nonsingular matrix A is

det(A)A−1. The lemma shows we are interested in col-

umn t, 0 of the adjoint. So let et,0 be a unit vector,

with 1 in row t, 0 and zeroes elsewhere. Then the de-

sired weights are found in the vector adj(B(G∗))et,0 =
det(B(G∗))B(G∗)−1et,0. This leads to the following algo-

rithm to find optimal duals for weighted bipartite f -factors.

Algorithm 2 Finding optimal duals in a bipartite graph G, f .

1: Let B(G∗) be φ× φ matrix representing G∗
2: Replace x and y variables in B(G∗) by random values from
Zp for prime p = Θ(φ3) to obtain B

3: Compute vector a := adj(B)et,0 = det(B)B−1et,0.

4: � requires ˜O(Wφω) time using Theorem 2.2
5: for v ∈ V1 do
6: (degz(av) = degz(adj(B(G∗))v,0,t,0))
7: � with probability ≥ 1− 1

φ2 by Lemma 2.1

8: w(Fv) := degz(av) � equality by Lemma 5.5
9: y(v) := w(Fv) � y(v) is optimal by Theorem 5.2

10: end for � by union bound y is correct with pr.≥1− 1
φ

11: for u ∈ V0 do
12: y(u) :=max{yu: |{uv∈E:yu≤w(uv)−y(v)}|≥f(u)}
13: end for � y(u) is optimal by Lemma 5.3

Combining the above algorithm with Lemma 5.1 we

obtain an Õ(Wnω) time algorithm for maximum f -factors

in weighted bipartite graphs. We note that this development

works for bipartite multi-graphs as well – see [26].

VI. MIN-COST MAX-FLOW

We are given a directed network N = (V,E), with source

s and sink t, s, t ∈ V . For convenience let V − denote the

(b)(a)

Figure 1. A vertex v of capacity c(v) = 3 in N is represented in GN

by two vertices vin and vout connected by 3 edges. The f -factor in (b) is
marked with solid edges. Observe that the f -factor must choose the same
number of edges going in and out of v.

set of nonterminals, V − {s, t}. The edges and nonterminal

vertices have integral capacities given by c : V − ∪ E →
[1..D]. Let g : V × V → Z be a flow function. Besides the

standard edge capacity and flow conservation constraints we

have vertex capacity constraints, i.e., for each vertex v
= s, t
we require

∑
u∈V g(u, v) ≤ c(v).

We begin by constructing a bipartite graph GN whose

maximum f -factor has weight equal to the value of a

maximum flow in N . Wlog assume that no edge enters

s or leaves t. The construction proceeds as follows: for

each v ∈ V − place vertices vin, vout in GN ; also place

vertices sout, tin in GN ; for each v ∈ V − add c(v)
copies of edge vinvout to GN ; for each (u, v) ∈ E add

c(u, v) copies of edge uoutvin to GN ; for v ∈ V −, set

f(vin) = f(vout) = c(v); set f(sout) = f(tin) = c(V −);
set w(e) = 1 for each edge e leaving sout and w(e) = 0 for

every other edge of GN ; add c(V −) copies of edge souttin
to GN , all of weight 0. Note that in addition to the weight

0 edges souttin, GN may contain edges souttin of weight

1 corresponding to an edge st ∈ E.

Corollary 6.1 ([20]): Let N be the flow network. The

weight of the maximum f -factor in GN is equal to the

maximum flow value in N .

Proof: The main idea of the reduction is shown in Fig-

ure 1. Observe that f -factors in GN correspond to integral

flows in N that fulfill the flow conservation constraints.

Moreover the edge capacities are not exceeded since an

edge cannot be used by an f -factor more times than its

capacity. Similarly a vertex cannot be used more times than

its capacity. The only edges with non-zero weights are edges

incident to sout, so the maximum f -factor maximizes the

amount of flow leaving s. Finally all this flow must wind

up at t, since any v
= s, t has an equal number of f -edges

incident to vin and vout.

Observe that GN has f(V) ≤ 4c(V −). So the algorithm

of Section V uses Õ(c(V −)ω) = Õ((Dn)ω) time to find a

maximum flow in a network.

Now assume that an edge (u, v) of N has a cost au,v ∈
[−W..W], i.e., the cost of sending t units of flow on edge

(u, v) is linear and equals tau,v . First find the maximum flow

value fmax in N . Then modify the construction of GN to

GN,a in the following way: add vertices sin and tout; add

143

c(V −) copies of edges sinsout and tintout; set f(sin) =
f(tout) = c(V −) and f(sout) = f(tin) = c(V −) + fmax;

for each copy of the edge uoutvin set w(uoutvin) = −au,w.

Corollary 6.1 observed that f -factors in GN correspond

to feasible flows in N . The new vertices sin and tout allow

an f -factor to model flow along cycles containing s and t.
The values of f at the terminals make the corresponding

flow from s to t have value fmax. Thus f -factors in GN,a

correspond to maximum flows in N . Since costs of edges

are negated between both networks, we have the following.

Corollary 6.2 ([20]): Let N be a flow network with

linear edge costs. A maximum f -factor in GN,a has weight

equal to the minimum cost of a maximum flow in N .

Now the algorithm of Section V gives an

Õ(Wc(V −)ω) = Õ(W (Dn)ω) time algorithm to find

a min-cost max-flow. Let us extend this reduction to

convex cost functions. Assume the cost of sending

t units of flow on an edge (u, v) is given by a

convex function au,v(t) such that marginal costs satisfy

mu,v(t) = au,v(t) − au,v(t − 1) ∈ [−W..W]. As usual for

this scenario we assume au,v is linear between successive

integers. This ensures that there exists an integral optimal

solution. We encode such cost functions in the graph by

assigning different costs to each copy of an edge, i.e., the kth

copy of edge uoutvin has cost w(uoutvin, k) = −mu,v(k)
for 1 ≤ k ≤ c(u, v).

Lemma 6.3: Let N be a flow network with convex edge

costs. A maximum f -factor in GN,a has weight equal to the

minimum cost of a maximum flow in N .

Proof: The maximum f -factor in GN,a, when using t
copies of edges between uout and vin, will use the most

expensive copies. The convexity of au,v implies mu,v(t) is

a non-decreasing function. Hence, we use the edges of costs

−mu,v(1), . . . ,−mu,v(t), which sum to −au,v(t).
Clearly this extension does not change the running time

of our algorithm. So we find a min-cost max-flow for convex

edge costs in time Õ(W (Dn)ω).

VII. THE SHORTEST-PATH STRUCTURE

This section presents the definition of our generalized

shortest-path tree for conservative graphs. It sketches the ex-

istence proof and the algorithmic construction. All theorems

and proofs are omitted.

Let (G, t, w) be a connected undirected graph with dis-

tinguished vertex t and conservative edge-weight function

w : E → R. We wish to find a shortest path Pv from

each vertex v to the fixed sink t. As usual d(v) denotes the

minimum weight of a vt-path, d(v) = w(Pv). Bellman’s

inequalities for d needn’t hold and a shortest-path tree

needn’t exist (e.g., the subgraph on {a, b, c} in Fig.2(a)).

But we show d is optimum for a related set of inequalities

(specifically we generalize Bellman’s inequalities to the

system (3) below).

3

t

c

f ij

1 1

1

−2

2

−2

0

0

−1−1

0

1

10

1 −2 −1

2

3

(b)(a)

−5

a b c

ig

j

3

0

d t e

−1 −1

−2 −2 −2

cd −1

ce

−2 −1 −3 −1 −1df

ei

fj

Figure 2. (a) Conservative undirected graph. Vertex labels are shortest-
path distances; arrows show the first edge of shortest paths. Dashed edges
are not in any shortest path. (b) Shortest-path structure. Node labels are
z-values. E(N) edges are the dashed edges joining the children of N .

We begin by defining the analog of the shortest-path tree.

When there are no negative edges this analog is a variant

of the standard shortest-path tree (node V below). Fig.2(a)–

(b) illustrate the definition. In Fig.2(a) the arrow from each

vertex v gives the first edge in v’s shortest path. This edge

is e(v) in the definition below. More generally it is e(N)
for any node N that it leaves, e.g., ce = e(c) = e({a, b, c}).

Definition 7.1: A generalized shortest-path tree (gsp-tree)

T is a tree whose leaves correspond to the vertices of G. For
each node N of T , V (N) denotes the set of leaf descendants
of N , V (N) ⊆ V (G). Let V be the root of T . For each node
N , V (N) contains a sink vertex denoted t(N); for N
= V ,
t(N) is the end of an edge e(N) ∈ δ(V (N)). For N = V
the sink is t, and we take e(V) = ∅; for N
= V , t(N) and
e(N) are determined by the parent of N as described below.

Consider an interior node N of T , with children Ni, i =
1, . . . , k, k ≥ 2. V (N1) contains t(N) and t(N1) = t(N),
e(N1) = e(N). N has an associated set of edges E(N)
with {e(Ni) : 1 < i ≤ k} ⊆ E(N) ⊆ γ(N). Let N i denote
the contraction of V (Ni) in G.
Case N
= V: E(N) forms a cycle on vertices N i, i =
1, . . . , k.
Case N = V: Either (i) E(N) gives a cycle exactly as in
the previous case, or (ii) E(N) is a spanning tree on the
nodes N i, rooted at N1, with each e(Ni) the edge from Ni

to its parent.
Note that {e(Ni) : 1 < i ≤ k} = E(N) in case (ii) above

but not in general, e.g., df in Fig.2(a) has no arrow.

For any vertex v, a top-down traversal of T gives a

naturally defined vt-path p(v) that starts with e(v), that

we now describe. As an example in Fig.2(a) p(j) =
j, f, g, h, i, e, c, d, t; in Fig.2(b) this path is composed of

pieces in the subgraphs of 3 nodes, j, f ; f, g, h, i, e; and

e, c, d, t. In general, if p(v) traverses a node N of T , it does

144

so on a path from some x ∈ V (N) to t(N). Specifically if x
descends from the child Ni of N , the edges of p(x)∩E(N)
are those of the unique N iN1-path P that begins with the

edge e(Ni). For any vertex v ∈ V (G), to find the entire

vt-path p(v) start at the root V of T and apply this rule

recursively, where vertex x is v at V and x is determined

by the two edges incident to N for N
= V (one of these

edges is e(N)).
A gsp-structure consists of a gsp-tree plus two functions

d, z. Each vertex v has a value d(v). Each node N of T has

a value z(N) that is nonpositive for every N
= V . Enlarge

E(G) to the set E�(G) by adding a loop xx at every vertex

except t, with w(xx) = 0. For any such x define E(x) to

be {xx} and define E(t) = ∅. Say that a node N of T
covers any edge with both ends in N (including a loop xx)

as well as the edge e(N) (if it exists). d and z are defined

by requiring that every edge xy ∈ E�(G) satisfies

d(x) + d(y) + w(xy) ≥
∑
{z(N) : N covers xy}, (3)

with equality holding for every edge of
⋃
(E(N) ∪ e(N) :

N a node of T). The proof that p(v) is a minimum weight

vt-path is based on adding the equalities of (3) for the edges

of p(v) and the loops of vertices not in p(v), to get d(v) +∑{2d(x) : x ∈ V −v, t}+d(t)+w(Pv) =
∑{|N−t|z(N) :

N a node of T }; the analogous sum for any other vt-path

is no smaller, since z is nonpositive.

To prove the gsp-structure exists define a p-cycle
(“planted-cycle”) to be the union of a cycle C and 2

copies of a path P from a vertex c ∈ C to t, with

V (P)∩V (C) = {c}. (Possibly c = t.) For simplicity assume

no two sets of edges have the same weight (if not, perturb

the edge weights). We prove any graph contains an edge uv
such that a minimum weight p-cycle is given by Pu∪Pv∪uv
if uv /∈ Pu∪Pv or Pu∪Pv−uv if uv ∈ Pu∩Pv . This leads

to the following shrinking procedure; it shows the gsp-tree

T exists by constructing it.

Initialize G (the current graph) to the graph (V,E�(G)),
and T to contain each vertex of G as a singleton subtree.

Then repeat the following step until G is acyclic:

Let a minimum weight p-cycle have cycle C and

incident edge cc′ on its Ct-path (cc′ = ∅ if t ∈ C).

Contract C to form the next graph G. Set e(C) = cc′.
Unless C is a loop, create a node in T with children

corresponding to the vertices of C and edge set E(C).

If G contains any edges when the loop halts, create a root

node of T whose children and edge set correspond to the

vertices and edges of G respectively.

Let C be the contracted version of C. By convention no

loop is incident to C in the new graph. The weights of

edges incident to C are modified to ensure that weights of

shortest paths to t do not change. Specifically these weights

are changed so (a) any shortest path starting at or passing

j i

0

h
0

f

0

e

g

1 1

0 −1

2

−2

−2

2

3

abc

d

2

0

0

00

−2

0

t

(a)

−2
j

(c)
abcdefghit

0

3

f
j i

h

(b)

g
−2

2

abcdet

3

−2

2

1

0

−2

0

0

0

Figure 3. Execution of the shrinking procedure on graph of Fig. 2: the
contracted graph after the last iteration for ζ∗ equal to (a) 0; (b) 1; (c) 3.

through C uses edge e(C); (b) the weight of edges used

inside C is included in the new weight.

We complete the gsp-structure by defining z. For each

node N of T let ζN be the weight of its corresponding p-

cycle. (For a leaf x use the p-cycle with cycle xx; for the

root V of T use the last p-cycle to be shrunk.) Let p be the

parent function in T . For each node N define

z(N) =

{
ζN N = V
ζN − ζp(N) N
= V.

Fig.3 illustrates how this procedure constructs the gsp-

structure of Fig.2(b). Let ζ∗ denote the weight of the

procedure’s p-cycle. ζ∗ never decreases from one iteration

to the next. So we describe the p-cycles found at the various

values of ζ∗.

ζ∗ = −2: The first three iterations find p-cycles of

weight ζ∗ = −2. Their cycles are the loops at a, b and

j (e.g., the p-cycle for j consists of loop jj (multiplicity

1) plus the jt-path of weight −1 (multiplicity 2). The

weight −2 of this p-cycle is recorded at j in Fig.3(a).

The cycle jj has e(jj) = jf , which is indicated by the

arrow on this edge. Fig.3 indicates all p-cycle weights

and e-edges this way.

ζ∗ = 0: The next five iterations find p-cycles of

weight 0. Their cycles are the loops at d, e, g, t, and

cycle (a, b, c). Fig.3(a) shows the graph after all these

p-cycles have been shrunk. The dashed edge corre-

sponding to be has decreased in weight from 3 to 2.

145

This accounts for the weight −1 path b, a, c in the

contraction of a, b, c. The iteration for cycle (a, b, c)
forms the interior node at depth 3 in Fig.2(b).

ζ∗ = 1: Contracted vertex {a, b, c} plus vertices d, e, t
form the next cycle to be shrunk, giving Fig.3(b). The

interior node at depth 2 in Fig.2(b) is formed.

ζ∗ = 2: The loops at f, h, and i give p-cycles.

ζ∗ = 3: All vertices but j form a p-cycle. Fig.3(c)

shows the graph after it is shrunk. The new weight 0

on the image of edge jf is its original weight −2 plus

the weight 2 of the contracted edge fd. The interior

node at depth 1 in Fig.2(b) is formed. Now the loop

halts and the root of Fig.2(b) is formed.

The last p-cycle, as illustrated in Fig.3(b), can be viewed

as Pg+Ph−gh where gh ∈ Pg∩Ph, as well as Pd+Pf+df
where df /∈ Pd ∪ Pf (here “d” stands for the image of the

original vertex d). This illustrates the above characterization

of the minimum weight p-cycle. But in the original graph

Fig.2(a), Pg+Ph−gh = Pd+Pf+df is not a planted-cycle!

Our efficient algorithm for the gsp-structure has three sub-

routines. First we find the distance function d, using either

a determinant-based algebraic algorithm or a combinatoric

weighted-matching algorithm. Using d, a second routine

finds z and a contraction of the gsp-tree T . Specifically each

node of z-value 0 is contracted into its parent. The simple

cycles of T get lost in this contraction. The third routine

recovers them, using an algorithm similar to maximum

cardinality matching.

These ideas extend to maximum weight f -factors. The p-

cycle generalizes to a “2f -unifactor”. Its cycle generalizes to

a blossom circuit C and its incident edge e(N) generalizes

to a set of edges I incident to C. Just as shortest paths P
satisfy the condition |(P∩δ(V (N)))⊕e(N)| ≤ 1, maximum

factors F satisfy |(F ∩ δ(V (C))) ⊕ I| ≤ 1, although the

possibility |F ∩ δ(V (C))| = |I| − 1 is no longer trivial.

ACKNOWLEDGMENT

The second author was supported by the ERC StG project

PAAl no. 259515 and Foundation for Polish Science.

REFERENCES

[1] A. Schrijver, Combinatorial Optimization - Polyhedra and
Efficiency. Springer-Verlag, 2003.

[2] L. Lovász, “On determinants, matchings and random algo-
rithms,” in FCT, 1979, pp. 565–574.

[3] M. Mucha and P. Sankowski, “Maximum matchings via
Gaussian elimination,” in Proc. of FOCS’04, pp. 248–255.

[4] N. J. A. Harvey, “Algebraic algorithms for matching and
matroid problems,” SIAM J. Comput., vol. 2, no. 39, pp. 679–
702, 2009.

[5] V. V. Williams, “Multiplying matrices faster than
Coppersmith-Winograd,” in Proc. STOC’12, pp. 887–898.

[6] H. N. Gabow, “An efficient reduction technique for degree-
constrained subgraph and bidirected network flow problems,”
in Proc. of STOC’83, pp. 448–456.

[7] W. Pulleyblank, “Faces of matching polyhedra,” Ph.D. disser-
tation, University of Waterloo, Ontario, Canada, 1973.

[8] A. B. Marsh, “Matching algorithms,” Ph.D. dissertation, The
John Hopkins Univeristy, Baltimore, 1979.

[9] R. Anstee, “A polynomial algorithm for b-matching: An
alternative approach,” IPL, vol. 24, pp. 153–157, 1987.

[10] R. Urquhart, “Degree-constrained subgraphs of linear graphs,”
Ph.D. dissertation, University of Michigan, 1967.

[11] H. N. Gabow, “Data structures for weighted matching
and nearest common ancestors with linking,” in Proc. of
SODA’90, pp. 434–443.

[12] P. Sankowski, “Maximum weight bipartite matching in matrix
multiplication time,” Theoretical Computer Science, vol. 410,
no. 44, pp. 4480–4488, 2009.

[13] M. Cygan, H. N. Gabow, and P. Sankowski, “Algorithmic
applications of Baur-Strassen’s theorem: shortest cycles, di-
ameter and matchings,” in Proc. of FOCS’12, pp. 531–540.

[14] H. N. Gabow, “A combinatoric interpretation of dual variables
for weighted matching and f -factors,” Theoretical Computer
Science, vol. 454, pp. 136–163, 2012.

[15] J. Edmonds, “Maximum matching and a polyhedron with 0,1-
vertices,” Journal of Research National Bureau of Standards-
B, vol. 69B, pp. 125–130, 1965.

[16] R. Yuster and U. Zwick, “Answering distance queries in
directed graphs using fast matrix multiplication,” in Proc. of
FOCS’05, 2005, pp. 389–396.

[17] P. Sankowski, “Shortest paths in matrix multiplication time,”
in Proc. of ESA’05, pp. 770–778.

[18] A. Sebö, “Undirected distances and the postman-structure of
graphs,” J. Combin. Theory Ser. B, vol. 49, no. 1, pp. 10–39,
1990.

[19] ——, “Potentials in undirected graphs and planar multiflows,”
SIAM J. Comput., vol. 26, no. 2, pp. 582–603, 1997.

[20] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for
network problems,” SIAM Journal on Computing, vol. 18,
no. 5, pp. 1013–1036, 1989.

[21] H. Y. Cheung, L. C. Lau, and K. M. Leung, “Graph connec-
tivities, network coding, and expander graphs,” in Proc. of
FOCS’11, pp. 190–199.

[22] J. Cheriyan, T. Hagerup, and K. Mehlhorn, “Can a maximum
flow be computed in o(nm) time?” in ICALP’90, 1990, pp.
235–248.

[23] A. V. Goldberg and S. Rao, “Beyond the flow decomposition
barrier,” J. ACM, vol. 45, no. 5, pp. 783–797, Sep. 1998.

[24] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” Journal of
the ACM, vol. 19, no. 2, pp. 248–264, 1972.

[25] J. B. Orlin, “A faster strongly polynominal minimum cost
flow algorithm,” in Prof. of STOC’88, pp. 377–387.

[26] H. N. Gabow and P. Sankowski, “Algebraic algorithms for
b-matching, shortest undirected paths, and f-factors,” CoRR,
vol. abs/1304.6740, 2013.

[27] R. Zippel, “Probabilistic algorithms for sparse polynomials,”
in Proc. of EUROSAM’79, 1979, pp. 216–226.

[28] J. T. Schwartz, “Fast probabilistic algorithms for verification
of polynomial identities,” J. ACM, vol. 27, pp. 701–717, 1980.

[29] A. Storjohann, “High-order lifting and integrality certifica-
tion,” J. Symbolic Comput., vol. 36, no. 3-4, pp. 613–648,
2003.

[30] J. Bunch and J. Hopcroft, “Triangular factorization and in-
version by fast matrix multiplication,” Mathematics of Com-
putation, vol. 28, no. 125, pp. 231–236, 1974.

146

