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Abstract—There has been significant interest and progress
recently in algorithms that solve regression problems involving
tall and thin matrices in input sparsity time. Given a n × d
matrix where n � d, these algorithms find an approximation
with fewer rows, allowing one to solve a poly(d) sized problem
instead. In practice, the best performances are often obtained
by invoking these routines in an iterative fashion. We show
these iterative methods can be adapted to give theoretical
guarantees comparable to and better than the current state
of the art.

Our approaches are based on computing the importances
of the rows, known as leverage scores, in an iterative manner.
We show that alternating between computing a short matrix
estimate and finding more accurate approximate leverage
scores leads to a series of geometrically smaller instances.
This gives an algorithm whose runtime is input sparsity plus
an overhead comparable to the cost of solving a regression
problem on the smaller approximation. Our results build upon
the close connection between randomized matrix algorithms,
iterative methods, and graph sparsification.

Keywords-Sampling, Regression, Well-conditioned Basis

I. INTRODUCTION

Least squares and �p regression are among the most

common computational linear algebraic operations. In the

simplest form, given a matrix A and a vector b, the

regression problem aims to find x that minimizes:

‖Ax− b‖p
Where ‖·‖p denotes the �p-norm of a vector, ‖z‖p =

(
∑

i |zi|p)1/p. The case of p = 2 reduces to the problem of

solving a linear system involving the positive semi-definite

matrix ATA [9], and is one of the most extensively studied

algorithmic questions. Over the past two decades, it was

shown that �1 regression has good properties in recovering

structural information [10]. These results make regression

algorithms a key tool in data analysis, machine learning, as

well as a subroutine in other algorithms.

The ever growing sizes of data raises the natural question

of algorithmic efficiency of regression routines. In the most

general setting, the answer is far from satisfying with the

only general purpose tool being convex optimization. When

A is n × d, the state of the theoretical runtime is about

O((n + d)3/2d) [11]. In fact, even in the �2 case, the best

general purpose algorithm takes O(ndω−1) time where ω ≈
2.3727 [12]. Both of these bounds take more than quadratic

time, and more prohibitively quadratic space, making them

unsuitable for modern data where the number of non-zeros in

A, nnz(A) is often 109 or more. As a result, there has been

significant interest in either first-order methods with low per-

step cost [13], [14], or faster algorithms taking advantage of

additional structures of A.

One case where significant runtime improvements are pos-

sible is when A is tall and thin, a.k.a. n� d. They appear in

applications involving many data points in a smaller number

of dimensions, or a few objects on which much data have

been collected. These instances are sufficiently common that

experimental speedups for finding QR factorizations of such

matrices have been studied in the distributed [15], [16] and

MapReduce settings [17]. The evidence for faster algorithms

is perhaps more clear in the �2 setting, where finding x can

be reduced to a linear system solve involving the d×d matrix

ATA. When n� d, the cost of inverting this matrix, O(dω)
is less than the cost of examining the non-zeros in A.

Faster algorithms for approximating ATA were first

studied in the setting of approximation matrix multiplication

[18], [19], [20]. Subsequent approaches were based on

finding a shorter matrix B such that solving a regression

problem on B leads to a similar answer [21], [1]. The

running time of these routines were also gradually reduced

[2], [4], [5], leading to algorithms that run in input sparsity

time[6], [7]. These algorithms run in time proportional to the

number of non-zeros in A, nnz(A), plus a poly(d) term.

An approach common to these algorithms is that they

reduce A to a poly(d) sized approximation using a single

transformation. After that, any further steps only incur a

poly(d) overhead. This is done by either obtaining high

quality sampling probabilities [4], or by directly creating

B via a sketching matrix [6], [7], [8]. These algorithms

are appealing due to simplicity, speed, and that they can be

adapted naturally in the streaming setting. On the other hand,

experimental works have shown that practical performances

are often optimized by applying higher error variants of these

algorithms in an iterative fashion [22].

In this paper, we design algorithms motivated by these

practical adaptations whose performances match or improve
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�2 Runtime �1

for ≈ d Rows Runtime # Rows

Dasgupta et al. [1] - nd5 log d d2.5

Magdon-Ismail [2] nd2/ log d -

Sohler and Woodruff [3] - ndω−1+θ d3.5

Drineas et al. [4] nd log d -

Clarkson et al. [5] - nd log d d4.5 log1.5 d

Clarkson and Woodruff [6] nnz(A) + d3 log d nnz(A) + d7 d8poly(log d)

Mahoney and Meng [7] nnz(A) + d3 log d nnz(A) log n+ d8 d3.5

Nelson and Nguyen [8] nnz(A) + d2+θ Similar to [6] and [7]

This paper nnz(A) + dω+θ nnz(A) + dω+θ d3.66

Table I
COMPARISON OF RUNTIME AND SIZE OF B FOR �2 AND �1 , θ IS ANY CONSTANT THAT’S > 0.

over the current best. Our algorithms construct B containing

poly(d) rows of A and run in O(nnz(A) + dω+θ) time.

Here the last term is due to computing inverses and change

of basis matrices, and can be viewed as a lower order term

since regression routines involving d×d matrices often take

at least Ωdω time. In Table I we give a quick comparison of

our results with previous ones in the �2 and �1 settings. These

two norms encompass most of the regression problems

solved in practice [10]. To simplify the comparison, we do

not distinguish between log d and log n, and assume that A
has full column rank. We will also omit the big-O notation

along with factors of ε and θ. In the �2 setting, many other

algorithms [6], [7], [8] obtain an approximation using a

sketching matrix. The number of rows of this matrix can be

further reduced using other algorithms such as sampled fast

Hadamard transform [4]. Therefore, the runtime needed to

get to nearly d rows is perhaps more suitable for comparison.

Here our results improve upon previous algorithms that run

in input-sparsity time [6], [7], but the concurrent result by

Nelson and Nguyen [8] gives a better bound. In the �1
setting, our algorithm gives clearly better additive terms.

As with previous results, our approaches and bounds

for �2 and �p are fairly different. We will state them in

more details and give a more detailed comparison with

previous results in Section II. The key idea that drives our

algorithms is that a constant factor reduction of problem

size suffices for a linear time algorithm. This is a much

weaker requirement than reducing directly to poly(d) sized

instances, and allows us to reexamine statistical projections

with weaker guarantees. In the �2 setting, projections that do

not even preserve the column space of A can still give good

enough sampling probabilities. For the �p setting, estimating

the probabilities in the ‘wrong’ norm (e.g. �2) still leads to

significant reductions. Most of the subroutines that we’ll use

have either been used as the final error correction step [1],

[5], [6], or are known in folklore. However, by combining

these tools with techniques originally developed in graph

sparsification and combinatorial preconditioning [23], we are

able to convert them into much more powerful algorithms.

A consequence of the simplicity of the routines used is that

we obtain a smaller number of rows in B in the �2 setting,

as well as a smaller running time in the �p setting.

Due to space constraints, we omit many details and proofs

after the middle of Section IV-A. They can be found in

the arXiv version of this paper [24], which is structured

similarly.

II. OVERVIEW

We start by formalizing the requirements needed for B to

be a good approximation to A. In the �2 setting it is similar

to BTB being an approximation to ATA, but looking for

B instead of BTB has the advantage of being extendible to

�p norms [1]. The requirement for B is:

(1− ε)‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε)‖Ax‖p, ∀x ∈ R
d

Finding such a B is equivalent to reducing the size of a

regression problem involving A since minx ‖Ax − b‖p =
minx

∥∥[A,b][xT ,−1]T∥∥
p

This means finding a shorter (1±
ε) approximation to the n×(d+1) matrix [A,b], and solving

a regression problem on this approximation gives a solution

within 1 +O(ε) of the minimum.

Row sampling is one of the first studied approaches for

finding such B [21], [2], [1]. It aims to build B consisting

of a set of rescaled rows of A chosen according to some

distribution. While it appears to be an even more restrictive

way of generating B, it nevertheless leads to a row count

within a factor of log d of the best known bounds [25],

[26]. In �2, there exists a distribution that produces with

high probability a good approximation B with O(d log d)
rows [27], [28], [29], [30]; while under �p norm, poly(d)
rows is also known [1]. For a variety of objectives, these
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A = A(0) A(1) . . . A(L − 1) A(L)

B = B(0) B(1)
. . .

B(L − 1) B(L)

p(L). . . . . .p(1)

≈ ≈ ≈ =

Figure 1. Main workflow of our algorithms when viewed as an iterative
process. Sequence of gradually smaller matrices generated are on top,
and the computed sampling probabilities and resulting approximations are
below.

smaller equivalents have been studied as coresets [31], [32].

However, various properties of the �p norm, especially in

the case of p = 2, makes row sampling a more specialized

instance.

The main framework of our algorithm is iterative in nature

and relies on the two-way connection between row sampling

and estimation of sampling probabilities. A crude approxi-

mation A′ to A allows us to compute equally crude approxi-

mations of sampling probabilities, while such probabilities in

turn lead to higher quality approximations. The computation

of these sampling probabilities can in turn be sped up using

a high quality approximation of A′. Our algorithm is based

on observing that as long as A′ has smaller size, we have

made enough progress for an iterative algorithm. A single

step in this algorithm consists of computing a small but crude

approximation A′, finding a higher quality approximation

to A′, and using this approximation to find estimates of

sampling probabilities of the rows of A. This leads to a tail-

recursive process that can also be viewed as an iterative one

where the calls generate a sequence of gradually shrinking

matrices, and sampling probabilities are propagated back up

the sequence. An example of such a sequence is given in

Figure 1.

We will term the creation of the coarse approximation

as reduction, and the computation of the more accurate

approximation based on it as recovery. As in the figure,

we will label the matrices A that we generate, as well as

their approximations using the indices (l).

• reduction: creates a smaller version of A(l), A(l + 1)
with fewer rows either by a projection or a coarser row

sampling process. It is equivalent to moving rightwards

in Figure 1.

• recovery: finds a small, high quality approximation

of A(l), B(l) using information obtained from A(l),
A(l + 1), and B(l + 1). This is done by estimating

sampling probabilities for the rows of A (l) using

B (l + 1), and sampling A (l) using these values. It is

equivalent to moving leftwards in Figure 1.

Both our �2 and �p algorithms can be viewed as giving re-

duction and recovery routines. In the �2 setting our reduction

step consists of a simple random projection, which incurs a

fairly large distortion and may not even preserve the null

space. Our key technical components in Section IV show

that one-sided bounds on these projections are sufficient for

recovery. This allows us to set the difference incurred by the

reduction to κ = dθ for an arbitrarily small θ > 0, while

obtaining a reduction factor of κO(1) = dO(θ). This error is

absorbed by the sampling process, and does not accumulate

across the iterations.
Theorem 2.1: Given a n× d matrix A along with failure

probability δ = d−c and allowed error ε. For any constant

θ > 0, we can find in O(nnz(A)+dω+θε−2) time, with prob-

ability at least 1−δ, a matrix B consisting of O(d log dε−2)
rescaled rows of A such that

(1− ε)‖Ax‖2 ≤ ‖Bx‖2 ≤ (1 + ε)‖Ax‖2
for all vectors x ∈ R

d.
This bound improves the O(d2) rows obtained in the first

results with input-sparsity runtime [6], and matches the best

bound known using oblivious projections [8], which was

obtained concurrently. A closer comparison with [8] shows

that our bounds does not have a factor of ε−1 on the leading

term nnz(A), but has worse dependencies on θ.
For �p norms, we show that significant size reductions can

be made if we perform row sampling using sampling prob-

abilities obtained in a different norm. Specifically, if A(i)
has n(i) rows, A(i+1) has O(n(i)cppoly(d)) where cp < 1
if the intermediate norm �p′ is chosen appropriately. This

means the number of rows will reduce doubly exponentially

as we iterative, and quickly becomes O(poly(d)).
This allows us to compute these probabilities using the

algorithms for �2 from Section IV, as well as �p′ approxi-

mations under different norms. Since these routines already

produce samples with poly(d) rows, the algorithm is also

more direct. Instead of gradually going back up the sequence

of matrices, we recover an approximation to A after each

iteration
Our projection and recovery methods are similar to the

ones used for increasing the accuracy of �1 row sampling

in [5]. However, our result is the first that uses such steps

in an iterative manner, and also the first to use them as the

the core component. They show a much tighter connection

between �2 and �p row sampling, namely that finding good

�2 approximations alone is sufficient for iterative reductions

in matrix size. In Section V-A we present an one step variant

that computes sampling probabilities under the �2 norm.

It gives B with about d
4
p rows when p ≤ 2 and d

3p−2
4−p

rows when 2 ≤ d < 4. We can further iterate upon this

algorithm, and compute sampling probabilities under the �p′

norm for some p′ between 2 and p. A two-level version of

this algorithm for �1 is analyzed in Section V-B, giving the

following:
Theorem 2.2: Given a n× d matrix A along with failure

probability d−c and allowed error ε. For any constant θ > 0,

we can find in O(nnz(A)+dω+θε−2) time, with probability
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at least 1 − d−c, a matrix B consisting of O(d4
√
2−2+θ)

rescaled rows of A such that

(1− ε) ‖Ax‖1 ≤ ‖Bx‖1 ≤ (1 + ε) ‖Ax‖1
for all vectors x ∈ R

d.

This method readily leads to B with poly(d) rows when

p ≥ 4, and fewer rows than the above bound when 1 ≤ p <
4. However, such extensions are limited by the discontinuity

between bounds on the sampling process in the �2 [27], [28],

[29], [30] and �p settings [1]. As a result, we only show the

algorithm for �1 in order to simplify the presentation.

An additional benefit of our approach is that the random-

ized routines used hold with high probability. Most of the

earlier results that run in time nearly-linear in the size of A
have a constant success probability, and increasing it often

leads to a log d overhead on the leading term. Also, as our

algorithm is row sampling based, each row in our output

is a scaled copy of some row of the original matrix. This

means specialized structure for rows of A are likely to be

preserved in the smaller regression problem instance.

The main drawback of our algorithm in the �2 setting is

that it does not immediately extend to computing low-rank

approximations. The method given in [6] relies crucially

on first transform being oblivious, although our algorithm

can be incorporated in a limited way as the second step.

Also, the algorithm is non-streaming, and more complicated

than the sketching based approaches for input-sparsity time

algorithms given in [6], [7], [8]. For �p row-sampling, our

algorithms invoke concentration bounds from [1] in a black-

box manner, even though our sampling probabilities are

obtained in the �2 setting. We believe investigating whether

our algorithm can be combined with other approaches,

extending our approaches to low-rank approximations, and

obtaining tighter concentration bounds are natural directions

for future work.

III. PRELIMINARIES

We begin by stating key notations and definitions that

we will use for the rest of this paper. Our algorithms and

analysis use standard linear algebraic notations as given

in [9]. We will use ‖x‖p to denote the �p norm of a

vector. Two values of p that we’ll use frequently are p = 1
and p = 2, which correspond to ‖x‖1 =

∑
i |xi| and

‖x‖2 =
√∑

i x
2
i . For two vectors x and y, x ≥ y means x

is entry-wise greater or equal to y, a.k.a. xi ≥ yi for all i.
For a matrix A, we use Ai∗, or ai to denote the ith row

of A, and A∗j to denote its jth column. Note that if A ∈
R

n×d, ai is a row vector of length d. We will also use

the generalized �p-norm |||·|||p of a matrix, which essentially

treats all entries of the matrix as a single vector. Specifically,

|||A|||p = (
∑

ij |Aij |p)1/p. When p = 2, it is known as the

Frobenius norm, ‖ · ‖F .

Matrices such as ATA are symmetric, and have identical

row/column spaces, and in turn identical left/right null

spaces. Such a matrix, C, is positive semi-definite if all its

eigenvalues are non-negative, or equivalently xTCx ≥ 0 for

all vectors x. Similarity between symmetric matrices can be

defined using a partial order that generalizes ≤. For two

matrices C1 and C2, C1 	 C2 denotes that C2 − C1 is

positive semi-definite. The connection between this notation

and row sampling is clear in the case of �2, specifically

ATA 	 BTB is equivalent to ‖Ax‖2 ≤ ‖Bx‖2.

We will also define the pseudoinverse of C, C† as the

linear operator that’s zero on the null space of C, while

acting as its inverse on the column space. For operators that

act on the same space, spectral orderings of pseudoinverses

can be inverted in the same way as scalars. Specifically, if

C1 and C2 have the same null space and C1 	 C2, then

C†2 	 C†1. Given a subspace of Rd, an orthogonal projector

onto it, Π is a symmetric positive-semidefinite matrix taking

vectors into their projection in this space. For example, if

this space is the column space of some positive semi-definite

matrix C, then an orthogonal projection operator is given by

CC†.

Our algorithms are designed around the following algo-

rithmic fact: for any norm p and any matrix A ∈ R
n×d, there

exists a distribution on its rows such that sampling poly(d)
entries from this distribution and rescaling them gives B
such that with probability at least 1− d−c:

(1− ε)‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε)‖Ax‖p, ∀x ∈ R
d.

This sampling process can be formalized in several ways,

leading to similar results both theoretically and experimen-

tally [33]. We will treat it as a black-box SAMPLE(A,p) that

takes a set of probabilities over the rows of A and samples

them accordingly. It keeps row i or A with probability

min{1, pi}, and rescales it appropriately so the expected

value of this row is preserved. The two key properties of

SAMPLE(A,p) that we will use repeatedly are:

• It returns B with at most O(|p|1) rows.

• Its running time can be bounded by O(n+ |p|1 log n).
The convergence of sampling relies on matrix Chernoff

bounds, which can be viewed as generalizations of single

variate concentration bounds [34]. Necessary conditions on

the probabilities can be formalized in several ways, with

the most common being statistical leverage scores. These

values have been well studied in statistics, and their use

in algorithms has been more recent [35]. The most general

definition of �p-norm leverage scores is based on the row

norms of a basis of the column space of A. However,

significant simplifications are possible when p = 2, and this

alternate view is crucial in our algorithm. As a result, we will

state the relevant convergence results for SAMPLE separately

in Sections IV and V.

These concentration bounds show that statistical leverage

scores are closely associated the probabilities needed for row

sampling, and give algorithms that efficiently approximate
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these values. We will also formalize an observation implicit

in previous results that both the sampling and estimation

algorithms are highly robust. The high error-tolerance of

these algorithms makes them ideal as core routines to build

iterative algorithms upon.

One issue with the various concentration bounds that

we will prove is that they hold with high probability in

d. In other words, they fail with probability 1 − d−c

for some constant c. In cases where n � poly(d), this

will prevent us from taking an union bound over many

sampling steps. However, it can be shown that in such

cases, increasing all sampling probabilities with 1/poly(d)
in the sampling process narrows the number of rows of

interest back to poly(d). This leads to an approximation

with n′ = O(nnz(A)/poly(d)) rows. This reduction in

row count allows us to then apply routines that runs in

O(n′poly(d)) = O(nnz(A)) time (e.g. [1]). Such routines

then lead to approximations with poly(d) rows with high

probability. Therefore for the rest of this paper we will make

the simplifying assumption that n = poly(d).

IV. ITERATIVE ROW SAMPLING FOR PRESERVING

�2-NORM

We start by presenting our algorithm for computing row

sampling in the �2 setting. Crucial to our approach is the

following basis-free definition of statistical leverage scores

of τ :

τi
def
= ai(A

TA)†aTi , for i = 1, . . . , n,

where ai is the i-th row of A.

To our knowledge, the first nearly tight bounds for row

sampling using statistical leverage scores were given in [27],

and various extensions and simplifications were made since

[28], [29], [30], [36]. The state-of-the-art bound as given

in [34] can be stated as:

Lemma 4.1: If τ̃ is a set of probabilities such that τ̃ ≥
τ , then for any constants c and ε, there exists a func-

tion SAMPLE(A, O(log d, ε)τ̃ ) which returns B containing

O(log d ‖τ̃‖1 ε−2) rows and satisfying

(1− ε)‖Ax‖2 ≤ ‖Bx‖2 ≤ (1 + ε)‖Ax‖2, ∀x ∈ R
d

with probability at least 1− d−c.

The importance of statistical leverage scores can be re-

flected in the following fact, which implies that we can

obtain B with O(d log d) rows.

Fact 4.2: Given n×d matrix A, and let τ be its leverage

scores w.r.t. A. Assume A has rank r, then

n∑
i=1

τi = r ≤ d

Although it is tempting to directly obtain high quality

approximations of the leverage scores, their computation

also requires a high quality approximation of ATA, leading

us back to the original problem of row sampling. Our way

around this issue relies on the robustness of concentration

bounds such as Lemma 4.1. Sampling using even crude

estimates on leverage scores can lead to high quality ap-

proximations [1], [37], [38], [4], [36]. Therefore, we will not

approximate ATA directly, and instead obtain a sequence

of gradually better approximations. The need to compute

sampling probabilities using crude approximations leads us

to define a generalization of statistical leverage scores.

A. Generalized Stretch and its Estimation

Using different matrices to upper bound leverage scores

is implicit in many previous algorithms [37], [5]. One area

where it plays a crucial role is combinatorial precondition-

ing, where such upper bounds measured w.r.t. a tree is

termed stretch [39], [23]. We will draw from them and term

our generalization of leverage scores generalized stretch.

We will use STRB(ai) to denote the approximate leverage

score of row i computed as follows:

STRB(ai)
def
= ai(B

TB)†aTi (4.1)

Under this definition, the original definition of statistical

leverage score τi equals to STRA(ai). We will refer to B
as the reference used to compute stretch. It can be shown

that when B1 and B2 are reasonably close to each other,

stretch can be used as upper bounds for leverage scores in

a way that satisfies Lemma 4.1.

Lemma 4.3: If B1 and B2 satisfies:

1

κ
BT

1 B1 	 BT
2 B2 	 BT

1 B1

Then for any vector x we have:

STRB1
(x) ≤ STRB2

(x) ≤ κSTRB1
(x)

The stretch notation also extends to a set of rows, or

an entire matrix. If A is a matrix with n rows, STRB(A)
denotes:

STRB(A)
def
=

n∑
i=1

STRB(ai). (4.2)

This multiplication by (BBT )†
1
2 can be viewed as trans-

forming the space into an isotropic position. This transfor-

mation decorrelates the rows of B, and makes the stretch

of each row the �22 norm of a corresponding vector. The

stretch of a set of rows also corresponds to the square of

the Frobenius norm of their corresponding matrix.

Fact 4.4: The generalized stretch of the i-th row of A
w.r.t B equals to its �22 norm under the transformation

(BBT )†
1
2 :

STRB(ai) = ‖(BBT )†
1
2 aTi ‖22 = ‖ai(BBT )†

1
2 ‖22

and the total stretch of all rows is

STRB(A) = ‖(BBT )†
1
2AT ‖2F = ‖A(BBT )†

1
2 ‖2F
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This representation leads to faster algorithms for estimat-

ing stretch using the Johnson-Lindenstrauss transform. This

tool is used in a variety of settings from estimating effective

resistances [40] to more generally leverage scores [4]. We

will use the following randomized projection theorem:

Lemma 4.5: (Lemma 2.2 from [41]) Let y be an unit

vector in R
d. Then for any positive integer k ≤ d, let U be

a k × d matrix with entries chosen independently from the

Gaussian distribution N (0, 1). Let x = Uy and L = ‖x‖22.

Then for any R > 1,

1) E(L) = k
2) Pr (L ≥ Rk) < exp

(
k
2 (1−R+ lnR)

)
3) Pr

(
L ≤ k

R

)
< exp

(
k
2 (1−R−1 − lnR)

)
We will also use this lemma in our reduction step to

bound the distortion when rows are combined. Note that the

requirements of Lemma 4.1 and the guarantees of SAMPLE

allows our estimates to have larger error. This means we can

use fewer vectors in the projection, and scale up the results

to correct potential underestimates. Therefore, we can trade

the coefficient on the leading term nnz(A) with a higher

number of sampled row count. To simplify the algorithm,

we encapsulate this use of the the Johnson-Lindenstrauss

transform and the incorporation of B into a single routine.

Lemma 4.6: For any constant c, there is a routine

APXSTR(A,B, κ, R) that when given a n × d matrix A
where n = poly(d), and an approximation B with m rows

such that:

1

κ
ATA 	 BTB 	 ATA

APXSTR returns in O((nnz(A)+d2) logR d+(m+d)dω−1)
time and upper bounds τ̃i such that with probability at least

1− d−c

1) for all i, τ̃i ≥ τi.
2) ‖τ̃‖1 ≤ O(R2κd).

B. Reductions and Recovery

Our reduction and recovery processes are based on pro-

jecting A to a matrix with fewer rows, and moving the

estimates on the projection back to the original matrix. Our

key operation is to combine every R rows into k rows, where

R and k are set to dθ and O(c/θ) respectively. By padding

A with additional rows of zeros, we may assume that the

number of rows is divisible by R. We will use nb = n/R
to denote the number of blocks, and use the notation ·(b)
to index into the bth block. Our key step is then a (R, k)-
reduction of the rows:

Definition 4.7: A (R, k)-reduction of A describes the

following procedure:

1) For each block A(b), pick U(b) to be a k ×R random

Gaussian matrix with entries picked independently from

N (0, 1) and compute A↓(b) = U(b)A(b).

2) Concatenate the blocks A↓(b) together vertically to

form A↓.

We first show that projections preserve the stretch of

blocks w.r.t. A. This can be done by bounding the effect of

U(b) on the norm of each column of A(b)(A
TA)†

1
2 . It fol-

lows directly from properties of the Johnson-Lindenstrauss

projections described in Lemma 4.5:

Lemma 4.8: Assume R = dθ ≥ e2 for some constant θ
and let A↓ be a (R, k)-projection of A. For any constant

c > 0 there exists a constant k = O(c/θ) such that:

STRA(A↓(b)) ≥ k

R
STRA(A(b))

holds for all blocks b = 1, . . . , nb with probability at least

1− d−c.

We next show that we can change the reference from

A to A↓, and use STRA↓(A↓(b)) as upper bounds for

STRA(A↓(b)). As a first step, we need to relate ATA to

A↓TA↓. Since each A↓(b) is formed by merging rows of

A↓(b) = U(b)A(b), A↓T(b)A↓(b) can be upper bounded by

AT
(b)A(b) times a suitable term depending on U(b).

Lemma 4.9: The following holds for each block b:

A↓T(b)A↓(b) 	 ‖U(b)‖2F ·AT
(b)A(b)

However, generalized stretches w.r.t. A and A↓ are eval-

uated under the norms given by the pseudoinverses of these

matrices, (ATA)† and (A↓TA↓)†. As a result, we need

to bound the difference between these two pseudoinverses

spectrally using the following lemma.

Lemma 4.10: Let C and D be symmetric positive semi-

definite matrices and let Π be the orthogonal projection

operator onto the column space of C. Then:

ΠC†Π 
 Π(C+D)†Π

This is straightforward when both C and D are full

rank, or share the same null space. However, as pseudo-

inverses do not act on the null space, it is crucial that

we’re only considering vectors of the form a′i. Combining

it with bounds in the other direction allows us to bound the

distortion caused by switching the reference from A to A↓.

Lemma 4.11: For any constant c, there exists a constant

c′, such that with probability at most 1− d−c, we have for

each row i of A↓, denoted by a↓i, satisfies

c′kR log d · STRA↓(a↓i) ≥ STRA(a↓i)

Combining Lemmas 4.11 and 4.8 shows that with high

probability, scaling up STRA↓(A↓(b)) by O(R2 log d) gives

upper bounds for the leverages scores in the original blocks

of A.

Corollary 4.12: For any constant c, there exists a setting

of constants such that for any R = dθ, we have with

probability at least 1− d−c

c′R2 log d · STRA↓(A↓(b)) ≥ STRA(A(b))

holds for all b.
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C. Iterative Algorithm
It remains to make use of the estimates that we obtain

using this projection process. Projecting A to A↓ gives a

matrix with fewer rows, and a way to reduce the sizes of

our problems. A fast algorithm follows by examining the se-

quence of matrices A = A(0),A(1), . . .A(L) obtained us-

ing such projections. Once A(L) has fewer than nnz(A)d−3

rows, A(L)TA(L) can be approximated directly. This then

allows us to approximate the statistical leverage scores of the

rows of A(L) Corollary 4.12 shows that stretches computed

on A(l), τ̃(l) can serve as sampling probabilities in A(l−1).
This means we can gradually propagate solutions backwards

from A(L) to A(0). We do so by maintaining the invariant

that B(l) has a small number of rows and is close to A(l).
The total generalized stretch of A(l) w.r.t. B(l) can be used

as upper bounds of the statistical leverage scores of A(l−1)
after suitable scaling.. This allows the sampling process to

compute B(l − 1), keeping the invariant for l − 1. The

algorithm is illustrated in Figure 2, and its pseudocode is

given in Algorithm 1.

Algorithm 1 Row Sampling using Projections

ROWSAMPLEL2(A, R, ε)

Input: Reduction rate R, n× d matrix A, allowed approxi-

mation error ε, failure probability δ = d−c.

Output: Sparsifier B that contains O(R5d log d/ε2) scaled

rows of A such that (1− ε)ATA 	 BTB 	 (1 + ε)ATA.

Set L = �logR(n/d)�
Set ε(0) = ε/3, ε(1) . . . ε(l) = 1/2
A(0) = A
for l = 1 . . . L do

Let A(l) be a (R, k)-projection of A(l − 1)
end for
B(L)← A(L)
for i = L . . . 1 do
τ̃ ′(l)← O(R3 log d) · APXSTR(A(l),

√
2
3B(l), R,R)

Set each entry in τ̃(l − 1)(b) to |τ̃ ′(l)(b)|1
B(l − 1)← SAMPLE(A(l − 1), τ̃(l − 1), ε(l))

end for
τ̃ ′(0)← APXSTR(B(0),B(0), 2, 2)
return SAMPLE(B(0), τ̃ ′(0), ε/3)

Sampling probabilities for A(l − 1) are obtained by

computing the stretch of A(l) w.r.t. B(l). We first show

that these values, τ̃(l − 1), are with high probability upper

bounds for the statistical leverage scores of A(l−1), τ(l−1).
Lemma 4.13: If A(l) and B(l) satisfy:

1

2
A(l)TA(l) 	 B(l)TB(l) 	 3

2
A(l)TA(l)

then for any constant c, there is a setting of the constants in

the algorithm such that:

• τ̃ (l − 1) ≥ τ (l − 1)

k R rows

s3:

s1:
s2:

s5:
s8:

B(2)=A(2)

A(2) A(1) A(0)

B(1) B(0)

s4: sampling 

by s6: s7: s

b
s9:

(R,r)-projection Rk

k
k

R

(R,r)-projection

R

Figure 2. Illustration of Algorithm 1 by using L = 2. There are mainly
two stages with 9 steps. On the reduction stage, we obtain shorter A(1) and
A(2) by iteratively doing (R, r)-projection. On the next recovery stage,
we approximate the leverage scores of A(1) by the ones computed from
A(2) and B(2). Then B(1) is sampled based on this approximated scores,
which will be used to further obtain the approximated leverage scores of
A(0). The final step which samples B(0) once again is not shown here.

• ‖τ̃ (l − 1)‖1 ≤ O(dR3 log d)

holds with probability at least 1− d−c.

Combining these with the fact that the number of rows

decrease by a factor of O(R) per iteration completes the

algorithm. Our main result for �2 row sampling is obtained

by setting R to dθ. Applying Lemma 4.13 inductively

backwards in l gives the overall bound.

Theorem 4.14: For any constant c, there is a setting of

constants such that if ROWSAMPLEL2, shown in Algo-

rithm 1, is run with R = dθ, then with probability at least

1− d−c it returns B in O(nnz(A) + dω+4θε−2) time such

that:

(1− ε)ATA 	 BTB 	 (1 + ε)ATA

and B has O(d log dε−2) rows, each being a scaled copy of

some row of A,

V. ALGORITHM FOR PRESERVING �p NORM

We now turn to the more general problem of finding B
with poly(d) rows such that:

(1− ε) ‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε) ‖Ax‖p ∀x ∈ R
d

We will make repeated use of the following (tight) inequality

between �2 and �p norms, which can be obtained by direct

applications of power-mean and Hölder’s inequalities.

Fact 5.1: Let x be any vector in R
d, and p and q any two

norms where 1 ≤ p ≤ q, we have:

‖x‖q ≤ ‖x‖p ≤ d
1
q− 1

p ‖x‖q
We will use this Fact with one of p or q being 2, in which

case it gives:

• If 1 ≤ p ≤ 2, ‖x‖2 ≤ ‖x‖p ≤ d
1
2− 1

p ‖x‖2
• If 2 ≤ p, d

1
p− 1

2 ‖x‖2 ≤ ‖x‖p ≤ ‖x‖2
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As Ax is a length n vector, its �2 and �p norms may differ

by a factor of poly(n). This means that the �2 row sampling

algorithm from Section IV can lead to poly(n) distortion.

Our algorithm in this section reduces this distortion itera-

tively. Once again, it is built around a concentration bound

for a sampling process. The sampling probabilities are based

on the definition of a well-conditioned basis, which is more

flexible than �2 statistical leverage scores.

Definition 5.2: Let A be a n × d matrix of rank r, p ∈
[1,∞] and q be its dual norm such that 1

p +
1
q = 1. Then an

n×r matrix U is an (α, β, p)-well-conditioned basis for the

column space of A if the columns of U span the column

space of A and:

1) |||U|||p ≤ α.

2) For all x ∈ R
r, ‖x‖q ≤ β ‖Ux‖p.

A �p analog of the sampling concentration result given

in Lemma 4.1 was shown in [1]. It can be viewed a

generalization of Lemma 4.1.

Lemma 5.3: (Theorem 6 of [1]) Let A be a n× d matrix

with rank r, ε ≤ 1/7, and let p ∈ [1,∞). Let U be

an (α, β, p)-well-conditioned basis for A. Then for any

sampling probabilities p ∈ R
n such that:

pi ≥ cp(αβ)
p
‖Ui∗‖pp
|||U|||pp

,

where Ui∗ is the i-th row of U and cp is a constant

depending only on p. Then with probability at least 1−d−c,

SAMPLE(A, p, ε) returns B satisfying

(1− ε) ‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε) ‖Ax‖p ∀x ∈ R
d

We omitted the reductions of probabilities that are more

than 1 since this step is included in our formulation of

SAMPLE. Several additional steps are needed to turn this into

an algorithmic routine, the first being computing U. A naı̈ve

approach for this requires matrix multiplication, and the size

of the outcome may be more than nnz(A). Alternatively, we

can find a linear transformation that leads to U; specifically,

a matrix C such that U = AC.

The estimation of ‖(AQ)i∗‖pp and sampling can then be

done in a way similar to Section IV. When 1 ≤ p ≤ 2,

we can compute O(1) approximations using p-stable distri-

butions [42] in a way analogous to Section 4.2.1. of [5].

When 2 ≤ p, we will use the �2 norm as a surrogate at

the cost of more rows. We encapsulate the estimation of �p
norm leverage scores and sampling as a single black-box.

Lemma 5.4: For any constant c, there is an algorithm

ESTIMATEANDSAMPLEP(A,C, α, β,R, ε) that given ma-

trices A, C such that AC is a (α, β, p)-well-conditioned

basis for A, returns a matrix B with probability at least

1− d−c such that:

(1− ε)‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε)‖Ax‖p
in O(nnz(A) logR(d) +Rdω log d) time and the number of

rows in B can be bounded by:{
O((αβR)pd log(d)ε−2) if 1 ≤ p ≤ 2

O((αβR)pd
p
2 log(d)ε−2) if 2 ≤ p

A. Sampling Using �2-leverage scores

Our starting point is the observation that a good basis for

�2, specifically a nearly orthonormal basis of A still allows

us to reduce the number of rows substantially under �p.

Lemma 5.5: If C ∈ R
d×r satisfies 1

2 (A
TA)† 	 CCT 	

3
2 (A

TA)† then U = AC is a (α, β, p)-well-conditioned

basis for A where αβ ≤ O(n|
1
2− 1

p |d|
1
2− 1

p |+ 1
2 ).

One way to generate such a nearly-orthonormal basis is

by the L2 approximation that we computed in Section IV.

This leads to a fast algorithm, but the dependency on n in

this bound precludes a single application of sampling using

the values given because each time we transfer n rows into

O(p| 12 − 1
p |) rows. However, note that when p < 4, p| 12 −

1
p | = |1− p

2 | < 1. This means it can be used as a reduction

step in an iterative algorithm where the number of rows will

decrease geometrically. Therefore, we can use this process

as a reduction routine. We will also state the routine to take

an approximation Ã and compute a basis from it. It gives

the following guarantee:

Lemma 5.6: For any constant c, there is an algorithm

REDUCEP such that if A and Ã satisfy

1

2
‖Ax‖p ≤

∥∥∥Ãx
∥∥∥
p
≤ 3

2
‖Ax‖p ∀x ∈ R

d

and Ã has ñ rows, then REDUCEP(A, Ã, ε) returns in

O(nnz(A) log d+ θ+dω+θ log d) time a matrix B such that

with probability at least 1− d−c:

(1− ε) ‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε) ‖Ax‖p ∀x ∈ R
d

And the number of rows in B can be bounded by:{
O(n1− p

2 d2+θε−2) if 1 ≤ p ≤ 2

O(n
p
2−1d

3
2p−1+θε−2) if 2 ≤ p

Iterating this reduction routine with Ã = A gives a way to

reduce the row count from n to poly(d) in O(log log(n/d))
iterations when p < 4. Two issues remain: the approximation

errors will accumulate across the iterations, and it’s rather

difficult (although possible if additional factors of d are

lost) to bound the reductions of non-zeros since different

rows may have different numbers of them. We will address

these two issues systematically before giving our complete

algorithm.

The only situation where a large decrease in the number

of rows does not significantly decrease the overall number of

non-zeros is when most of the non-zeros are in a few rows.

A simple way to get around this is to ‘bucket’ the rows of

A by their number of non-zeros, and compute poly(d) sized

samples of each bucket separately. This incurs an extra factor
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of log d in the final number of rows, but ensures a geometric

reduction in problem sizes as we iterate.

The error buildup can in turn be addressed by sampling on

the rows of the initial A using the latest approximation for

it Ã. However, since the algorithm can take up to O(log d)
iterations, we need to perform this on a reduced version of

A instead to obtain a O(nnz(A)) running time. Pseudocode

of our algorithm for a single partition where the number of

non-zeros in each row are within a constant factor of each

other is given in Algorithm 2.

Algorithm 2 Algorithm for Producing Row Sample of Size

poly(d) that Preserves �p norm

ROWSAMPLEP(A, p, ε, δ)

Input: n × d matrix A, p, error parameter ε, failure proba-

bility δ = d−c

Output: Matrix B

1: if 1 ≤ p ≤ 2 then
2: n∗ ← O(d

4
p+θ log

2
p d)

3: else
4: n∗ ← O(d

3
2p−1+θ log

3p−2
4−p d)

5: end if
6: if A has n∗ or fewer rows then
7: return A
8: end if
9: Ã0, Ã← REDUCEP(A,A, 1/5)

10: while Ã has more than n̄ rows do
11: Ã← REDUCEP(Ã0, Ã, 1/5)
12: end while
13: B← REDUCEP(A, Ã, ε/2)
14: return B

Lemma 5.7: For any c, there is a setting of constants

in ROWSAMPLE such that given a matrix A where

each row has between [s, 2s] nonzeros and p < 4.

ROWSAMPLEP(A, p, ε) with probability 1− d−c returns in

O(nnz(A) + dω log d) time a matrix B such that:

(1− ε) ‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε) ‖Ax‖p
And the number of rows in B can be bounded by:{

O(d
4
p+θε−2) if 1 ≤ p ≤ 2

O(d
3
2p−1+θε−2) if 2 ≤ p ≤ 4

B. Fewer Rows by Iterating Again

A closer look at the proof of Lemma 5.7 shows that

a significant increase in the number of rows comes from

dividing by the 1− |1− p
2 | term in the exponent of n. As a

result, the row count can be further reduced if the leverage

scores are computed using a �p′ norm approximation where

p′ is between 2 and p. We need the following generalization

of Lemma 5.5.

Lemma 5.8: If A has rank r, 1 ≤ p ≤ p′ ≤ 2, and

Ã is a matrix with ñ rows such that for all vectors x we

have 1
2 ‖Ax‖q ≤

∥∥∥Ãx
∥∥∥
q
≤ 3

2 ‖Ax‖q , and C is a d × r

matrix such that 1
2 (Ã

T Ã)† 	 CCT 	 3
2 (Ã

T Ã)†, then

U = AC is a (α, β, p)-well-conditioned basis for A where

αβ ≤ O(n
1
p− 1

p′ ñ
1
p′− 1

2 d
1
p ).

This allows us to compute leverage scores using a �p′
norm approximation. By Lemma 5.7, such a matrix has ñ =

O(d
4
p′ log

2
p′ d) rows. By Lemma 5.4, the resulting number

of rows can be bounded by:

O
((

n
1
p− 1

p′ ñ
1
p′− 1

2 d
1
pR

)p

d log d
)

= O

(
n
1− p

p′
(
d

4
p′ log

2
p′ d

) p
p′−

p
2

Rpd2 log
2p
p′ +1

d

)
This leads to a result analogous to Lemma 5.6. Solving for

the fixed point of this process gives the optimized bounds

stated in Theorem 2.2.

This method can be used to reduce the number of rows for

all values of 1 ≤ p ≤ 2. A calculation similar to the above

proof leads to a row count of O(d

√
8
p−2

). However, using

three or more steps does not lead to a significantly better

bound since we can only obtain samples with about d rows

when p = 2. For p ≥ 4, multiple steps of this approach also

allows us to compute poly(d) sized samples for any value

of p. We omit this extension as it leads to a significantly

higher row count.
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