
OSNAP: Faster numerical linear algebra
algorithms via sparser subspace embeddings

Jelani Nelson

School of Engineering and Applied Sciences
Harvard University

Cambridge, MA 02138
minilek@seas.harvard.edu

Huy L. Nguyễn

Department of Computer Science
Princeton University
Princeton, NJ 08540

hlnguyen@princeton.edu

Abstract—An oblivious subspace embedding (OSE) given some
parameters ε, d is a distribution D over matrices Π ∈ Rm×n

such that for any linear subspace W ⊆ Rn with dim(W) = d,

PΠ∼D(∀x ∈W ‖Πx‖2 ∈ (1± ε)‖x‖2) > 2/3.

We show that a certain class of distributions, Oblivious Sparse
Norm-Approximating Projections (OSNAPs), provides OSE’s
with m = O(d1+γ/ε2), and where every matrix Π in the
support of the OSE has only s = Oγ(1/ε) non-zero entries per
column, for γ > 0 any desired constant. Plugging OSNAPs into
known algorithms for approximate least squares regression,
�p regression, low rank approximation, and approximating
leverage scores implies faster algorithms for all these problems.

Our main result is essentially a Bai-Yin type theorem in
random matrix theory and is likely to be of independent
interest: we show that for any fixed U ∈ Rn×d with orthonor-
mal columns and random sparse Π, all singular values of
ΠU lie in [1 − ε, 1 + ε] with good probability. This can be
seen as a generalization of the sparse Johnson-Lindenstrauss
lemma, which was concerned with d = 1. Our methods also
recover a slightly sharper version of a main result of [Clarkson-
Woodruff, STOC 2013], with a much simpler proof. That is, we
show that OSNAPs give an OSE with m = O(d2/ε2), s = 1.

Keywords-subspace embedding; numerical linear algebra;
Johnson-Lindenstrauss lemma

I. INTRODUCTION

There has been much recent work on applications of di-

mensionality reduction to handling large datasets. Typically

special features of the data such as low “intrinsic” dimen-

sionality, or sparsity, are exploited to reduce the volume of

data before processing, thus speeding up analysis time. One

success story of this approach is the applications of fast

algorithms for the Johnson-Lindenstrauss (JL) lemma [20],

which allows one to reduce the dimensionality of a set of

vectors while preserving all pairwise distances. There have

been two popular lines of work in this area: one focusing

on fast embeddings for all vectors [2]–[4], [19], [24], [25],

[37], and one focusing on fast embeddings specifically for

sparse vectors [1], [6], [13], [21], [22].

In this work we focus on the problem of construct-

ing an oblivious subspace embedding (OSE) [32] and on

applications of these embeddings. Roughly speaking, the

problem is to design a data-independent distribution over

linear mappings such that when data come from an unknown
low-dimensional subspace, they are reduced to roughly their

true dimension while their structure (all distances in the

subspace in this case) is preserved at the same time. It

can be seen as a continuation of the approach based on

the JL lemma to subspaces, and these embeddings have

found applications in numerical linear algebra problems

such as least squares regression, �p regression, low rank

approximation, and approximating leverage scores [9]–[11],

[15], [31], [32], [35]. We refer the interested reader to

the surveys [17], [27] for an overview. Here we focus on

the setting of sparse inputs, where it is important that the

algorithms take time proportional to the input sparsity.

Throughout this document we use ‖ · ‖ to denote �2 norm

in the case of vector arguments, and �2→2 operator norm for

matrix arguments. Recall the definition of an OSE.

Definition 1. An oblivious subspace embedding (OSE) is
a distribution over m × n matrices Π such that for any d-
dimensional subspace W ⊂ Rn, PΠ∼D(∀x ∈ W ‖Πx‖2 ∈
(1 ± ε)‖x‖2) > 2/3. Here n, d, ε are given parameters of
the problem and we would like m as small as possible.

OSE’s were first introduced in [32] as a means to obtain

fast randomized algorithms for several numerical linear

algebra problems. To see the connection, consider for ex-

ample the least squares regression problem of computing

argminx∈Rd ‖Ax − b‖ for some A ∈ Rn×d. Suppose

Π ∈ Rm×n preserves the �2 norm up to 1± ε of all vectors

in the subspace spanned by b and the columns of A. Let

x̃ = argminx ‖ΠAx−Πb‖, x∗ = argminx ‖Ax− b‖. Then
(1− ε)‖Ax̃− b‖ ≤ ‖ΠAx̃−Πb‖

≤ ‖ΠAx∗ −Πb‖
≤ (1 + ε)‖Ax∗ − b‖.

Thus x̃ provides a solution within (1+ε)/(1−ε) = 1+O(ε)
of optimal. Since this subspace has dimension at most d+1,
one only needs m being some function of ε, d. Thus the

running time for approximate n×d regression becomes that

2013 IEEE 54th Annual Symposium on Foundations of Computer Science

0272-5428/13 $26.00 © 2013 IEEE

DOI 10.1109/FOCS.2013.21

117

for m × d regression, plus an additive term for the time

required to compute ΠA,Πb. This is a gain for instances

with n � d. Also, the 2/3 success probability guaranteed

by Definition 1 can be amplified to 1 − δ by running this

procedure O(log(1/δ)) times with independent randomness

and taking the best x̃ found in any run. We furthermore point

out that another reduction from (1 + ε)-approximate least

squares regression to OSE’s via preconditioning followed by

gradient descent actually only needs an OSE with constant

distortion independent of ε (see [11]), so that ε = Θ(1) in

an OSE is of primary interest.

It is known that a random matrix with independent

subgaussian entries and m = O(d/ε2) provides an OSE

with 1 + ε distortion (see for example [11]). Unfortunately,

the time to compute ΠA is then larger than the known

Õ(ndω−1) time bound to solve the exact regression problem

itself, where ω < 2.373 . . . [39] is the exponent of square

matrix multiplication. In fact, since m ≥ d in any OSE,

dividing Π, A into d × d blocks and using fast square

matrix multiplication to then multiply ΠA would yield time

Θ(mndω−2), which is Ω(ndω−1) . Thus implementing the

approach of the previous paragraph naively provides no

gains. The work of [32] overcame this by choosing a special

Π so that ΠA can be computed in time O(nd log n) (see

also [35]). This matrix Π was the Fast JL Transform of [2],

which has the property that Πx can be computed in roughly

O(n log n) time for any x ∈ Rn. Thus, multiplying ΠA by

iterating over columns of A gives the desired speedup.

The O(nd log n) running time of the above scheme to

compute ΠA seems almost linear, and thus nearly optimal,

since the input size to describe A is nd. While this is

true for dense A, in many applications one expects A to

be sparse, in which case linear in the input description

actually means O(nnz(A)), where nnz(·) counts non-zero

entries. For example, one numerical linear algebra problem

of wide interest is matrix completion, where one assumes

that some small number of entries in a low rank matrix

A have been revealed, and the goal is to then recover A.

This problem arises in recommendation systems, where for

example the rows of A represent users and the columns

represent products, and Ai,j is the rating of product j by

customer i. One wants to infer “hidden ratings” to then

make product recommendations, based on the few ratings

that customers have actually made. Such matrices are usually

very sparse; when for example Ai,j is user i’s score for

movie j in the Netflix matrix, only roughly 1% of the entries

of A are known [41]. Some matrix completion algorithms

work by iteratively computing singular value decompositions

(SVDs) of various matrices that have the same sparsity as

the initial A, then thresholding the result to only contain the

large singular values then re-sparsifying [7]. Furthermore

it was empirically observed that the matrix iterates were

low rank, so that a fast low rank approximation algorithm

for sparse matrices, as what is provided in this work, could

replace full SVD computation to give speedup.

In a recent beautiful and surprising work, [11] showed

that there exist OSE’s with m = poly(d/ε), and where

every matrix Π in the support of the distribution is very
sparse: even with only s = 1 non-zero entry per column!

Thus one can transform, for example, an n × d least

squares regression problem into a poly(d/ε)× d regression

problem by multiplying ΠA in nnz(A) · s = nnz(A)
time. The work [11] gave two sparse OSE’s: one with

m = O(d2 log6(d/ε)/ε2), s = 1, and another with m =
Õ(d2 log(1/δ)/ε4 + d log2(1/δ)/ε4), s = O(log(d/δ)/ε).
The second construction has the benefit of providing a

subspace embedding with success probability 1− δ and not

just 2/3, which is important e.g. in a known reduction from

�p regression to OSE’s [9].

Our Main Contribution: We give OSE’s with m =
O(d1+γ/ε2), s = Oγ(1/ε), where γ > 0 can be any

constant. Note s does not depend on d. The constant

hidden in the Oγ is poly(1/γ). The success probability

is 1 − 1/dc for any desired constant c. One can also set

m = O(d · polylog(d/δ)/ε2), s = polylog(d/δ)/ε for

success probability 1− δ. Ours are the first analyses to give

OSE’s having m = o(d2) with s = o(d). Observe that in

both our parameter settings m is nearly linear in d, which is

nearly optimal since any OSE must havem = Ω(d/ε2) [29].
We also show that a simpler instantiation of our approach

gives m = O(d2/ε2), s = 1, recovering a sharpening of a

main result of [11] with a much simpler proof. Our quadratic

dependence on d is optimal for s = 1 [30].

Plugging our improved OSE’s into previous work im-

plies faster algorithms for several numerical linear algebra

problems, such as approximate least squares regression,

�p regression, low rank approximation, and approximating

leverage scores. In fact for all these problems, except approx-

imating leverage scores, known algorithms only make use of

OSE’s with distortion Θ(1) independent of the desired 1+ε
approximation guarantee, in which case our matrices have

m = O(d1+γ), s = Oγ(1), i.e. constant column sparsity and

a near-optimal number of rows.

We also remark that the analyses of [11] require Ω(d)-
wise independent hash functions, so that from the seed used

to generate Π naively one needs an additive Ω(d) time to

identify the non-zero entries in each column just to evaluate

the hash function. In streaming applications this can be

improved to additive Õ(log2 d) time using fast multipoint

evaluation of polynomials (see [23, Remark 16]), though

ideally if s = 1 one could hope for a construction that

allows one to find, for any column, the non-zero entry in that

column in constant time given only a short seed that specifies

Π (i.e. without writing down Π explicitly in memory, which

could be prohibitively expensive for n large in applications

such as streaming and out-of-core numerical linear algebra).

118

Recall that in the entry-wise turnstile streaming model, A re-

ceives entry-wise updates of the form ((i, j), v), which cause

the change Ai,j ← Ai,j + v. Updating the embedding thus

amounts to adding v times the jth row of Π to ΠA, which

should ideally take O(s) time and not O(s) + Õ(log2 d).
Our analyses only use 4-wise independent hash functions

when s = 1 and O(log d)-wise independent hash functions

for larger s, thus allowing fast computation of any column

of Π from a short seed.

A. Problem Statements and Bounds

We now formally define all numerical linear algebra prob-

lems we consider. Plugging our new OSE’s into previous

algorithms provides speedup for all these problems (see

Figure 1; the consequences for �p regression are also given

in Section III). The value r used in bounds denotes rank(A).
In what follows, b ∈ Rn and A ∈ Rn×d.

Leverage Scores: Let A = UΣV ∗ be the SVD. Output the

row �2 norms of U up to 1± ε.
Least Squares Regression: Compute x̃ ∈ Rd so that ‖Ax̃−
b‖ ≤ (1 + ε) ·minx∈Rd ‖Ax− b‖.
�p Regression (p ∈ [1,∞)): Compute x̃ ∈ Rd so that ‖Ax̃−
b‖p ≤ (1 + ε) ·minx∈Rd ‖Ax− b‖p.
Low Rank Approximation: Given integer k > 0, compute

Ãk ∈ Rn×d with rank(Ã) ≤ k s.t. ‖A− Ãk‖F ≤ (1 + ε) ·
minrank(Ak)≤k ‖A−Ak‖F , where ‖ · ‖F is Frobenius norm.

B. Our Approach

Let Π ∈ Rm×n be a sparse JL matrix as in [22]. For

example, one such construction is to choose each column

of Π independently, and within a column we pick ex-

actly s random locations (without replacement) and set the

corresponding entries to ±1/√s at random with all other

entries in the column then set to zero. Observe any d-
dimensional subspace W ⊆ Rn satisfies W = {x : ∃y ∈
Rd, x = Uy} for some U ∈ Rn×d whose columns form

an orthonormal basis for W . A matrix Π preserving �2
norms of all x ∈ W up to 1 ± ε is thus equivalent to

the statement ‖ΠUy‖ = (1 ± ε)‖Uy‖ simultaneously for

all y ∈ Rd. This is equivalent to ‖ΠUy‖ = (1 ± ε)‖y‖
since ‖Uy‖ = ‖y‖. This in turn is equivalent to all singular

values of ΠU lying in the interval [1 − ε, 1 + ε].1 Write

S = (ΠU)∗ΠU , so that we want to show all eigenvalues of

S lie in [(1− ε)2, (1 + ε)2]. That is, we want to show

(1− ε)2 ≤ inf
‖y‖=1

‖Sy‖ ≤ sup
‖y‖=1

‖Sy‖ ≤ (1 + ε)2.

1Recall singular values of a (possibly rectangular) matrix B are the
square roots of eigenvalues of B∗B; (·)∗ denotes conjugate transpose.

By the triangle inequality we have ‖Sy‖ = ‖y‖±‖(S−I)y‖.
Thus, it suffices to show ‖S − I‖ ≤ min{1− (1− ε)2, (1+
ε)2 − 1} = 2ε− ε2. By Markov’s inequality

P(‖S−I‖ > t) < t−� ·E‖S−I‖� ≤ t−� ·Etr((S−I)�) (1)

for any even integer � ≥ 2. This is because if the eigenvalues

of S−I are λ1, . . . , λd, then those of (S−I)� are λ�1, . . . , λ�d.
Thus tr((S−I)�) =∑i λ

�
i ≥ maxi |λi|� = ‖S−I‖�, since �

is even so that the λ�i are nonnegative. Setting � = 2 allows

m = O(d2/ε2), s = 1 with a simple proof (Theorem 2),

and � = Θ(log d) yields the main result with s > 1 and

m ≈ d/ε2 (Theorem 5 and Theorem 8).

We remark that this method of bounding the range of

singular values of a random matrix by computing the ex-

pectation of traces of large powers is a classical approach

in random matrix theory (see the work of Bai and Yin [5]).

Such bounds were also used in bounding operator norms of

random matrices in work of Füredi and Komlós [16], and

in computing the limiting spectral distribution by Wigner

[38]. See also the surveys [33], [36]. We also remark that

this work can be seen as a natural extension of the work

on the sparse JL lemma itself. Indeed, if one imagines

that d = 1 so that U = u ∈ Rn×1 is a “1-dimensional

matrix” with orthonormal columns (i.e. a unit vector), then

preserving the 1-dimensional subspace spanned by u with

probability 1− δ is equivalent to preserving the �2 norm of

u with probability 1− δ. Indeed, in this case the expression

‖S − I‖ in Eq. (1) is simply |‖Πu‖2 − 1|. This is exactly
the JL lemma, where one achieves m = O(1/(ε2δ)), s = 1
by a computation of the second moment [34], and m =
O(log(1/δ)/ε2), s = O(log(1/δ)/ε) by a computation of

the O(log(1/δ))th moment [22].

Our approach is very different from that of Clarkson

and Woodruff [11]. For example, take the s = 1 con-

struction so that Π is specified by a random hash function

h : [n] → [m] and a random σ ∈ {−1, 1}n, where

[n]
def
= {1, . . . , n}. For each i ∈ [n] we set Πh(i),i = σi,

and every other entry in Π is set to zero. The analysis in

[11] then worked roughly as follows: let I ⊂ [n] denote

the set of “heavy” rows, i.e. those rows ui of U where

‖ui‖ is “large”. We write x = xI + x[n]\I , where xS
for a set S denotes x with all coordinates in [n]\S zeroed

out. Then ‖x‖2 = ‖xI‖2 + ‖x[n]\I‖2 + 2〈xI , x[n]\I〉. The
argument in [11] conditioned on I being perfectly hashed

by h so that ‖xI‖2 is preserved exactly. Using an approach

in [21], [22] based on the Hanson-Wright inequality [18]

together with a net argument, [11] argued that ‖x[n]\I‖2 is

preserved simultaneously for all x ∈ W ; this step required

Ω(d)-wise independence to union bound over the net. A

simpler concentration argument handled 〈xI , x[n]\I〉. This

type of analysis led to m = Õ(d4/ε4), s = 1. A more

involved refinement, where one partitions the rows of U
into multiple levels of “heaviness”, led to the bound m =

119

reference regression leverage scores low rank approximation

[11] O(nnz(A)) + Õ(d3) Õ(nnz(A) + r3) O(nnz(A)) + Õ(nk2)

Õ(nnz(A) + r3)

this work Oγ(nnz(A)) +O(dω+γ) Õ(nnz(A) + rω) Oγ(nnz(A)) + Õ(nkω−1+γ + kω+γ)

Õ(nnz(A) + rω)

Figure 1. The improvement gained in running times by using our OSE’s, where γ > 0 is an arbitrary constant. Dependence on ε suppressed for readability;
see Section III for dependence.

O(d2 log6(d/ε)/ε2), s = 1. The construction in [11] with

similar m and larger s for 1−δ success probability followed

a similar but more complicated analysis; that construction

hashed [n] into buckets then used the sparse JL matrices

of [22] in each bucket. Meanwhile, our analyses use the

matrices of [22] directly without the extra hashing step.

We remark that in our analyses, the properties we need

from an OSE are the following.

• For each Π in the support of the distribution, we

can write Πi,j = δi,jσi,j/
√
s, where the σ are i.i.d.

±1 random variables, and δi,j is an indicator random

variable for the event Πi,j �= 0.
• ∀ j ∈ [n],

∑m
i=1 δi,j = s with probability 1, i.e. every

column has exactly s non-zero entries.

• For any S ⊆ [m]× [n], E
∏

(i,j)∈S δi,j ≤ (s/m)|S|.
• The columns of Π are i.i.d.

We call any Π drawn from an OSE with the above prop-

erties an oblivious sparse norm-approximating projection
(OSNAP). In our analyses, the last condition and the inde-

pendence of the σi,j can be weakened to only be (2�)-wise

independent, since our analyses use �th moment bounds.

We now sketch a brief technical overview of our proofs.

When � = 2, we have tr((S − I)2) = ‖S − I‖2F , and

our analysis becomes a short computation (Theorem 2). For

larger �, we expand tr((S−I)�) and compute its expectation.

This expression is a sum of exponentially many monomials,

each involving a product of � terms. Without delving into

all technical details, each such monomial can be thought of

as being in correspondence with some undirected multigraph

(see the dot product multigraphs in the proof of Theorem 5).

We group monomials with isomorphic graphs, bound the

contribution from each graph separately, then sum over all

graphs. Multigraphs whose edges all have even multiplicity

turn out to be easier to handle (Lemma 6). However most

graphs G do not have this property. Informally speaking,

the contribution of a graph turns out to be related to the

product over its edges of the contribution of that edge.

Let us informally call this “contribution” F (G). Thus if

E′ ⊂ E is a subset of the edges of G, we can write

F (G) ≤ F ((G|E′)2)/2 + F ((G|E\E′)2)/2 by AM-GM,

where squaring a multigraph means duplicating every edge,

and G|E′ is G with all edges in E\E′ removed. This reduces

back to the case of even edge multiplicities, but unfortu-

nately the bound we desire on F (G) depends exponentially

on the number of connected components. Thus this step is

bad, since if G is connected, then one of G|E′ , G|E\E′ can
have many connected components for any choice of E′. For
example if G is a cycle on N vertices, then any partition

of the edges into two sets E′, E\E′ will have that either

GE′ or GE\E′ has at least N/2 components. We overcome

this by showing that any F (G) is bounded by some F (G′)
with the property that every component of G′ has two edge-

disjoint spanning trees. We then put one such spanning tree

into E′ for each component, so that G|E\E′ and G|E′ both
have the same number of components as G.

C. Other Related Work

Simultaneously and independently of this work, Ma-

honey and Meng [28] showed that one can set m =
O(d4/ε4), s = 1. Their argument was somewhat similar,

although rather than using ‖S − I‖2 ≤ tr((S − I)2) as

in Eq. (1), [28] used the Gershgorin circle theorem. After

receiving our manuscript as well as an independent tip from

Petros Drineas, the authors produced a second version of

their manuscript with a proof and result that match our

Theorem 2. Their work also gives an alternate algorithm

for (1 + ε) approximate �p regression in O(nnz(A) logn+
poly(d/ε)) time, without using a known black-box reduction

from �p regression to OSE’s in [9]. Their �p regression

algorithm has the advantage over this work and over [11] of

requiring only poly(d) space, but has the disadvantage of

only working for 1 ≤ p ≤ 2, whereas both this work and

[11] handle all p ∈ [1,∞). We remark that after our work,

Woodruff and Zhang used our OSE’s in a black box way to

give even further improved �p regression algorithms for all

p ∈ [1,∞), also using poly(d) space [40].

Another simultaneous and independent related work is

that of Li, Miller and Peng [26]. They provide a subspace

embedding with m = (d1+γ+nnz(A)/d3)/ε2, s = 1. Their
embedding is non-oblivious, meaning the construction of

Π requires looking at the matrix A. Their work has the

advantage of smaller s by a factor Oγ(1/ε) (although for

all problems considered here except approximating leverage

scores, one only needs OSE’s with ε = Θ(1)), and has the

disadvantage of m depending on nnz(A) ≥ n, and being

non-oblivious, so that they cannot provide a poly(d)-space
algorithm in one-pass streaming applications. Furthermore

their embeddings do not have a property required for known

applications of OSE’s to the low rank approximation prob-

lem, and it is thus not known how to use their embeddings

for this problem.

120

G Ĝ

1

2

3

4

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

1 4

32

Figure 2. Example of G ∈ G and corresponding Ĝ, � = 4. Here y = 4 (middle) and z = 2 (right), and i1 = i2, i3 = i4, j1 = j2, j3 = j4, r1 =
r2, r3 = r4, where i1, j1, i3, j3 are all distinct, and r1 �= r3. Also w = 2 (the top half of MR(G) is disconnected from the bottom half), and b = 4.

II. ANALYSIS

In this section the orthonormal columns of U ∈ Rn×d

are denoted u1, . . . , ud. We implement Eq. (1) and show

Etr((S − I)�) < t� · δ for t = 2ε − ε2 and δ ∈ (0, 1) a

failure probability parameter. Before proceeding, we assert

straightforward calculations show that for all k, k′ ∈ [d]

(S − I)k,k′ = 1

s

m∑
r=1

∑
i 	=j∈[n]

δr,iδr,jσr,iσr,ju
k
i u

k′
j . (2)

A. Analysis for � = 2

We first show that one can set m = O(d2/ε2), s = 1 by

performing a 2nd moment computation.

Theorem 2. For Π an OSNAP with s = 1 and ε ∈ (0, 1),
with probability at least 1−δ all singular values of ΠU are
1± ε as long as m ≥ δ−1(d2 + d)/(2ε− ε2)2.

Proof: We need only show Etr((S−I)2) ≤ (2ε−ε2)2 ·
δ. Since tr((S−I)2) = ‖S−I‖2F , we bound the expectation

of this latter quantity. We first deal with the diagonal terms

of S − I . By Eq. (2),

E(S − I)2k,k =
m∑
r=1

∑
i 	=j

2

m2
(uki)

2(ukj)
2 ≤ 2

m
· ‖uk‖4 =

2

m
.

Thus summing diagonal terms contributes at most 2d/m.

We now focus on the off-diagonal terms. By Eq. (2),

E(S − I)2k,k′ =
1

m2

m∑
r=1

∑
i 	=j

(
(uki)

2(uk
′
j)2 + uki u

k′
i u

k
ju

k′
j

)
=

1

m

∑
i 	=j

(
(uki)

2(uk
′
j)2 + uki u

k′
i u

k
ju

k′
j

)
.

Noting 0 = 〈uk, uk′〉2 =
∑n
k=1(u

k
i)

2(uk
′
i)2 +∑

i 	=j u
k
i u

k′
i u

k
ju

k′
j we have

∑
i 	=j u

k
i u

k′
i u

k
ju

k′
j ≤ 0, so

E(S − I)2k,k′ ≤
1

m

∑
i 	=j

(uki)
2(uk

′
j)2 ≤ 1

m
‖uk‖2 · ‖uk′‖2,

which equals 1/m. Summing over k �= k′, the total con-

tribution from off-diagonal terms to E‖S − I‖2F is at most

d(d− 1)/m. Thus E‖S − I‖2F ≤ d(d+ 1)/m, so it suffices

to set m ≥ δ−1d(d+ 1)/(2ε− ε2)2.
B. Analysis for � = Θ(log d)

We now show that one can set m ≈ d/ε2 for slightly

larger s by performing a Θ(log d)th moment computation.

Before proceeding, we state two standard facts. Also recall

ui denotes the ith column of U , and we use ui to denote

the ith row. Full proofs can be found in the full version.

Fact 3. Let G be a multigraph formed by removing at most
k edges from a multigraph G′ that has edge-connectivity at
least 2k. Then G must have at least k edge-disjoint spanning
trees.

Fact 4. For any matrix B ∈ Cd×d, ‖B‖ =
sup‖x‖,‖y‖=1 x

∗By.

Theorem 5. For Π an OSNAP with s = Θ(log3(d/δ)/ε)
and ε ∈ (0, 1), with probability at least 1 − δ, all singular
values of ΠU are 1± ε as long as m = Ω(d log6(d/δ)/ε2).

Proof (Sketch). We show Etr((S−I)�) ≤ (2ε−ε2)� ·δ for

� = Θ(log d) an even integer then apply Eq. (1). Induction

yields that Etr((S − I)�) equals

1

s�
· E

∑
k1,k2,...,k�+1

k1=k�+1

i1 	=j1,...,i� 	=j�
r1,...,r�

�∏
t=1

δrt,itδrt,jtσrt,itσrt,jtu
kt
it
u
kt+1

jt
. (3)

For each monomial ψ appearing on the right hand side of

Eq. (3) we associate a three-layered undirected multigraph

Gψ with labeled edges and unlabeled vertices (see Figure 2).

We call these three layers the left, middle, and right layers,

and we refer to vertices in the left layer as left vertices,
and similarly for vertices in the other layers. Define y =
|{i1, . . . , i�, j1, . . . , j�}| and z = |{r1, . . . , r�}|. The graph

Gψ has � left vertices, y middle vertices corresponding to

the distinct it, jt in ψ, and z right vertices corresponding

121

≤ ≤

Figure 3. Choosing a good summation order π. The boxed vertex is the next vertex we sum over. The left side chose a bad vertex, since we lost
connectivity, but the choice on the right is good.

to the distinct rt. For the sake of brevity, often we refer

to the vertex corresponding to it (resp. jt, rt) as simply it
(resp. jt, rt). Thus note that when we refer to for example

some vertex it, it may happen that some other it′ or jt′ is

also the same vertex. We now describe the edges of Gψ .

For ψ =
∏�
t=1 δrt,itδrt,jtσrt,itσrt,jtu

kt
it
u
kt+1

jt
we draw 4�

labeled edges in Gψ with distinct labels in [4�]. For each t ∈
[�] we draw an edge from the tth left vertex to it with label

4(t−1)+1, from it to rt with label 4(t−1)+2, from rt to jt
with label 4(t−1)+3, and from jt to the (t+1)st left vertex
with label 4(t−1)+4. Many different monomials ψ will map

to the same graph Gψ; in particular the graph maintains no

information concerning equalities amongst the kt, and the y
middle vertices may map to any y distinct values in [n], and
the right vertices to any z distinct values in [m]. We handle

the right hand side of Eq. (3) by grouping monomials ψ
mapping to the same G, bounding the total contribution of

G in terms of its graph structure when summing all ψ with

Gψ = G, then summing contributions over all G.

Before continuing further we introduce some more nota-

tion then make a few observations. For a graph G as above,

recall G has 4� edges, and we refer to the distinct edges

(ignoring labels) as bonds. We let E(G) denote the edge

multiset of a multigraph G and B(G) denote the bond set.

We refer to the number of bonds a vertex is incident upon as

its bond-degree, and the number of edges as its edge-degree.
We do not count self-loops for calculating bond-degree, and

we count them twice for edge-degree. We let LM(G) be

the induced multigraph on the left and middle vertices of G,

and MR(G) be the induced multigraph on the middle and

right vertices. We let w = w(G) be the number of connected

components inMR(G). We let b = b(G) denote the number

of bonds in MR(G) (note MR(G) has 2� edges, but it may

happen that b < 2� since G is a multigraph). Given G we

define the undirected dot product multigraph Ĝ with vertex

set [y]. Note every left vertex of G has edge-degree 2. For
each t ∈ [�] an edge (i, j) is drawn in Ĝ between the two

middle vertices that the tth left vertex is adjacent to (we draw

a self-loop on i if i = j). We label the edges of Ĝ according

to the natural tour on G (by following edges in increasing

label order), and the vertices with distinct labels in [y] in

increasing order of when each vertex was first visited by

the same tour. We name Ĝ the dot product multigraph since

if some left vertex t has its two edges connected to vertices

i, j ∈ [n], then summing over kt ∈ [d] produces the dot

product 〈ui, uj〉.
Now we make some observations. Due to the random

signs σr,i, a monomial ψ has expectation zero unless every

bond in MR(G) has even multiplicity, in which case the

product of random signs is 1. Also, note the expected

product of the δr,i is at most (s/m)b by OSNAP properties.

Thus letting G be the set of all such graphs G with even

bond multiplicity inMR(G) that arise from some monomial

ψ appearing in Eq. (3), some manipulations yield (see full

version) that Etr((S − I)�) is upper bounded by

1

s�
·
∑
G∈G

(s
m

)b
·mz ·

∣∣∣∣∣∣∣∣∣
∑

a1,...,ay∈[n]
∀i 	=j ai 	=aj

∏
e∈E(̂G)
e=(i,j)

〈uai , uaj 〉

∣∣∣∣∣∣∣∣∣ . (4)

It will also be convenient to introduce a notion we will use

in our analysis called a generalized dot product multigraph.
Such a graph Ĝ is just as in the case of a dot product

multigraph, except that each edge e = (i, j) is associated

with some matrix Me. We call Me the edge-matrix of e.
Furthermore, for an edge e = (i, j) with edge-matrix Me,

we also occasionally view e as the edge (j, i), in which case

we say its associated edge-matrix is M∗
e . We associate with

Ĝ the product over all e = (i, j) ∈ Ĝ of 〈uai ,Meuaj 〉. Note

that a dot product multigraph is simply a generalized dot

product multigraph in which Me = I for all e. Also, in such

a generalized dot product multigraph, we treat multiedges as

representing the same bond iff the associated edge-matrices

are equal (multiedges may have different edge-matrices).

Lemma 6. Let H be a connected generalized dot product
multigraph on vertex set [N] with E(H) �= ∅ and where
every bond has even multiplicity. Also suppose that for all
e ∈ E(H), ‖Me‖ ≤ 1. Then

n∑
a2=1

· · ·
n∑

aN=1

∏
e∈E(H)
e=(i,j)

〈vai ,Mevaj 〉 ≤ ‖c‖2, (5)

where vai = uai for i �= 1, and va1 equals some fixed vector
c with ‖c‖ ≤ 1.

Proof (Sketch). Let π be some permutation of {2, . . . , N}.
For a bond q = (i, j) ∈ B(H), let 2αq denote the

122

multiplicity of q in H . Then by ordering the assignments

of the at in the summation on the left hand side of Eq. (5)

according to π, we obtain the exactly equal expression

n∑
aπ(N)=1

∏
q∈B(H)

q=(π(N),j)

N≤π−1(j)

〈vaπ(N)
,Mqvaj 〉2αq · · ·

n∑
aπ(2)=1

∏
q∈B(H)
q=(π(1),j)

2≤π−1(j)

〈vaπ(2)
,Mqvaj 〉2αq . (6)

Here we took the product over t ≤ π−1(j) as opposed to

t < π−1(j) since there may be self-loops.

What we show in the full proof, using that
∑n
i=1 uiu

∗
i = I

and ∀i ‖ui‖ ≤ 1, is the inequality in Figure 3. That is, if the

boxed vertex is the next vertex we sum over according to π
(going from right to left in Eq. (6)), then we show Eq. (6) is

at most the summation over {ai} for a similar sum but over

a new graph H ′. To form H ′, eliminate the boxed vertex

and add a self-loop to each of its neighbors (one self-loop

to each pair of edges to that neighbor). Each new self-loop

has edge-matrix I . By iteratively choosing the next vertex to

sum over, one specifies π. Note we do not sum over vertex

1. If π is chosen so that at each step the new graph H ′ is
connected, then the final graph is vertex 1 with some positive

number of self-loops, so Eq. (6) is upper bounded by

t∏
j=1

‖Mejc‖2 ≤
t∏

j=1

‖Mej‖2‖c‖2 ≤ ‖c‖2

for some t ≥ 1, where ∀j ‖Mej‖ ≤ 1. Such a π exists:

take a spanning tree of H rooted at vertex 1 then sum over

vertices in reverse breadth first search order (i.e. from the

leaves upward). �

Lemma 7. Let Ĝ be any dot product graph as in Eq. (4).
Then ∣∣∣∣∣∣∣∣

∑
a1,...,ay∈[n]
∀i 	=j ai 	=aj

∏
e∈ ̂G
e=(i,j)

〈uai , uaj 〉

∣∣∣∣∣∣∣∣ ≤ y! · dy−w+1. (7)

Proof (Sketch). In the full proof we first show how to

eliminate the restrictions ai �= aj on the left hand side of

Eq. (7) at the cost of a multiplicative y!. We then wish to

show

F (Ĝ)
def
=

∣∣∣∣∣∣∣∣∣
n∑

a1,...,ay=1

∏
e∈E(̂G)
e=(i,j)

〈uai ,Meuaj 〉

∣∣∣∣∣∣∣∣∣ ≤ dy−w+1 (8)

where Me = I for all e ∈ Ĝ. To upper bound F (Ĝ), let

its connected components be C1, . . . , CCC(̂G), where CC(·)

counts connected components. We treat Ĝ as a generalized

dot product multigraph so that each edge e has an associated

matrix Me (though in fact Me = I for all e). Define

an undirected multigraph to be good if all its connected

components have two edge-disjoint spanning trees. We will

show that F (Ĝ) = F (G′) for some good G′ and such that

F (G′) ≤ dy−w+1. If Ĝ itself is good then we set G′ = Ĝ.

Otherwise, we will show F (Ĝ) = F (H0) = . . . = F (Hτ)
for smaller and smaller generalized dot product multigraphs

Ht (i.e. with successively fewer vertices) whilst maintaining

the invariant that each Ht has Eulerian connected compo-

nents (a simple argument shows that Ĝ itself has Eulerian

components) and has ‖Me‖ ≤ 1 for all e. We stop when

some Hτ is good and we can set G′ = Hτ . This iterative

process terminates, since every successive Ht has at least

one fewer vertex, and when the number of vertices of

any connected component drops to 2 or lower then that

connected component has two edge-disjoint spanning trees.

M

g g′

h h′

g g′

S̄

S S

Figure 5. Forming Ht from Ht−1.

Let us now focus on constructing this sequence of Ht

in the case that Ĝ is not good. Let H0 = Ĝ. Suppose we
have constructed H0, . . . , Ht−1 for i ≥ 1 none of which
are good, and now we want to construct Ht. Since Ht−1
is not good it cannot be 4-edge-connected by Fact 3, so
there is some connected component Cj∗ of Ht−1 with some
S � V (Cj∗) with 2 edges crossing the cut (S, S̄), where
S̄ represents the complement of S in Cj∗ . This is because
since Cj∗ is Eulerian, any cut has an even number of edges
crossing it. Choose such an S ⊂ V (Cj∗) with |S̄| minimum
amongst all such cuts. Let the two edges crossing the cut be
(g, h), (g′, h′) with g, g′ ∈ S (note that it may be the case
that g = g′ or h = h′, or both). Note that F (Ht−1) equals
the magnitude of

∑
{ai}

i/∈Cj∗

∏
e∈Ht−1
e/∈Cj∗
e=(i,j)

〈uai ,Meuaj 〉
∑
{ai}
i∈S

⎛
⎜⎜⎜⎜⎜⎝

∏
e∈Ht−1
e=(i,j)
i,j∈S

〈uai ,Meuaj 〉

⎞
⎟⎟⎟⎟⎟⎠

u∗ag

⎛
⎜⎜⎜⎜⎜⎝

∑
{ai}
i∈S̄

M(g,h)uah

⎛
⎜⎜⎜⎜⎜⎝

∏
e∈Ht−1
e=(i,j)
i,j∈S̄

〈uai ,Meuaj 〉

⎞
⎟⎟⎟⎟⎟⎠

u∗ah′M(h′,g′)

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M

uag′ .

(9)

We define Ht to be Ht−1 but where in the j∗th component

we eliminate all the vertices and edges in S̄ and add an

additional edge from g to g′ with edge-matrix M (see Fig-

ure 5). We thus have that F (Ht−1) = F (Ht). Furthermore

each component of Ht is still Eulerian since every vertex in

123

≤ 1
2· +

x′x′x x

S̄

S

S̄ S̄

S S

Figure 4. Showing that ‖M‖ ≤ 1 by AM-GM on two edge-disjoint spanning subgraphs.

Ht−1 has either been eliminated, or its edge-degree has been

preserved and thus all edge-degrees are even. By iteratively

eliminating bad cuts (S, S̄) in this way, we eventually arrive

at a generalized dot product multigraph Hτ with two edge-

disjoint spanning trees in every component.

In the full proof we show that the graph induced on S̄
has two edge-disjoint spanning trees, using the minimality

of |S̄| and Fact 3. To show ‖M‖ ≤ 1 as required by our

invariant, by Fact 4 we have ‖M‖ = sup‖x‖,‖x′‖=1 x
∗Mx′.

The product x∗Mx′ is displayed in Figure 4, where M is

the summation over all assignments to vertices in S̄ of the

edges displayed in the figure (all edges within S̄, plus the

two edges between S and S̄). Since S̄ has two edge-disjoint

spanning subgraphs, we can partition its edges into two sets

(the dashed and solid edges in Figure 4) such that S̄ is

connected using either edge set. Then by applying the AM-

GM inequality as in the figure, we arrive at two connected

graphs that each have all even edge multiplicities. We apply

Lemma 6 to each graph, where in the first graph c = x, and
in the second graph c = x′. The right hand side of Figure 4 is

thus bounded by (‖x‖2+‖x′‖2)/2 = 1, showing ‖M‖ ≤ 1.

It remains to show that for our final good G′ we have

F (G′) ≤ dy−w+1. We first show CC(G′) ≤ dy−w+1 then

F (G′) ≤ dCC(G′). For the first claim, note CC(G′) =
CC(Ĝ) since every Ht has the same number of connected

components as Ĝ. Now, all middle vertices in G lie in one

connected component (since G is connected) and MR(G)
has w connected components. Thus the at least w− 1 edges

connecting these components in G must come from LM(G),
implying that LM(G) (and thus Ĝ) has at most y − w + 1
connected components, and thus CC(G′) = CC(Ĝ) ≤
y − w + 1.

It only remains to show F (G′) ≤ dCC(G′). Let G′

have connected components C1, . . . , CCC(G′) with each Cj
having 2 edge-disjoint spanning trees (see Figure 6). A

simple observation is that F (H) =
∏
i F (Ci), and thus

we need only show F (Ci) ≤ d, where we abuse notation

to let Ci denote the generalized dot product multigraph

induced on Ci. Label an arbitrary vertex in Ci as vertex

1. Then applying AM-GM after partitioning the edges into

two edge-disjoint spanning subgraphs (Figure 6), Lemma 6

gives F (Ci) ≤
∑n
a1=1 ‖ua1‖2 = ‖U‖2F = d.

�

Some basic estimates discussed in the full proof yield that

for any G ∈ G, we have y + z ≤ b+w, b ≥ 2z, y ≤ b ≤ �,
and that the number of different G with a given b, y, z is

at most (b3)�/y!. These estimates can be combined with

Lemma 7 and Eq. (4) to show the inequality

Etr((S − I)�) ≤ d�4 · max
2≤b≤�

(
b3

s

)�−b(
b3
√
d

m

)b
.

Define ε = 2ε − ε2. For � ≥ ln(d�4/δ) = O(ln(d/δ)),
s ≥ e�3/ε = O(log(d/δ)3/ε), and m ≥ e2d�6/ε2 =
O(d log(d/δ)6/ε2), we then have that Etr((S− I)�) ≤ δε�.
�

A change of parameters also yields the following (see full

version).

Theorem 8. Let α, γ > 0 be arbitrary constants. For Π an
OSNAP with s = Θ(1/ε) and ε ∈ (0, 1), with probability
at least 1 − 1/dα, all singular values of ΠU are 1 ± ε for
m = Ω(d1+γ/ε2). The constants in the big-Θ and big-Ω
depend on α, γ.

III. APPLICATIONS

Here we state the consequences of plugging our OSE’s

into known previous work for various numerical linear

algebra problems [8], [9], [11], [12], [14], [15], [22]. Details

can be found in the full version. In the statements of our

bounds we implicitly assume nnz(A) ≥ n, since otherwise

fully zero rows of A can be ignored without affecting the

problem solution.

Leverage Scores (reduction to OSE’s in [15]):

Theorem 9. For any constant ε > 0, there is an algorithm
that with probability at least 2/3, approximates all leverage
scores of a n×d matrix A up to 1±ε in time Õ(nnz(A)/ε2+
rωε−2ω).

Least Squares Regression (reduction to OSE’s in [11]):

Theorem 10. There is an algorithm for (1+ε)-approximate
least squares regression running in time Oγ(nnz(A)/ε) +
O(d3 log(d/ε)/ε2) and succeeding with probability 2/3.

Theorem 11. Let r be the rank of A. There is an algorithm
for (1 + ε)-approximate least squares regression running in

124

≤ 1
2
· +

Figure 6. AM-GM on two edge-disjoint spanning subgraphs of one connected component of G′.

time O(nnz(A)((log r)O(1) + log(n/ε)) + rω(log r)O(1) +
r2 log(1/ε)) and succeeding with probability at least 2/3.

�p Regression, p ∈ [1,∞) (reduction to OSE’s in [9]; see
also [11]): Let α̂ = d1/p+1/2, β̂m = O(max{1, d1/q−1/2} ·
d(m2d3)|1/p−1/2|), where 1/p+ 1/q = 1.

Theorem 12 (follows from [9], [12]). Suppose A ∈ Rn×d

has rank d. Given an OSE distribution over Rm×n with
column sparsity s, with ε = 1/2 and failure probability
δ < 1/n, one can find x̂′ ∈ Rd in time O(nnz(A)(s +
log n) + d3 log n + φ(O(2pd1+|p/2−1|(α̂β̂m)p, d)) +
φ(O(ε−224pd(α̂β̂m)p log(1/ε)), d) satisfying
‖Ax̂′ − b‖p ≤ (1 + ε)minx ‖Ax − b‖p with probability
1/2. Here φ(n, d) is the time to exactly solve an n × d �p
regression problem, and α̂, β̂m are as above.

The work [11] plugged their OSE with m = d2 ·
polylog(n), s = log n into Theorem 12 above (recall β̂m
depends on m2). On the other hand, one obtains improved

dependence on d by using our Theorem 5 with m =
d polylog n, s = polylog n. If n, d are polynomially related

one can also use Theorem 8 with m = O(d1+γ), s = Oγ(1)
for any γ > 0. Also see [40] for an improved reduction from

�p regression to OSE’s.

Low Rank Approximation (reduction to OSE’s in [11]):

Theorem 13. Given A ∈ Rn×n, there are 2 algorithms that,
with probability at least 3/5, find 3 matrices U,Σ, V where
U is of size n × k, Σ is of size k × k, V is of size n × k,
UTU = V TV = Ik, Σ is a diagonal matrix, and

‖A− UΣV ∗‖F ≤ (1 + ε)Δk

The first algorithm runs in time O(nnz(A)) + Õ(nk2 +
nkω−1ε−1−ω + kωε−2−ω). The second algorithm runs in
time Oγ(nnz(A))+ Õ(nkω+γ−1ε−1−ω−γ+kω+γε−2−ω−γ)
for any constant γ > 0.

IV. OPEN PROBLEM

As discussed previously, the work here can be seen as a

natural extension of the sparse Johnson Lindenstrauss lemma

[22]. Indeed, D being an OSE means that for all U ∈ Rn×d

with orthonormal columns,

PΠ (‖(ΠU)∗(ΠU)− I‖ > ε) < δ (10)

The case d = 1 corresponds to the Johnson-Lindenstrauss

lemma. We state the following conjecture.

Conjecture 14. Let Π be an OSNAP with m = Ω((d +
log(1/δ))/ε2), s = Ω(log(d/δ)/ε). Then Eq. (10) holds.
In fact, with these parameter settings, it holds that ε−� ·
Etr(((ΠU)∗(ΠU)− I)�) < δ for � = Θ(log(d/δ)) an even
integer, so that the analysis can follow the moment method.

Conjecture 14 is true for d = 1 [22], and for larger d
holds up to logO(1)(d/δ) factors in m and s by Theorem 5.

We remark that it is even open to resolve Conjecture 14 in

the dense case of s = m by using the moment method.

ACKNOWLEDGMENTS

We thank Andrew Drucker for suggesting the SNAP

acronym for our OSE’s, to which we added the “oblivious”

descriptor. This work was done while JN was a member at

the Institute for Advanced Study, supported by NSF CCF-

0832797 and NSF DMS-1128155. HN was supported by

NSF CCF-0832797 and a Gordon Wu fellowship.

REFERENCES

[1] D. Achlioptas. Database-friendly random projections:
Johnson-Lindenstrauss with binary coins. J. Comput. Syst.
Sci., 66(4):671–687, 2003.

[2] N. Ailon and B. Chazelle. The Fast Johnson–Lindenstrauss
transform and approximate nearest neighbors. SIAM J.
Comput., 39(1):302–322, 2009.

[3] N. Ailon and E. Liberty. Fast dimension reduction using
Rademacher series on dual BCH codes. Discrete Comput.
Geom., 42(4):615–630, 2009.

[4] N. Ailon and E. Liberty. Almost optimal unrestricted fast
Johnson-Lindenstrauss transform. In SODA, pages 185–191,
2011.

[5] Z. Bai and Y. Yin. Limit of the smallest eigenvalue of a
large dimensional sample covariance matrix. Ann. Probab.,
21(3):1275–1294, 1993.

[6] V. Braverman, R. Ostrovsky, and Y. Rabani. Rademacher
chaos, random Eulerian graphs and the sparse Johnson-
Lindenstrauss transform. CoRR, abs/1011.2590, 2010.

[7] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value
thresholding algorithm for matrix completion. SIAM Journal
on Optimization, 20(4):1956–1982, 2010.

125

[8] H. Y. Cheung, T. C. Kwok, and L. C. Lau. Fast matrix rank
algorithms and applications. In STOC, pages 549–562, 2012.

[9] K. Clarkson, P. Drineas, M. Magdon-Ismail, M. Mahoney,
X. Meng, and D. Woodruff. The fast Cauchy transform and
faster robust linear regression. In SODA, pages 466–477,
2013.

[10] K. L. Clarkson and D. P. Woodruff. Numerical linear algebra
in the streaming model. In STOC, pages 205–214, 2009.

[11] K. L. Clarkson and D. P. Woodruff. Low rank approximation
and regression in input sparsity time. In STOC, pages 81–90,
2013.

[12] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. W.
Mahoney. Sampling algorithms and coresets for �p regression.
SIAM J. Comput., 38(5):2060–2078, 2009.

[13] A. Dasgupta, R. Kumar, and T. Sarlós. A sparse Johnson-
Lindenstrauss transform. In STOC, pages 341–350, 2010.

[14] J. Demmel, I. Dumitriu, and O. Holtz. Fast linear algebra is
stable. Numer. Math., 108(1):59–91, Oct. 2007.

[15] P. Drineas, M. Magdon-Ismail, M. Mahoney, and
D. Woodruff. Fast approximation of matrix coherence
and statistical leverage. In ICML, 2012.

[16] Z. Füredi and J. Komlós. The eigenvalues of random
symmetric matrices. Combinatorica, 1(3):233–241, 1981.

[17] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure
with randomness: Probabilistic algorithms for constructing
approximate matrix decompositions. SIAM Rev., Survey and
Review section, 53(2):217–288, 2011.

[18] D. L. Hanson and F. T. Wright. A bound on tail probabilities
for quadratic forms in independent random variables. Ann.
Math. Statist., 42(3):1079–1083, 1971.

[19] A. Hinrichs and J. Vybíral. Johnson-Lindenstrauss lemma for
circulant matrices. Random Struct. Algorithms, 39(3):391–
398, 2011.

[20] W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz
mappings into a Hilbert space. Contemporary Mathematics,
26:189–206, 1984.

[21] D. M. Kane and J. Nelson. A derandomized sparse Johnson-
Lindenstrauss transform. CoRR, abs/1006.3585, 2010.

[22] D. M. Kane and J. Nelson. Sparser Johnson-Lindenstrauss
transforms. In SODA, pages 1195–1206, 2012.

[23] D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff. Fast
moment estimation in data streams in optimal space. In STOC,
pages 745–754, 2011.

[24] F. Krahmer, S. Mendelson, and H. Rauhut. Suprema of chaos
processes and the restricted isometry property. Comm. Pure
Appl. Math., to appear.

[25] F. Krahmer and R. Ward. New and improved Johnson-
Lindenstrauss embeddings via the Restricted Isometry Prop-
erty. SIAM J. Math. Anal., 43(3):1269–1281, 2011.

[26] M. Li, G. L. Miller, and R. Peng. Iterative row sampling. In
FOCS, 2013.

[27] M. W. Mahoney. Randomized algorithms for matrices and
data. Foundations and Trends in Machine Learning, 3(2):123–
224, 2011.

[28] X. Meng and M. W. Mahoney. Low-distortion subspace
embeddings in input-sparsity time and applications to robust
linear regression. In STOC, pages 91–100, 2013.

[29] J. Nelson and H. L. Nguy˜̂en. Lower bounds for oblivious
subspace embeddings. CoRR, abs/1308.3280, 2013.

[30] J. Nelson and H. L. Nguy˜̂en. Sparsity lower bounds for
dimensionality-reducing maps. In Proceedings of the 45th
ACM Symposium on Theory of Computing (STOC), pages
101–110, 2013.

[31] N. H. Nguyen, T. T. Do, and T. D. Tran. A fast and efficient
algorithm for low-rank approximation of a matrix. In STOC,
pages 215–224, 2009.

[32] T. Sarlós. Improved approximation algorithms for large
matrices via random projections. In FOCS, pages 143–152,
2006.

[33] T. Tao. Topics in random matrix theory, volume 132 of
Graduate Studies in Mathematics. American Mathematical
Society, 2012.

[34] M. Thorup and Y. Zhang. Tabulation-based 5-independent
hashing with applications to linear probing and second mo-
ment estimation. SIAM J. Comput., 41(2):293–331, 2012.

[35] J. A. Tropp. Improved analysis of the subsampled randomized
Hadamard transform. Adv. Adapt. Data Anal., Special Issue
on Sparse Representation of Data and Images, 3(1–2):115–
126, 2011.

[36] R. Vershynin. Introduction to the non-asymptotic analysis
of random matrices. In Y. Eldar and G. Kutyniok, editors,
Compressed Sensing, Theory and Applications, chapter 5,
pages 210–268. Cambridge University Press, 2012.

[37] J. Vybíral. A variant of the Johnson-Lindenstrauss lemma for
circulant matrices. J. Funct. Anal., 260(4):1096–1105, 2011.

[38] E. P. Wigner. Characteristic vectors of bordered matrices with
infinite dimensions. Ann. Math., 62:548–564, 1955.

[39] V. V. Williams. Multiplying matrices faster than Coppersmith-
Winograd. In STOC, pages 887–898, 2012.

[40] D. P. Woodruff and Q. Zhang. Subspace embeddings and
�p-regression using exponential random variables. In COLT,
2013.

[41] Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan. Large-
scale parallel collaborative filtering for the Netflix prize. In
AAIM, pages 337–348, 2008.

126

